首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Introduction: The underlying mechanisms of complex fractionated atrial electrogram (CFAE) during radiofrequency catheter ablation (RFCA) of atrial fibrillation (AF) have not yet been clearly elucidated. We explored the relationships between CFAE and left atrial (LA) voltage, or conduction velocity (CV).
Methods and Results: In 50 patients with AF (23 paroxysmal AF [PAF], 41 males, mean age 55.76 ± 10.16 years), the CFAE (average index of fractionation of electrograms during AF by interval-analysis algorithm, cycle length [CL]≤ 120 ms) areas, voltage, and CV were measured at eight different quadrants in each patient's LA by analyzing a NavX-guided, color-coded CFAE CL map, a voltage map, and an isochronal map (500 ms pacing) generated by contact bipolar electrograms (70–100 points in the LA). The results were: (1) CFAE areas were predominantly located in the septum, roof, and LA appendage; (2) CFAE area had lower voltage than those in non-CFAE area and was surrounded by the areas of high voltage (P < 0.0001); (3) The CFAE areas had low CVs compared with non-CFAE areas (P < 0.001); and (4) The percentage of CFAE area was lower in patients with persistent atrial fibrillation (PeAF) compared with those with PAF (P < 0.05).
Conclusions: The CFAE area, which is primarily located at the septum, has a low voltage with a lower CV, and is surrounded by high-voltage areas. Underlying electroanatomical complexity is associated with clustering of CFAEs.  相似文献   

4.
Local Activation Rate in Atrial Fibrillation. Background: Complex fractionated atrial electrograms (CFAE) have become targets for catheter ablation of atrial fibrillation (AF). Frequency components of AF signals have also become important markers for identifying potential mechanisms of AF, yet inaccuracies exist, particularly in standard dominant frequency (SDF) calculations especially at CFAE sites. We developed new methodology to improve accuracy of AF rate determinations at such recording sites. Objective: To develop optimal methods for estimating activation rates in paroxysmal and persistent AF. Methods: Electrograms were obtained from one right atrial, coronary sinus, and 6 left atrial (LA) endocardial regions manifesting CFAEs in paroxysmal (N = 7) and persistent (N = 7) AF patients. SDF was measured from 8.4 s intervals and compared to (1) optimized DF (ODF) calculated by optimizing the filter coefficients which maximized dominant frequency power, (2) autocorrelation (AC), with the rate estimated as the inverse of the signal phase shift generating the largest autocorrelation coefficient, and (3) ensemble average (EA), with the rate estimated by summing successive signal segments and selecting segment length yielding maximum power. Rate measurements were compared between groups, at baseline and with additive interference, having similar frequency content to the electrograms, to test the robustness of the different methods. Results: From pooled data (N = 168 recording sites), a significantly higher LA dominant frequency was found in persistent versus paroxysmal patients using each method (P < 0.001), with a mean value for all methods of 6.23 ± 0.08 Hz versus 5.32 ± 0.10 Hz, respectively. At the highest additive interference level, the rate measurement error was significantly greater in SDF as compared with EA (P = 0.010) and ODF (P = 0.035), and at all interference levels SDF had the largest error of any method. Conclusions: SDF appears less robust to additive interference, compared to the ODF and EA methods of estimating the activation rate at CFAE sites in this small group of patients. Use of optimized filter coefficients for DF measurement, or use of correlative methods such as EA, that reinforce the signal rather than filtering the noise, may improve calculation of activation rates. (J Cardiovasc Electrophysiol, Vol. 21, pp. 133‐143, February 2010)  相似文献   

5.
Background: The efficacy of ablation of complex fractionated atrial electrograms (CFEs) in the single ablation procedure for nonparoxysmal atrial fibrillation (AF) patients is not well demonstrated. The aim of this study was to compare the ablation strategies of pulmonary vein isolation (PVI) plus linear ablation with and without additional ablation of CFEs in these patients.
Methods: Consecutive 60 patients (49 ± 11 years old, 50 male, 10 female) with nonparoxysmal AF underwent catheter ablation guided by a NavX mapping system. A stepwise approach included a circumferential PVI and left atrial (LA) linear ablation followed by either the additional ablation of continuous CFEs in the LA/coronary sinus (the first 30 patients) or not (the second 30 patients), detected by an automatic algorithm.
Results: There was no difference in the baseline characteristics between the two groups. Complete PVI eliminated some continuous CFEs and altered the distribution of CFEs. Following PVI and linear ablation, the remaining continuous CFEs were identified in 7.9 ± 10% mapping sites of the LA and CS, and were ablated successfully with a procedural AF termination rate of 53%. With a follow-up of 19 ± 11 months, a Kaplan–Meier analysis showed that the patients with additional ablation of the CFEs had a higher rate of sinus rhythm maintenance. Multivariate analysis showed the single procedure success could be predicted by the procedural AF termination and the additional ablation of continuous CFEs in the LA/CS.
Conclusions: Ablation of continuous CFEs after PVI and LA linear ablation had a better long-term efficacy based on the results of single-ablation procedure.  相似文献   

6.
Nonlinear Analysis of Atrial Fibrillation . Introduction: Currently, the identification of complex fractionated atrial electrograms (CFEs) in the substrate modification is mostly based on cycle length‐derived algorithms. The characteristics of the fibrillation electrogram morphology and their consistency over time are not clear. The aim of this study was to optimize the detection algorithm of crucial CFEs by using nonlinear measure electrogram similarity. Methods and Results: One hundred persistent atrial fibrillation patients that underwent catheter ablation were included. In patients who required CFE ablation (79%), the time‐domain fibrillation signals (6 seconds) were acquired for a linear analysis (mean fractionation interval and dominant frequency [DF]) and nonlinear‐based waveform similarity analysis of the local electrograms, termed the similarity index (SI). Continuous CFEs were targeted with an endpoint of termination. Predictors of the various signal characteristics on the termination and clinical outcome were investigated. Procedural termination was observed in 39% and long‐term sinus rhythm maintenance in 67% of the patients. The targeted CFEs didn't differ based on the linear analysis modalities between the patients who responded and did not respond to CFE ablation. In contrast, the average SI of the targeted CFEs was higher in termination patients, and they had a better outcome. Multivariate regression analysis showed that a higher SI independently predicted sites of termination (≥0.57; OR = 4.9; 95% CI = 1.33–18.0; P = 0.017). Conclusions: In persistent AF patients, a cycle length‐based linear analysis could not differentiate culprit CFEs from bystanders. This study suggested that sites with a high level of fibrillation electrogram similarity at the CFE sites were important for AF maintenance. (J Cardiovasc Electrophysiol, Vol. 24, pp. 280‐289, March 2013)  相似文献   

7.
Background: Nonpulmonary vein (PV) ectopy initiating atrial fibrillation (AF)/atrial tachycardia (AT) is not uncommon in patients with AF. The relationship of complex fractionated atrial electrograms (CFAEs) and non‐PV ectopy initiating AF/AT has not been assessed. We aimed to characterize the CFAEs in the non‐PV ectopy initiating AF/AT. Methods: Twenty‐three patients (age 53 ± 11 y/o, 19 males) who underwent a stepwise AF ablation with coexisting PV and non‐PV ectopy initiating AF or AT were included. CFAE mapping was applied before and after the PV isolation in both atria by using a real‐time NavX electroanatomic mapping system. A CFAE was defined as a fractionation interval (FI) of less than 120 ms over 8‐second duration. A continuous CFAE (mostly, an FI < 50 ms) was defined as electrogram fractionation or repetitive rapid activity lasting for more than 8 seconds. Results: All patients (100%) with non‐PV ectopy initiating AF or AT demonstrated corresponding continuous CFAEs at the firing foci. There was no significant difference in the FI among the PV ostial or non‐PV atrial ectopy or other atrial CFAEs (54.1 ± 5.6, 58.3 ± 11.3, 52.8 ± 5.8 ms, P = 0.12). Ablation targeting those continuous CFAEs terminated the AF and AT and eliminated the non‐PV ectopy in all patients (100%). During a follow‐up of 7 months, 22% of the patients had an AF recurrence with PV reconnections. There was no recurrence of any ablated non‐PV ectopy during the follow‐up. Conclusion: The sites of the origin of the non‐PV ectopies were at the same location as those of the atrial continuous CFAEs. Those non‐PV foci were able to initiate and sustain AF/AT. By limited ablation targeting all atrial continuous CFAEs, the AF could be effectively eliminated.  相似文献   

8.
CFAEs and the Voltage.   Introduction: Catheter ablation of atrial fibrillation (AF) can be guided by the identification of complex fractionated atrial electrograms (CFAEs). We aimed to study the prediction of the CFAEs defined by an automatic algorithm in different atrial substrates (high voltage areas vs low voltage areas).
Methods and Results: This study included 13 patients (age = 56 ± 12 years, paroxysmal AF = 8 and persistent AF = 5), who underwent mapping and catheter ablation of AF with a NavX system. High-density voltage mapping of the left atrium (LA) was performed during sinus rhythm (SR) (248 ± 75 sites per patient) followed by that during AF (88 ± 24 sites per patient). The CFAE maps were based on the automatic-detection algorithm. "Operator-determined CFAEs" were defined according to Nademannee's criteria. A low-voltage zone (LVZ) was defined as a bipolar voltage of less than 0.5 mV during SR. Among a total of 1150 mapping sites, 459 (40%) were categorized as "operator-determined CFAE sites," whereas 691 (60%) were categorized as "operator-determined non-CFAE sites." The sensitivity and negative predictive value increased as the fractionated interval (FI) value of the automatic algorithm increased, but the specificity and positive predictive value decreased. The automatic CFAE algorithm exhibited the highest combined sensitivity and specificity with an FI of <60 ms for the sites inside the LVZ and FI < 70 ms for the sites outside the LVZ, when compared with a single threshold for both the high- and low-voltage groups combined (i.e., no regard for voltage) (ROC: 0.89 vs 0.86).
Conclusions: The clinical relevance of the CFAE map would be improved if the calculated index values were accordingly scaled by the electrogram peak-to-peak amplitude. (J Cardiovasc Electrophysiol, Vol. 21, pp. 21–26, January 2010)  相似文献   

9.
Unipolar Characteristics of CFAEs. Background: The noncontact mapping (NCM) system possesses the merit of global endocardial recording for unipolar and activation mapping. Objective: We aimed to evaluate the unipolar electrogram characteristics and activation pattern over the bipolar complex fractionated atrial electrogram (CFAE) sites during atrial fibrillation (AF). Methods: Twenty patients (age 55 ± 11 years old, 15 males) who underwent NCM and ablation of AF (paroxysmal/persistent = 13/7) were included. Both contact bipolar (32–300 Hz) and NCM virtual unipolar electrograms (0.5–300 Hz) were simultaneously recorded along with the activation pattern (total 223 sites, 11 ± 4 sites/patient). A CFAE was defined as a mean bipolar cycle length of ≤ 120 ms with an intervening isoelectric interval of more than 50 ms (Group 1A, n = 63, rapid repetitive CFAEs) or continuous fractionated activity (Group 1B, n = 59, continuous fractionated CFAEs), measured over a 7.2‐second duration. Group 2 consisted of those with a bipolar cycle length of more than 120 ms (n = 101). Results: The Group 1A CFAE sites exhibited a shorter unipolar electrogram cycle length (129 ± 11 vs 164 ± 20 ms, P < 0.001), and higher percentage of an S‐wave predominant pattern (QS or rS wave, 63 ± 13% vs 35 ± 13%, P < 0.001) than the Group 2 non‐CFAE sites. There was a linear correlation between the bipolar and unipolar cycle lengths (P < 0.001, R = 0.87). Most of the Group 1A CFAEs were located over arrhythmogenic pulmonary vein ostia or nonpulmonary vein ectopy with repetitive activations from those ectopies (62%) or the pivot points of the turning wavefronts (21%), whereas the Group 1B CFAEs exhibited a passive activation (44%) or slow conduction (31%). Conclusions: The bipolar repetitive and continuous fractionated CFAEs represented different activation patterns. The former was associated with an S wave predominant unipolar morphology which may represent an important focus for maintaining AF. (J Cardiovasc Electrophysiol, Vol. 21, pp. 640‐648, June 2010)  相似文献   

10.
11.
12.
心房颤动(房颤)时心房电图会呈现特征性的复杂碎裂电图。多个研究认为复杂碎裂电图反映了局部折返激动,且与心脏自主神经兴奋有密切的关系。目前复杂碎裂电图指导临床射频消融治疗房颤已取得较高成功率,进一步证实复杂碎裂电图代表了房颤的基质。  相似文献   

13.
碎裂电位是心房颤动发生和持续的因和果,其机制与心脏自主神经密切相关。心脏内源性和外源性自主神经共同作用,增加心房的早期后除极和钙瞬变,导致碎裂电位和心房颤动发生。因此碎裂电位与自主神经节丛或脂肪垫分布一致。针对自主神经节丛消融,可以减少或消除碎裂电位。  相似文献   

14.
AF Electrogram Complexity. Introduction: Complex fractionated atrial electrograms (CFAE) have been identified as targets for atrial fibrillation (AF) ablation. Robust automatic algorithms to objectively classify these signals would be useful. The aim of this study was to evaluate Shannon's entropy (ShEn) and the Kolmogorov‐Smirnov (K‐S) test as a measure of signal complexity and to compare these measures with fractional intervals (FI) in distinguishing CFAE from non‐CFAE signals. Methods and Results: Electrogram recordings of 5 seconds obtained from multiple atrial sites in 13 patients (11 M, 58 ± 10 years old) undergoing AF ablation were visually examined by 4 independent reviewers. Electrograms were classified as CFAE if they met Nademanee criteria. Agreement of 3 or more reviewers was considered consensus and the resulting classification was used as the gold standard. A total of 297 recordings were examined. Of these, 107 were consensus CFAE, 111 were non‐CFAE, and 79 were equivocal or noninterpretable. FIs less than 120 ms identified CFAEs with sensitivity of 87% and specificity of 79%. ShEn, with optimal parameters using receiver‐operator characteristic curves, resulted in a sensitivity of 87% and specificity of 81% in identifying CFAE. The K‐S test resulted in an optimal sensitivity of 100% and specificity of 95% in classifying uninterpretable electrogram from all other electrograms. Conclusions: ShEn showed comparable results to FI in distinguishing CFAE from non‐CFAE without requiring user input for threshold levels. Thus, measuring electrogram complexity using ShEn may have utility in objectively and automatically identifying CFAE sites for AF ablation. (J Cardiovasc Electrophysiol, Vol. 21, pp. 649‐655, June 2010)  相似文献   

15.
Unipolar Electrogram Voltage in Patients with Atrial Fibrillation . Introduction: The peak electrogram voltage is a typical metric applied at each site for voltage mapping. However, the peak amplitude depends on the direction and complexity of the wavefront propagation. The root‐mean‐square (RMS) measure of the amplitude is a temporal integral that represents the steady‐state value. The objective of this study was to investigate the disparities between the electrogram voltage during SR and AF by using 2 recording modalities: the conventional peak voltage and an RMS measurement. Methods and Results: This study enrolled 20 patients (age = 59 ± 13) with paroxysmal AF undergoing catheter ablation guided by Ensite array. The unipolar electrogram voltage during SR and AF (7 seconds in duration) was obtained from the same sites, and labeled by the 3‐dimensional (3D) geometry. Overall 1,200 electrograms were analyzed from equally distributed mapping sites in the left atrium. A point‐by‐point comparison of the unipolar peak negative voltage (PNV) showed less agreement (Bland and Altman test: 10.4% outside 2 standard deviations, and intraclass correlation coefficient [ICC]= 0.64). The RMS voltage demonstrated agreement between SR and AF for all sites (BA test: 5.9% of the sites, and the ICC = 0.81). The probability of predicting a low‐voltage during AF using the voltage during SR was significantly lower when using the PNV measurement compared to that when using the RMS voltage (15% vs 61%, P < 0.05). Conclusion: The peak electrogram unipolar voltage during AF did not represent the voltage during SR. The RMS amplitude may be an alternative metric for voltage mapping to characterize the myocardial substrate. (J Cardiovasc Electrophysiol, Vol. 21, pp. 393–398, April 2010)  相似文献   

16.
17.
18.
Introduction: This study attempted to delineate the mechanism of organized left atrial tachyarrhythmia (AT) during stepwise linear ablation for atrial fibrillation (AF) using noncontact mapping.
Methods and Results: Eighty patients in whom organized ATs developed or induced during stepwise linear ablation for AF were enrolled. Left atrial (LA) activation during ATs was mapped using noncontact mapping. Radiofrequency (RF) energy was delivered to the earliest activation site or narrowest part of the reentrant circuit of ATs. A total of 146 ATs were mapped. Four ATs were characterized as a focal mechanism (cycle length (CL): 225 ± 49 ms). A macroreentrant mechanism was confirmed in the remaining 142 ATs. LA activation time accounted for 100% of CL (205 ± 37 ms). All 142 ATs used the conduction gaps in the basic figure-7 lesion line. There were three types of circuits classified based on the gap location. Type I (n = 68) used gaps at the ridge between left atrial appendage (LAA) and left superior pulmonary vein (LSPV). Type II (n = 50) used gaps on the LA roof. Type III (n = 24) passed through gaps in the mitral isthmus. Ablation at these gaps eliminated 130 ATs. During the follow-up period of 16.2 ± 6.7 months, 82.5% of the 80 patients were in sinus rhythm.
Conclusion: The majority of left ATs developed during stepwise linear ablation for AF are macroreentrant through conduction gaps in the figure-7 lesion line, especially at the LAA–LSPV ridge. Noncontact activation mapping can identify these gaps accurately and quickly to target effective catheter ablation.  相似文献   

19.
Objectives This study was to investigate the differences between modeling and non-modeling left atrium (LA) in CartoXP system guided catheter ablation for paroxysmal atrial fibrillation (PAF). Methods From Jan to Dec in 2008 total 31 cases with PAF were enrolled. All were treated by the same electrophysiologist with CartoXP guidance. Catheter ablation was accomplished without left atrium and pulmonary veins modeling in 17 patients (non-modeling group) and with left atrium modeling in 14 patients (modeling group). The detailed ablation method was based on circumferential pulmonary veins isolation (CPVI). And linear ablation of tricuspid valvular isthmus was performed individually. The ablation endpoint was a complete isolation of pulmonary vein potential from left atrium and no further induced continuous fast atrial arrhythmia including atrial fibrillation (AF), atrial flutter (AFL) and atrial tachycardia (AT). Each step for the procedures and the follow-up outcomes were compared correspondingly. Results The total procedure time was 107.23 ± 28.92 min in modeling group vs 93.47 ±26.09 min in non-modeling group ( P 〉 0.05 ). The X-ray exposure time was significantly longer in modeling group (21.09 ±6. 49 rain) than in non-modeling group (14. 16 ± 5.35 min). The CPVI times of right pulmonary veins and left pulmonary veins were 28. 14 ± 9. 26 min was 27.29 ± 18.53 min in modeling group respectively, vs 18.00 ±4. 51 min and 23.94 ± 7. 10 min in non-modeling group respectively, (P 〈 0. 05 ). There is no significant difference between modeling group (85.7%) and non-modeling group (82.4%) over follow-up period of 2 to 13 months. Confusions CartoXP system guided catheter ablation of PAF without modeling of left atrium and pulmonary veins took less time in X-ray exposure and ablation steps, comparing with left atrium modeling procedure.  相似文献   

20.
Autonomic Blockade During Atrial Fibrillation . Introduction: The influence of the autonomic nervous system on the pathogenesis of complex fractionated atrial electrograms (CFAE) during atrial fibrillation (AF) is incompletely understood. This study evaluated the impact of pharmacological autonomic blockade on CFAE characteristics. Methods and Results: Autonomic blockade was achieved with propanolol and atropine in 29 patients during AF. Three‐dimensional maps of the fractionation degree were made before and after autonomic blockade using the Ensite Navx® system. In 2 patients, AF terminated following autonomic blockade. In the remaining 27 patients, 20,113 electrogram samples of 5 seconds duration were collected randomly throughout the left atrium (10,054 at baseline and 10,059 after autonomic blockade). The impact of autonomic blockade on fractionation was assessed by blinded investigators and related to the type of AF and AF cycle length. Globally, CFAE as a proportion of all atrial electrogram samples were reduced after autonomic blockade: 61.6 ± 20.3% versus 57.9 ± 23.7%, P = 0.027. This was true/significant for paroxysmal AF (47 ± 23% vs 40 ± 22%, P = 0.003), but not for persistent AF (65 ± 22% vs 62 ± 25%, respectively, P = 0.166). Left atrial AF cycle length prolonged with autonomic blockade from 170 ± 33 ms to 180 ± 40 ms (P = 0.001). Fractionation decreases only in the 14 of 27 patients with a significant (>6 ms) prolongation of the AF cycle length (64 ± 20% vs 59 ± 24%, P = 0.027), whereas fractionation did not reduce when autonomic blockade did not affect the AF cycle length (58 ± 21% vs 56 ± 25%, P = 0.419). Conclusions: Pharmacological autonomic blockade reduces CFAE in paroxysmal AF, but not persistent AF. This effect appears to be mediated by prolongation of the AF cycle length. (J Cardiovasc Electrophysiol, Vol. pp. 766‐772, July 2010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号