首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of experiments made on striatal membranes, Leff and Creese [Molec. Pharmac. (1985) 27, 184-192] have proposed that tritiated dopamine binds to a high-affinity agonist state of D1 dopamine receptors (D1h) which adopt this conformation when they are associated with the GTP-binding protein involved in the transduction process. Quantitative autoradiography was thus used to look for the distribution of these D1h sites in the rat brain and to compare it with that of D1 receptors labelled with [3H]7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benz aze pine [( 3H]SCH23390), a D1 antagonist. The effects of unilateral 6-hydroxydopamine lesion of the ascending dopamine pathways on the density of [3H]dopamine D1h and [3H]SCH23390 binding sites in the striatum and the nucleus accumbens were also analysed. In the striatum, when D2 receptors were blocked by spiroperidol (20 nM), [3H]dopamine was found to bind specifically to dopamine receptors of the D1 type. Complementary experiments made with dopamine uptake blockers indicated that high-affinity dopamine uptake sites were not labelled by [3H]dopamine under our experimental conditions. The anatomical distribution of [3H]dopamine D1h binding sites was found to be markedly different from that of [3H]SCH23390 binding sites. This was particularly the case in the substantia nigra, some amygdaloid nuclei and the prefrontal cortex--structures in which the ratios between [3H]SCH23390 and [3H]dopamine binding sites were more than seven-fold higher than that observed in the striatum. [3H]SCH23390 binding was not significantly affected in either the striatum or the nucleus accumbens six weeks after a complete unilateral destruction of ascending dopamine pathways. In contrast, a marked decrease in [3H]dopamine D1h binding sites was found in both structures, but this effect was lower in the medioventral (-60%) than in the laterodorsal (-81%) part of the striatum, even though dopamine denervation was uniform throughout the structure. Preincubation of the sections with dopamine (0.5 microM) led to a partial recovery (+126%) in the lesioned striatum and an increase of [3H]dopamine labelling in the control striatum (+68%). This suggest that the presence of dopamine stabilizes the D1h state of D1 receptors. The absence or low amount of dopamine, either due to dopamine denervation or naturally occurring (prefrontal cortex), would then impair the [3H]dopamine D1h binding. In addition, a lower coupling of D1 receptors with adenylate cyclase was observed in the substantia nigra when compared to that in the striatum: this may explain the relatively weak [3H]dopamine binding in the substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The purpose of this study was to examine the receptor occupancy of D1/D5 antagonists for D1-like dopamine receptors in rat brain using [3H]SCH 39166, a highly selective D1/D5 antagonist with low affinity for 5HT2 receptors. A single concentration of triated SCH 39166 was administered to rats, with or without competing doses of the Dl/D5 antagonist SCH 23390 and unlabeled SCH 39166. the D2-like antagonists haloperidol or the 5-HT, antagonist ketanserin. The bound radioactivity in the cortex, striatum, nucleus accumbens and olfactory tubercle was then quantified using an in vivo autoradiographic procedure. The results indicated that [3H]SCH 39166 was dose dependently displaced by the Dl/D5 antagonists in regions associated with both the nigro-striatal pathway and the mesolimbic dopamine pathway, particularly the nucleus accumbens. Neither haloperidol nor ketanserin displaced [3H]SCH 39166 in any of the regions examined. The data were compared with previously published data examining the in vivo binding of [3H]SCH 39166 in rat brain homogenates. The relative values obtained were comparable to values detected in rat brain homogenates after in vivo binding of [3H]SCH 39166.  相似文献   

3.
In the weaver mouse there is a major abnormality in the dopamine-containing innervation of the striatum. Dopamine islands from during development, along with some innervation of the non-islandic matrix; but during the first postnatal month much of the islandic innervation degenerates and there is a failure of the normal postnatal development of the diffuse nigrostriatal innervation. In the experiments reported here we analysed the distribution of D1 dopamine receptor-related binding sites in the weaver striatum in an effort to test the relationship between the dopamine-containing innervation of the striatum and the synthesis and distribution of dopamine receptors there. Dopamine D1 receptor binding sites labeled by the D1 specific antagonist [3H]SCH 23390 were studied in the striatum of 7-day and adult homozygous weaver (wv/wv) and homozygous control (+/+) mice. Saturation analysis of [3H]SCH 23390 binding in adult animals suggested that the dissociation constants of the binding sites are similar in mutants and controls. The Bmax values in the striatum of weavers were 16% higher than in the controls when the data were expressed as fmoles/mg protein. The protein content of the adult weaver's striatum was decreased by 15 to 30%, however, so that when values were expressed as fmoles/section, no significant difference between values in weavers and homozygous controls were found. Quantitative autoradiography supported the results of saturation analysis. We conclude that the apparent increase of [3H]SCH23390 binding sites in the mutants occurred as the result of shrinkage of the weaver's caudoputamen and that dopamine D1 receptor binding sites in the caudoputamen, as assessed with [3H]SCH 23390, are normal. The studies of regional distribution of [3H]SCH 23390 binding sites in 7-day and adult mice indicated that the characteristic postnatal transition of the [3H]SCH 23390 binding pattern from islandic to a diffuse distribution occurred normally in the weaver's caudoputamen. Thus, in spite of the degeneration and failure of development of the nigrostriatal innervation in weaver mice, D1 binding in the weaver's striatum undergoes the elaborate change in distribution of these sites that is a hallmark of normal striatal development.  相似文献   

4.
The purpose of this study was to examine the receptor occupancy of D1/D5 antagonists for D1-like dopamine receptors in rat brain using [3H]SCH 39166, a highly selective D1/D5 antagonist with low affinity for 5HT2 receptors. A single concentration of triated SCH 39166 was administered to rats, with or without competing doses of the D1/D5 antagonist SCH 23390 and unlabeled SCH 39166, the D2-like antagonists haloperidol or the 5-HT2 antagonist ketanserin. The bound radioactivity in the cortex, striatum, nucleus accumbens and olfactory tubercle was then quantified using an in vivo autoradiographic procedure. The results indicated that [3H]SCH 39166 was dose dependently displaced by the D1/D5 antagonists in regions associated with both the nigro-striatal pathway and the mesolimbic dopamine pathway, particularly the nucleus accumbens. Neither haloperidol nor ketanserin displaced [3H]SCH 39166 in any of the regions examined. The data were compared with previously published data examining the in vivo binding of [3H]SCH 39166 in rat brain homogenates. The relative values obtained were comparable to values detected in rat brain homogenates after in vivo binding of [3H]SCH 39166.  相似文献   

5.
Clinical and pathological evidence points to an involvement of dopamine in Alzheimer's disease (AD). The present study was designed to assay dopamine D1-like and D2-like receptors on peripheral blood lymphocytes (PBL) in 20 patients with AD and in 25 healthy controls by radioligand binding assay techniques with [3H][R]-(+)-(−)chloro-2,3,4,5 tetrahydro-5-phenyl-1H-3-benzazepin-al-hemimaleate (SCH 23390) and [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetraline (7OH-DPAT) as radioligands. The density of dopamine D1-like receptors and the affinity of [3H]SCH 23390 and [3H]7OH-DPAT binding to PBL were similar in both groups investigated. AD patients revealed a lower density of dopamine D2-like receptors on PBL than controls (P=0.0016). The pharmacological profile of [3H]SCH 23390 and [3H]7OH-DPAT binding to PBL was consistent with the labeling of dopamine D5 and D3 receptor subtypes, respectively. The reduced density of dopamine D2-like receptors on PBL is consistent with the observation of changes in the expression of D2-like receptors in dopaminergic brain areas in AD. Our findings support the hypothesis of an involvement of dopamine in AD, even in those patients with no evidence of Parkinsonism, behavioral abnormalities or psychosis.  相似文献   

6.
Delis F  Mitsacos A  Giompres P 《Neuroscience》2004,125(1):255-268
The Purkinje Cell Degeneration (Nna1pcd, pcd) mutant mouse is mainly characterized by the complete, primary loss of the Purkinje cells and the secondary, partial, retrograde loss of the granule and inferior olive neurons and is considered a model of human degenerative ataxia. We determined, by in vitro quantitative autoradiography and in situ hybridization, the effects of the Purkinje cell deprivation on the dopaminergic system of the Nna1pcd mutant mouse. The dopamine transporters, as determined by [3H]WIN35428 binding, were increased compared with wild-type mice in the ventral mesencephalic dopaminergic nuclei and in the lateral striatum, motor cortex and septum. In the cerebellum of Nna1pcd mice, the dopamine transporters showed a significant increase in the deep cerebellar nuclei, but were significantly decreased in the molecular layer. The D1-like receptors, as determined by [3H]SCH23390 binding, increased significantly in the Nna1pcd substantia nigra. The D2/D3 receptors, as determined by [3H]raclopride binding, exhibited a significant decrease in lateral divisions of the striatum. Significant increases in D2-like receptors, as determined by [3H]nemonapride binding, were observed in most divisions of the striatum as well as in septum, hippocampus, and piriform cortex. This D2-like fraction most probably corresponds to the D4 receptor subtype. In the cerebellum of Nna1pcd mice, D2-like receptors were significantly decreased in the molecular layer. The results suggest an increased excitatory input on the dopaminergic mesencephalic neurons and an alteration of the dopaminergic neurotransmission in basal ganglia, cortical and limbic regions of the Nna1pcd mutant mouse. In the cerebellum, the significant downregulation of the dopamine transporters and D2-like receptors in the mutant cerebellar molecular layer is possibly due to the absence of the Purkinje cells.  相似文献   

7.
The effects of several dopaminergic agonists and antagonists on the spontaneous release of [3H]gamma-aminobutyric acid were investigated in the dorsal striatum of halothane-anaesthetized rats. A push-pull cannula was implanted and the tissue was superfused continuously with a physiological medium containing [3H]glutamine, the precursor of [3H]GABA. Drugs were added to the superfusion medium. 2-Amino,6,7-dihydroxy,1,2,3,4-tetrahydro-naphtalene (ADTN, a mixed D1 and D2 receptor agonist) and D-amphetamine (a drug that enhances the release of endogenous dopamine) increased the release of 3H-GABA. The effect of ADTN was blocked by a D1 antagonist [R-(+),8-chloro, 7-hydroxy,2,3,4,5-tetrahydro,3-methyl,5-phenyl,1-H,3-benzazepine (SCH 23390)] but not by a D2 antagonist (S-sulpiride). Furthermore the stimulation of D1 receptors either by 2,3,4,5-tetrahydro,7,8-dihydroxy,1-phenyl,1-H,3-benzazepine or by D-amphetamine in the presence of S-sulpiride also enhanced the release of [3H]GABA. On the other hand, a selective D2 receptor agonist (3-(2-(N-3-hydroxy-phenylethyl)N-propylamino)ethyl-phenol) decreased the release of [3H]GABA. This effect was blocked in the presence of S-sulpiride. By itself the D1 receptor antagonist (SCH 23390) decreased the release of [3H]GABA whereas the D2 receptor antagonist (S-sulpiride) had no effect. It was concluded that stimulation of D1 and D2 receptors produces opposing effects on the spontaneous release of [3H]GABA in the dorsal striatum. Stimulation of D1 receptors facilitates the release of [3H]GABA whilst stimulation of D2 receptors inhibits it. The effect of D1 receptor stimulation appears to be predominant, and endogenous dopamine may activate tonically the release of GABA through these receptors in our experimental conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A radiolabeled form of the benzonaphthazephine, SCH39166 was used to characterize the binding of this D1 antagonist in cortex, and an autoradiographic comparison of the localization of [3H]SCH39166 to [3H]SCH23390 (D1 antagonist and forerunner of SCH39166) binding was performed. The Kd for [3H]SCH39166, calculated from dissociation and association rate constants (1.09 nM), was comparable to the Kd value derived from Scatchard analyses of saturation data (1.74 nM). [3H]SCH39166 binds to brain tissue in a saturable manner with high affinity and low non-specific binding. Inhibition of [3H]SCH39166 binding by dopaminergic and serotonergic agents supports the hypothesis that this is indeed a D1-specific compound with little overlap onto serotonin (5-HT) receptors. The affinity of [3H]SCH39166 for 5-HT2 and 5-HT1c receptors is at least an order of magnitude lower than the affinity of [3H]SCH23390 for these same receptor sites. Quantitative autoradiographic analysis of [3H]SCH39166 and [3H]SCH23390 binding indicates high D1-receptor density in the caudate-putamen, nucleus accumbens, olfactory tubercle, substantia nigra and entopeduncular nucleus. Low levels of binding (not significantly above background) were detected with [3H]SCH39166 in lamina IV of the cortex and in choroid plexus; areas which had significant [3H]SCH23390 binding and are known to have a high density of 5-HT (5-HT2 and 5-HT1c respectively) receptors.  相似文献   

9.
Transgenic mice bearing a transgene coding for a glucocorticoid receptor antisense mRNA, which partially blocks glucocorticoid receptor expression, were used to investigate the long-term effect of hypothalamic-pituitary-adrenal axis dysfunction on brain dopamine transmission. Compared to control mice, the transgenic animals showed increased amphetamine-induced locomotor activity and increased concentrations of striatal dopamine and its metabolites dihydroxyphenylacetic acid and homovanillic acid. Binding of [3H]SCH 23390 and [3H]spiperone to, respectively, D1 and D2 dopamine receptors was increased in transgenic mice. In contrast, autoradiography of striatal [3H]GBR 12935 binding to the dopamine transporter was decreased and the mRNA levels of this transporter, measured by in situ hybridization, remained unchanged in the substantia nigra pars compacta. The effect of chronic treatment for two weeks with amitriptyline or fluoxetine was compared in control and transgenic mice. No significant changes were observed in control mice following antidepressant treatment, whereas in transgenic mice both antidepressants reduced striatal [3H]SCH 23390 and [3H]raclopride specific binding to D1 and D2 receptors. Amitriptyline, but not fluoxetine, increased striatal [3H]GBR 12935 binding to the dopamine transporter, whereas its mRNA level in the substantia nigra pars compacta was decreased in fluoxetine, compared to vehicle- or amitriptyline-treated transgenic mice. From these results we suggest that hyperactive dopaminergic activity of the nigrostriatal pathway controls motor activity in the transgenic mice. Furthermore, antidepressant treatment corrected the increased striatal D1 and D2 receptors and decreased dopamine transporter levels in the transgenic mice.  相似文献   

10.
The distribution of D1 dopamine receptors was studied autoradiographically in the basal ganglia of the cat, monkey and human. These receptor binding sites were labeled directly with the D1-selective antagonist [3H]SCH 23390, and ligand-binding assays were performed concurrently. Serial- or same-action analysis permitted comparisons among D1 binding distributions, acetylcholinesterase staining and tyrosine hydroxylase immunoreactivity. In all species studied, the dorsal striatum exhibited patches of particularly dense D1 binding in correspondence with acetylcholinesterase-poor striosomes. Highly patterned binding was present in the ventral striatum. Distinctions in binding density were observed among the subdivisions of the globus pallidus and of the substantia nigra. The external segment of the pallidum was extremely sparse in D1 binding, whereas the internal segment (or entopeduncular nucleus in the cat) was a site of high D1 binding density. The binding density was greatest in the core of the internal segment, and tyrosine hydroxylase-positive fibers surrounded and weakly dispersed themselves through this core. Weak binding was present in the ventral pallidum. In the substantia nigra, the pars reticulata demonstrated the densest binding, particularly medially. The pars compacta showed much sparser binding, though some of its tyrosine hydroxylase-positive neurons had dendrites extending ventrally into the zone of dense D1 binding in the pars reticulata. We conclude that [3H]SCH 23390-defined D1 binding is compartmentalized in the dorsal striatum and that, particularly in relation to the reported distributions of striatal D2 dopamine receptors, this is likely to be of functional significance in the dopaminergic modulation of intrastriatal neurotransmission as well as of afferent and efferent neurotransmission. The segregated localizations of D1 receptors in the substantia nigra suggest predominant activation of the pars reticulata, including ventral and medial regions adjacent to the densocellular zone. Specific pathways from compartments in the striatum to subdivisions of the pallidum may also be differentially modulated by dopamine acting via distinct receptor subtypes. At the level of the pallidum, such D1 modulation appears to be restricted to the internal segment, which projects to the thalamus, rather than to the external pallidum, which projects to the subthalamic nucleus.  相似文献   

11.
The effect of unilateral perinatal hypoxic-ischemic brain injury on striatal dopamine uptake sites and on D1 and D2 receptors was investigated in rat by using in vitro quantitative receptor binding autoradiography, 9-11 weeks after the insult. Saturation experiments revealed a significant 20% decrease in maximal binding capacity (Bmax) for [3H]spiperone-labeled D2 receptors on the side of the lesion in comparison to the non-lesioned contralateral side or to either side of control animals. There was no significant change in [3H]mazindol-labeled dopamine uptake sites or in [3H]SCH 23390-labeled D1 receptor characteristics (Bmax and Kd) on the lesioned side. We conclude that the decrease in D2 receptor binding previously observed in immature animals is persistent, whereas the decrease in D1 binding is not.  相似文献   

12.
The autoradiographic distribution of D1 dopaminergic binding sites was studied in the human ventral mesencephalon using the D1 antagonist [3H]SCH 23390. [3H]SCH 23390 binding was characterized by a single class of sites with a Kd of 2.5 nM and a Bmax of 31 fmol/mg of tissue. The density of [3H]SCH 23390 binding sites was high in the substantia nigra, moderate in the ventral tegmental area and low in the peri- and retrorubral field (catecholaminergic region A8). Binding densities were similar in pars compacta and pars reticulata of the substantia nigra, except for a peak value of high [3H]SCH 23390 in the pars reticulata, at a level just ventral to a zone of hyperdensity of melanized dopaminergic neurons in the pars compacta. The anatomical organization of the human ventral mesencephalon was analysed on adjacent sections stained for acetylcholinesterase histochemistry and tyrosine hydroxylase, substance P, dynorphin B, somatostatin and methionine-enkephalin immunohistochemistry, respectively. The similarity in distribution of [3H]SCH 23390 binding sites and substance P or dynorphin B immunoreactivity suggests that D1 binding sites are mainly located on the striatonigral projections. In accordance with these results: (1) the density of [3H]SCH 23390 binding sites was reduced in the substantia nigra of a patient with Huntington's chorea, a disease associated with a degeneration of striatonigral neurons; (2) the density of [3H]SCH 23390 binding sites was unaffected in the substantia nigra of a patient with Parkinson's disease, a disorder characterized by a marked loss in nigral tyrosine hydroxylase-positive neurons. [3H]SCH 23390 binding sites showed a characteristic, heterogeneous distribution within the human ventral mesencephalon, confirming data obtained in other species. The preferential localization of D1 dopamine receptors on striatonigral projections in human brain suggests that pharmacological manipulation of these receptors modulates the activity of striatonigral pathways, thereby affecting the various outputs of the nigral complex.  相似文献   

13.
Quantitative autoradiography of [3H]SCH 23390 and [3H](-)-sulpiride binding was performed in the brain of rats of various ages (3, 11 and 24 months) in order to study the changes in D1 and D2 receptor density with age. Binding of [3H]SCH 23390 in the caudate-putamen decreased progressively and markedly at rostral levels in 11- and 24- compared with 3-month-old rats (max. decrease -63%) while at caudal levels significant decrease was observed only in 24-month-old rats. [3H](-)-Sulpiride binding progressively decreased during aging in the caudate-putamen at rostral levels and the decrease was more pronounced laterally (-70% at 24 months), while at caudal levels no significant decrease was observed. D1 and D2 binding sites also decreased in the nucleus accumbens and olfactory tubercle of aged rats, while in the substantia nigra only the D1 receptors appeared to be modified with aging. No change was found in the entopeduncular nucleus, amygdala, frontoparietal, suprarinal-prefrontal and anterior cingulate cortex. The results indicate that the age-associated decrease of D1 and D2 receptors is not widespread, being confined to dopaminergic areas with high density of dopamine receptors.  相似文献   

14.
The distribution of dopamine D1 receptors has been determined in post mortem human brain tissues using in vitro receptor autoradiography, with ([3H]N-methyl) SCH 23390 as ligand. The highest densities of dopamine D1 sites were seen in the nucleus caudatus, putamen, globus pallidus pars medialis and substantia nigra. Intermediate densities were associated with the amygdala, mammillary bodies, cerebral cortex and CA1. The remaining part of the hippocampus as well as the diencephalon, brainstem and cerebellum contained low levels of [3H]SCH 23390 binding sites. The distribution of D1 receptors in the human brain closely resembles that reported for the rat brain. In addition, there was a good correlation between the anatomical localization of D1 sites and the distribution of dopaminergic nerve terminals in the central nervous system. The densities of D1 receptors in the human brain were observed to markedly decrease with age during the first decades of life. However, no further modifications were found beyond the age of 40 years. We did not observe any significant influence of other parameters such as gender and post mortem delay in our samples.  相似文献   

15.
In adult rat brain, adenosine A2A receptors and dopamine D2 receptors are known to be located on the same cells where they interact in an antagonistic manner. In the present study we wanted to examine when this situation develops and compared the postnatal ontogeny of the binding of the adenosine A2A receptor agonist [3H]CGS 21680, the binding of the dopamine D1 receptor antagonist [3H]SCH 23390 and the dopamine D2 receptor antagonist [3H]raclopride.

All three radioligands bound to the striatum at birth and this binding increased several-fold during the postnatal period. [3H]SCH 23390 binding developed first (mostly during the first week), followed by [3H]raclopride binding (first to third week) and [3H]CGS 21680 binding (only during second and third week). For all three radioligands the binding tended to decrease between 21 days and adulthood. This occurred earlier and was more pronounced in the globus pallidus than in the other examined structures. The increase in [3H]CGS 21680 binding from newborn to adult was mainly due to four-fold increase in the number of binding sites. The pharmacology of [3H]CGS 21680 binding to caudate–putamen was similar in newborn, one-week-old and adult animals, and was indicative of A2A receptors. The binding was inhibited by guanylyl imidodiphosphate at all ages, indicating that A2A receptors are G-protein-coupled already at birth. In contrast to the large increase in [3H]CGS 21680 binding, there was a decrease in the levels of A2A messenger RNA during the postnatal period in the caudate–putamen. In cerebral cortex [3H]CGS 21680 bound to a different site than the A2A receptor. From birth to adulthood cortical binding of [3H]CGS 21680 increased four-fold and that of the adenosine A1 agonist [3H]cyclohexyladenosine 19-fold. During early postnatal development [3H]SCH 23390 binding was higher in deep than in superficial cortical layers, but this difference disappeared in adult animals. There was binding of both [3H]CGS 21680 and [3H]cyclohexyladenosine to the olfactory bulb, suggesting a role of the two adenosine receptors in processing of olfactory information. [3H]CGS 21680 binding was present in the external plexiform layer and glomerular layer, and increased during development, but the density of binding sites was about one tenth of that seen in caudate–putamen. [3H]cyclohexyladenosine showed a very different labelling pattern, resembling that observed with [3H]SCH 23390.

Postnatal changes in adenosine receptors may explain age-dependent differences in stimulatory caffeine effects and endogenous protection against seizures. Since A2A receptors show a co-distribution with D2 receptors throughout development, caffeine may partly exert such actions by regulating the activity of D2 receptor-containing striatopallidal neurons  相似文献   


16.
M A Ariano 《Neuroscience》1989,32(1):203-212
The morphochemical disposition of the adenylate cyclase-linked dopamine receptor (D1 type) in the rat striatum has been assessed at various time points after a neurotoxic lesion of the dopaminergic afferent pathway to the caudate nucleus. D1 receptor binding sites in the caudate nucleus were determined by in vitro autoradiography of the substituted benzazepine D1 antagonists, [3H]SCH 23390 or [125I]SCH 23982, and contrasted to the pattern of striatal immunohistochemical reactivity of the second messenger compound, cyclic 3',5'-adenosine monophosphate. The results demonstrate that the specific association of this dopamine receptor type with cyclic 3',5'-adenosine monophosphate-stained neurons is abolished at 7 days following chemical interruption of the nigrostriatal pathway, and the receptor disruption is persistent for durations as long as 20 weeks. This investigation suggests that once the postsynaptic receptor pathology is produced by deafferentation, it does not recover the selective morphochemical relationship normally established with the target cell containing the second messenger. This is in contrast to modest biochemical recuperation in D1 dopamine receptor binding seen using this experimental paradigm. This change in D1 dopamine receptor morphochemistry is discussed in relation to the neurochemical deficits produced by dopaminergic denervation and in Parkinson's disease.  相似文献   

17.
The precise topographical changes in striatal D1 and D2 dopamine receptor density that occurred after chronic treatment with haloperidol or SCH 23390 or after 6-hydroxydopamine-induced lesion of the mesostriatal dopaminergic pathway have been studied autoradiographically in the rat. Repeated treatment with SCH 23390 (0.5 mg/kg i.p., 21 days) caused an almost similar increase in [3H]SCH 23390 binding sites in the different striatal subregions whereas lesion of the dopaminergic pathway was ineffective. Subacute administration of haloperidol (2 mg/kg i.p., 18 days) or lesion of dopaminergic afferents provoked an increase in [3H]spiperone binding which was restricted to the ventro- and dorsolateral striatal sectors.  相似文献   

18.
Excess methylation has been suggested to play a role in the pathogenesis of Parkinson's disease (PD), since the administration of S-adenosylmethionine (SAM), a biological methyl donor, induces PD-like changes in rodents. It was proposed that SAM-induced PD-like changes might be associated with its ability to react with the dopaminergic system. In the present study the effects of SAM on dopamine receptors and transporters were investigated using rats and cloned dopamine receptor proteins. Autoradiographic examination of SAM indicated its tendency to be localized and accumulated in rat striatal region after the intracerebroventricular injection into rat brain. Moreover, results showed that SAM significantly decreased dopamine D1 and D2 receptor binding activities by decreasing the Bmax and increasing the Kd values. At concentrations of 0.1, 0.25 and 0.5 mM, SAM was able to reduce the Bmax from the control value of 848.1 for dopamine D1-specific ligand [3H] SCH 23390 to 760.1, 702.6 and 443.0 fmol/mg protein, respectively. At the same concentrations, SAM was able to increase the Kd values from 0.91 for the control to 1.06, 3.84 and 7.01 nM of [3H] SCH 23390, respectively. The effects of SAM on dopamine D2 binding were similar to those of dopamine D1 binding. SAM also decreased dopamine transporter activity. The interaction of SAM with dopamine receptor proteins produced methanol from methyl-ester formation and hydrolysis. We propose that the SAM effect might be related to its ability to react with dopamine receptor proteins through methyl-ester formation and methanol production following the hydrolysis of the carboxyl-methylated receptor proteins.  相似文献   

19.
We report here the functional relationship between the time-dependent recovery of [3H]SCH 23390-labeled D1 dopamine receptors and the D1 receptor-mediated stimulation of rat striatal adenylate cyclase activity following irreversible receptor modification by in vivo administration of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Initial decreases in receptor density (-93%) and receptor-mediated enzyme activity (-78%) were accomplished without concomitant changes in guanosine triphosphate or forskolin-stimulated enzyme activity. The percentage of maximal D1 receptor-mediated enzyme activity was significantly greater than that of D1 receptor density at all recovery times. Dopamine-stimulated enzyme activity returned to control values by day 4, although D1 receptor density remained significantly below control levels at this time. No differences in the EC50's for dopamine stimulation of enzyme activity were observed at any of the recovery times. These data demonstrate that the stoichiometric relationship between the recovering D1 dopamine receptors and D1 receptor-mediated enzyme activity is not one to one, providing evidence for the presence of 'spare' D1 dopamine receptors in rat striatum.  相似文献   

20.
We have previously described a black-hooded mutant rat (BH.7A/Ztm-ci3/ci3) that displays abnormal lateralized circling behavior, but normal auditory and vestibular functions. Neurochemical determination of dopamine and dopamine metabolite levels in striatum, nucleus accumbens and substantia nigra showed that ci3 rats have a significant asymmetry in striatal dopamine in that dopamine levels were significantly lower in the hemisphere contralateral to the preferred direction of turning. Consistent with this finding, immunohistological examination of dopaminergic neurons in substantia nigra and ventral tegmental area yielded a significant laterality in the medial part of substantia nigra pars compacta with a lower density of tyrosine hydroxylase-positive neurons in the contralateral hemisphere of mutant circling rats, while no laterality was seen in unaffected rats of the background strain. In the present study, quantitative autoradiography was used to examine the binding of [(3)H]SCH 23390, [(3)H]raclopride and [(3)H]7-OH-DPAT (7-hydroxy-N,N-di-n-propyl-2-aminotetralin) to dopamine D1, D2, and D3 receptors, respectively, in various brain regions of ci3 rats and unaffected rats of the background strain (BH.7A(LEW)/Won). No significant differences between circling rats and controls were obtained for D1 and D2 receptor binding in any region, but mutant rats differed from controls in dopamine D3 binding in several regions. A significant decrease in D3 binding was seen in the shell of the nucleus accumbens, the islands of Calleja, and the subependymal zone of ci3 mutant rats. Furthermore, a significant laterality in D3 binding was determined in ci3 rats in that binding was lower in the contralateral hemisphere in the shell of the nucleus accumbens and the islands of Calleja. Our data indicate that alterations of dopamine D3 receptors may be involved in the behavioral phenotype of the ci3 rat, thus substantiating the findings from a recent genetic linkage analysis that indicated the D3 receptor gene as a candidate gene in this rat mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号