首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to characterize seizures induced with pentylenetetrazol (PTZ) in marmosets. Thirteen adult marmosets (Callithrix sp.) received 20, 30, or 40 mg/kg of PTZ intraperitoneally. PTZ caused all animals to switch their natural behavioral repertoire to early convulsive behavior. Seizure scores were low at lower PTZ doses, whereas the highest dose of PTZ led to seizure scores IV and V (according to Racine's scale) in 69% of animals. To further characterize the model we performed a preliminary evaluation of the efficacy of three antiepileptic drugs: phenobarbital, phenytoin, and carbamazepine. Phenobarbital prevented PTZ-induced seizures in 100% of trials. As expected, phenytoin and carbamazepine were not effective against PTZ-induced seizures. The present study describes the PTZ model of seizures in marmosets with a drug-response profile similar to that of the rodent model, thus bringing to a well-known model (PTZ in rodents) the complexity of a nonhuman primate brain.  相似文献   

2.
Generalised‐onset absence seizures can be resistant to treatment with currently available antiepileptic drugs. Ezogabine (retigabine), a potassium channel opener, is approved for the treatment of focal‐onset seizures. This is a case report of an adult with childhood absence epilepsy whose daily absence seizures ceased with adjunctive ezogabine. A 59‐year‐old woman, with a history of typical absence seizures since the age of 6 years, had multiple seizures daily despite trials of over 11 antiepileptic drugs. While taking lamotrigine and zonisamide, ezogabine at 50 mg daily was added. The dose was slowly increased and once a total dose of only 200 mg/day was reached, she became seizure‐free for three months. After subsequently discontinuing zonisamide, absence seizures returned. Further increasing the ezogabine to 400 mg/day, in addition to lamotrigine, did not restore seizure freedom, but adding back zonisamide at half dose again reduced their frequency. Ezogabine at low dose, added to lamotrigine and zonisamide, led to sustained absence seizure freedom. The return of seizures after zonisamide discontinuation suggests that the seizure freedom may have been the result of the different mechanisms of action of the antiepileptic drugs.  相似文献   

3.
Despite anticonvulsant efficacy in animal models of generalized epilepsy, levetiracetam was not effective in the maximal subcutaneous PTZ model in mice and rats.Aim of this study was to assess the efficacy of levetiracetam (LEV) against submaximal, s.c. MET test (PTZ at the dose of 70 mg/kg) acute seizures in Wistar rats, in comparison to valproic acid (VPA).Thirty male Wistar rats (P42) were divided in three drug-treatment groups (10 rats in each group) as follows: valproic acid, levetiracetam, and controls. All animals were tested for seizure threshold at age P50. VPA (110 mg/kg) and LEV (108 mg/kg) were freshly dissolved in saline and injected i.p. in 2–3 ml/kg, 15 and 30 min, respectively, before pentylenetetrazol (PTZ) injection at the dose of 70 mg/kg.The average latency of the seizure type 3 (generalized clonic seizure with loss of righting reflexes) significantly differed between controls and the drug-treated animal groups (p  0.02). The average duration of the seizure type 2 (threshold seizure) was significantly longer in both groups compared to controls (<0.02).In conclusion, LEV plays a role against seizures triggered by subcutaneous PTZ injection given at submaximal doses in rats, as demonstrated by a significant increase in duration of the seizure type 2 (threshold seizure).  相似文献   

4.
Purpose: To examine the effects of bumetanide, a selective blocker of Na+‐K+‐2Cl? cotransporter (NKCC1), on hippocampal excitability and rapid kindling in immature rats. Methods: Studies were performed in Wistar rats of three ages: postnatal day 11 (P11, neonatal), P14 (postneonatal), and P21 (preadolescent). Bumetanide (0.2, 0.5, 2.5 mg/kg) was given intraperitoneally 20 min prior to the beginning of the studies. Hippocampal excitability was examined by measuring threshold and duration of afterdischarge, which had been elicited by electrical stimulation of ventral hippocampus. Kindling procedure consisted of 80 electrical stimulations of ventral hippocampus, delivered every 5 min. Results: At P11, bumetanide (0.5 mg/kg) increased the baseline hippocampal afterdischarge threshold and shortened the afterdischarge duration. Bumetanide delayed the occurrence, and reduced the number of full motor seizures during kindling, and prevented the development of kindling‐induced enhanced seizure susceptibility in a majority of animals. At P14, bumetanide (0.5 mg/kg) induced no significant antiepileptic effects, although suppression of hippocampal excitability and inhibition of kindling were observed in a subset of animals. At P21, bumetanide (0.2; 2.5 mg/kg) exerted no effects on hippocampal excitability and kindling progression. Discussion: The obtained results provide further evidence that bumetanide may be beneficial for treating neonatal seizures, and that NKCC1 represents a potential target for antiepileptic interventions in the immature brain.  相似文献   

5.
Purpose:   Pentylenetetrazole (PTZ) and maximal electroshock (MES) models are often used to induce seizures in nonepileptic control animals or naive animals. Despite being widely used to screen antiepileptic drugs (AEDs), both models have so far failed to detect potentially useful AEDs for treating drug-resistant epilepsies. Here we investigated whether the acute induction of MES and PTZ seizures in epileptic rats might yield a distinct screening profile for AEDs.
Methods:   Status epilepticus (SE) was induced in adult male Wistar rats by intraperitoneal pilocarpine injection (Pilo, 320 mg/kg, i.p.). One month later, controls or naive animals (Cont) that did not develop SE postpilocarpine (N-Epi) and pilocarpine-epileptic rats (Epi) received one of the following: phenobarbital (PB, 40 mg/kg), phenytoin (PHT, 50 mg/kg), or valproic acid (VPA, 400 mg/kg). Thirty min later the animals were challenged with either subcutaneous MES or PTZ (50 mg/kg, s.c.).
Results:   VPA, PB, and PHT were able to prevent MES in all groups tested (Cont, N-Epi, and Epi groups), whereas for the PTZ model, only the Cont group (naive animals) had seizure control with the same AEDs. In addition, Epi and N-Epi groups when challenged with PTZ exhibited a higher incidence of severe seizures (scores IV-IX) and SE (p   <   0.05, Fisher's exact test).
Conclusions:   Our findings suggest that the induction of acute seizures with PTZ, but not with MES, in animals pretreated with pilocarpine (regardless of SE induction) might constitute an effective and valuable method to screen AEDs and to study mechanisms involved in pharmacoresistant temporal lobe epilepsy (TLE).  相似文献   

6.
PURPOSE: Seizure susceptibility and consequences are highly age dependent. To understand the pathophysiologic mechanisms involved in seizures and their consequences during development, we investigated the role of nitric oxide (NO) in severe pentylenetetrazol (PTZ)-induced seizures in immature rats. METHODS: Four cortical electrodes were implanted in 10-day-old (P10) and 21-day-old (P21) rats, and seizures were induced on the following day by repetitive injections of subconvulsive doses of PTZ. The effects of NG-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg) and 7-nitroindazole (7NI; 40 mg/kg), two NO synthase (NOS) inhibitors, and l-arginine (l-arg; 300 mg/kg), the NOS substrate, were evaluated regarding the mean PTZ dose, seizure type and duration, and mortality rate. RESULTS: At P10, the postseizure mortality rate increased from 18-29% for the rats receiving PTZ only to 100% and 89% for the rats receiving l-NAME and 7NI, respectively; whereas l-arg had no effect. Conversely, at P21, NOS inhibitors did not affect the 82-89% mortality rate induced by PTZ alone, whereas l-arg decreased the mortality rate to 29%. In addition, all NO-related drugs increased the duration of ictal activity at P10, whereas at P21, l-arg and l-NAME affected the first seizure type, producing clonic seizures with l-arg and tonic seizures with l-NAME. CONCLUSIONS: The relative natural protection of very immature rats (P10) against PTZ-induced deaths could be linked to a high availability of l-arg and, hence, endogenous NO. At P21, the modulation of seizure type by NO-related compounds may be related to the maturation of the brain circuitry, in particular the forebrain, which is involved in the expression of clonic seizures.  相似文献   

7.
For effective control of seizures, antiepileptic drugs (AEDs) are administered at higher dose which is associated with several adverse effects. This study envisaged antiepileptic and neuroprotective potential of Tulsi, a commonly used herb for its immunomodulatory property. The optimal dose of Ocimum sanctum hydroalcoholic extract (OSHE) was determined using maximal electroshock seizure (MES)- and pentylenetetrazol (PTZ)-induced seizure models in Wistar rats (200–250 g) after administering OSHE (200–1000 mg/kg) orally for 14 days. For interaction study, OSHE optimal dose in combination with maximum and submaximal therapeutic doses of valproate was administered for 14 days. Serum levels of valproate were estimated using HPLC for pharmacokinetic study. For pharmacodynamic interaction, antiepileptic effect on above seizure models, neurobehavioral effect using Morris water maze, passive avoidance and elevated plus maze tests, and antioxidant capacity were assessed. Ocimum sanctum hydroalcoholic extract 1000 mg/kg was found to be optimal providing 50% protection against both MES- and PTZ-induced seizures. Combination of OSHE with valproate did not alter antiepileptic efficacy of valproate significantly. However, the combination showed better memory retention potential in neurobehavioral tests and protection against oxidative stress compared with valproate-alone-treated groups. Pharmacokinetic parameters did not reveal any significant change in combination group compared with valproate alone. Ocimum, although having per se antiepileptic action, did not affect antiepileptic action of valproate in combination. However, combination treatment has an edge over valproate alone—better neurobehavioral function and reduced oxidative stress—predicting adjuvant potential of Ocimum in epilepsy treatment.  相似文献   

8.
Thalidomide was originally synthesized and tested as a sedative, hypnotic and antiemetic; however, after its teratogenicity was noted its use for treatment of neurological and psychiatric disorders was abandoned. We studied the potential anticonvulsant effect of thalidomide: Different doses of thalidomide were tested against seizures induced by 50 mg/kg or 70 mg/kg of pentylenetetrazole (PTZ); the anticonvulsant effect of thalidomide was also compared with that of valproic acid. Seizures and latency time were individually recorded. Thalidomide in low doses (5-10 mg/kg) prevented seizures in all animals treated with 50 mg/kg PTZ; also, in a dose-dependent manner thalidomide inhibited seizures in rats exposed to a high dose of PTZ (70 mg/kg); thalidomide exhibited an anticonvulsant activity similar to that of valproic acid. Thalidomide is an effective anticonvulsant, and further studies on this potential antiepileptic substance seem warranted.  相似文献   

9.
Purpose: To test the efficacy of the novel candidate anticonvulsant talampanel (GYKI 53773) in a rodent model of hypoxic neonatal seizures. Talampanel is a noncompetitive antagonist of the alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionic acid subtype of the glutamate receptor (AMPAR). We have previously shown that AMPARs play a critical role in the generation of acute seizures and later‐life seizure susceptibility in this model of neonatal seizures. Methods: Seizures were induced in postnatal day (P) 10 Long‐Evans rat pups by a 15 min exposure to global hypoxia. Acute seizure activity at P10 and subsequent susceptibility to seizure‐induced neuronal injury with a “second‐hit” kainate‐induced seizure at P30–31 were compared between animals receiving talampanel (1, 5, 7.5, or 10 mg/kg) intraperitoneally (i.p.) versus saline vehicle treatment. Results: Talampanel treatment suppressed seizures in a dose‐dependent manner, with maximal effect at 7.5 and 10 mg/kg. In addition, talampanel treatment 30 min before hypoxia prevented later‐life increases in seizure‐induced neuronal injury as assessed by in situ DNA nick end‐labeling (ISEL). Discussion: We have previously demonstrated efficacy of other AMPAR antagonists such as NBQX and topiramate in this model. The present finding shows that the novel agent talampanel, under evaluation as an antiepileptic drug in children and adults, may have clinical potential in the treatment of neonatal seizures, particularly those occurring in the context of hypoxic encephalopathy.  相似文献   

10.
Grabenstatter HL  Dudek FE 《Epilepsia》2008,49(10):1787-1794
Purpose: Animal models with spontaneous epileptic seizures may be useful in the discovery of new antiepileptic drugs (AEDs). The purpose of the present study was to evaluate the efficacy of carisbamate on spontaneous motor seizures in rats with kainate‐induced epilepsy. Methods: Repeated, low‐dose (5 mg/kg), intraperitoneal injections of kainate were administered every hour until each male Sprague‐Dawley rat had experienced convulsive status epilepticus for at least 3 h. Five 1‐month trials (n = 8–10 rats) assessed the effects of 0.3, 1, 3, 10, and 30 mg/kg carisbamate on spontaneous seizures. Each trial involved six AED‐versus‐vehicle tests comprised of carisbamate or 10% solutol‐HS‐15 treatments administered as intraperitoneal injections on alternate days with a recovery day between each treatment day. Results : Carisbamate significantly reduced motor seizure frequency at doses of 10 and 30 mg/kg, and caused complete seizure cessation during the 6‐h postdrug epoch in seven of the eight animals at 30 mg/kg. The effects of carisbamate (0.3–30 mg/kg) on spontaneous motor seizures appeared dose dependent. Conclusions: These data support the hypothesis that a repeated‐measures, crossover protocol in animal models with spontaneous seizures is an effective method for testing AEDs. Carisbamate reduced the frequency of spontaneous motor seizures in a dose‐dependent manner, and was more effective than topiramate at reducing seizures in rats with kainate‐induced epilepsy.  相似文献   

11.
The intravenous pentylenetetrazol (i.v.PTZ) seizure test provides threshold dose for induction of seizures in individual animals. In the present study, the i.v. and s.c.PTZ seizure models in mice were compared for seizure pattern, intra- and interanimal variability. Anticonvulsant activities of several antiepileptic drugs (AEDs) at non-ataxic dose levels were evaluated in the PTZ and maximal electroshock (MES) seizure tests. In the i.v.PTZ test, at 0.5 ml/min rate of administration, the mean threshold PTZ doses for induction of clonus and tonic extensor were 44.17 and 99.59 mg/kg, respectively. The intra- and interanimal variabilities in the seizure response were low in the i.v.PTZ as compared to the s.c.PTZ model. Phenobarbital sodium, ethosuximide, sodium valproate, diazepam, tiagabine, oxcarbazepine and zonisamide enhanced threshold or onset latency for clonus in the i.v. and s.c.PTZ tests, respectively. Levetiracetam and pregabalin were active in the i.v.PTZ test, but had no effect in the s.c.PTZ test. Ability of AEDs to protect from tonic extensor was compared in the MES and i.v.PTZ tests. For this effect, phenobarbital sodium, phenytoin, carbamazepine, sodium valproate, gabapentin, oxcarbazepine, zonisamide and pregabalin were effective in the i.v.PTZ and MES tests. Ethosuximide, diazepam and levetiracetam were effective in the i.v.PTZ test, but not the MES test. On the contrary, lamotrigine and topiramate were active in the MES, but not the i.v.PTZ test. These results indicate that it is advantageous to use i.v.PTZ test as an acute seizure model for screening of antiepileptic drugs. This model can identify molecules with varied mechanism of action and broad clinical utility in the treatment of epilepsy.  相似文献   

12.
Previous studies from our group have shown that pentylenetetrazol (PTZ)-induced status epilepticus (SE) leads to age-dependent acute and long-term metabolic and circulatory changes in immature rats. In order to define the neural substrates involved in PTZ seizures according to age, the purpose of the present study was to map the areas of cellular activation during seizures of increasing severity in 10-day-old (P10), 21-day-old (P21) and adult rats. Seizures were induced by repetitive injections of subconvulsive doses of PTZ. The total dose received by the animals ranged from 4 to 125 mg/kg. These doses induced a variety of seizure profiles including absence-like, clonic seizures and SE. The cellular activation was measured as the density of c-Fos immunoreactive cells in animals at 2 h after the onset of the seizures. In P10 rats receiving a behaviourally non-active dose of PTZ, c-Fos immunoreactivity appeared only in the amygdala. The dose of 40 mg/kg that induced absence-like seizures led to a weak c-Fos expression in the medial thalamus, some cortical areas and globus pallidus. Clonic seizures reinforced labelling in the previous areas and induced a spread of c-Fos immunoreactivity to other cortical areas, thalamus, hypothalamus and some brainstem nuclei. At that age, only SE led to a widespread and stronger expression of c-Fos which was, however, totally lacking in the midbrain, and remained incomplete in the brainstem and forebrain limbic system, including the hippocampus. In P21 and adult rats, the inactive dose of PTZ induced c-Fos immunoreactivity in thalamus and hypothalamus. With absence-like seizures, c-Fos labelling spread to the cerebral cortex, amygdala, septum and some brainstem regions. With clonic seizures, immunoreactivity was reinforced in all areas already activated by absence-like seizures, and appeared in the striatum, accumbens, brainstem and hippocampus, except in CA1. After SE, c-Fos was strongly expressed in all brain areas. The intensity of c-Fos labelling was higher in most regions of P21 compared to adult rats. These data are in agreement with the immaturity of cellular and synaptic connectivity in P10 rats, the known greater sensitivity of rats to various kinds of seizures during the third week of life and the nature of the neural substrates involved in PTZ seizures.  相似文献   

13.
Eslicarbazepine acetate (BIA 2-093, S-(-)-10-acetoxy-10,11-dihydro-5H-dibenzo/b,f/azepine-5-carboxamide) is a novel antiepileptic drug, now in Phase III clinical trials, designed with the aim of improving efficacy and safety in comparison with the structurally related drugs carbamazepine (CBZ) and oxcarbazepine (OXC). We have studied the effects of oral treatment with eslicarbazepine acetate on a whole-animal model in which partial seizures can be elicited repeatedly on different days without changes in threshold or seizure patterns. In the animals treated with threshold doses of picrotoxin, the average number of seizures was 2.3+/-1.2, and average seizure duration was 39.5+/-8.4s. Pre-treatment with a dose of 30 mg/kg 2h before picrotoxin microperfusion prevented seizures in the 75% of the rats. Lower doses (3 and 10mg/kg) did not suppress seizures, however, after administration of 10mg/kg, significant reductions in seizures duration (24.3+/-6.8s) and seizure number (1.6+/-0.34) were found. No adverse effects of eslicarbazepine acetate were observed in the behavioral/EEG patterns studied, including sleep/wakefulness cycle, at the doses studied.  相似文献   

14.
Summary: Purpose : To determine whether seizures have age-specific features, we studied the role of γ-aminobutyric acid, (GABAB) transmission in rats of various ages (9, 15, 30, and 60 postnatal days). Methods: We used a GABA, receptor agonist baclofen (2 or 5 mg/kg intraperitoneally, i.p.) and a GABAB receptor antagonist CGP 35348 (100 or 600 mg/kg i.p.) in the pentylenetetrazol (PTZ)-induced model of clonic and tonic-clonic seizures (100 mg/kg subcutaneously, s.c.).
Results : Whereas baclofen was anticonvulsant and CGP 35348 proconvulsant in most animals, there were distinct age-related differences in the effectiveness of these drugs and the antagonist had some anticonvulsant activity in adults. Furthermore, the two drugs acting at GABAB receptors had a different profile of action in clonic seizures as compared with tonic-clonic seizures.
Conclusions : The differences in the age-specific action of the GABAB agonist and antagonist suggest that different GABAB receptor subsets may mediate the drug effects. The results indicate that putative antiepileptic drugs (AEDs) must be tested during development because it may not be possible to extrapolate age-specific anticonvulsant effects from studies in adult animals.  相似文献   

15.
Antiepileptic drugs used for the treatment of neonatal seizures have limited efficacy and undesirable side effects, leading to increased off-label use in neonates. Intravenous levetiracetam became available in August 2006 for use in patients above 16 years of age. Insufficient data are available about the efficacy and safety of intravenous levetiracetam in neonates. Data captured from our institution's electronic medical records were retrospectively analyzed for neonates treated with intravenous levetiracetam between January 2007 and December 2009. Data were acquired by reviewing our electronic medical records. Twenty-two patients received a levetiracetam load of 10-50 mg/kg for neonatal seizures. Nineteen of 22 patients (86%) demonstrated immediate seizure cessation at 1 hour. Seven of 22 patients (32%) achieved complete seizure cessation after administration of the loading dose, 14 (64%) achieved seizure cessation by 24 hours, 19 (86%) by 48 hours, and all 22 (100%) by 72 hours. No serious side effects were evident. Nineteen patients (86%) were discharged on oral levetiracetam, and only two patients (9%) were discharged with an additional oral antiepileptic drug. Intravenous levetiracetam can be used as monotherapy and adjunctively in acute seizure management during the neonatal period.  相似文献   

16.
N-methyl-D-aspartate (NMDA) receptors play a prominent role in the pathogenesis of epilepsy, yet few studies have used NMDA as a convulsant in whole animals. In developing rats, systemic NMDA induces seizures with a unique seizure phenotype ("emprosthotonic" or hyperflexion seizures) and electrographic pattern (electrodecrement). These features are not seen in kainic acid-induced seizures, suggesting that seizures activated by NMDA might cause different long-term consequences. Therefore, we investigated the effects of NMDA seizures during development on cognitive function and susceptibility to seizures in adulthood. Rat pups (P12-20) were injected with saline (n=36) or NMDA (n=64) at convulsant doses (15-30mg/kg, i.p.). After NMDA injection, a characteristic sequence of seizure activity was seen: initial behavioral arrest, followed by hyperactivity, agitation, and then emprosthotonus and generalized tonic-clonic seizures. Seizures were terminated 30min later by ketamine (50mg/kg, i.p.). On P85, rats underwent behavioral testing in the water maze. Rats that had experienced NMDA seizures as pups took significantly longer to learn the platform location over 5 days of testing, compared to controls. On P90, rats were injected with pentylenetetrazol (PTZ, 50mg/kg, i.p.) to assess their susceptibility to generalized seizures. NMDA-treated rats had decreased latency and increased duration of class V PTZ seizures. Cresyl violet-stained sections of cortex and hippocampus had no obvious cell loss or gliosis. In summary, NMDA causes a unique seizure phenotype in the developing brain, with subsequent deficits in spatial learning and an increased susceptibility to PTZ seizures in adulthood. This study provides additional evidence for long-term alterations of neuronal excitability and cognitive capacity associated with seizures during development.  相似文献   

17.
Tadalafil, a selective phosphodiesterase type 5 inhibitor, is a long-acting oral agent for the treatment of erectile dysfunction of multiple etiologies. Although generalized tonic-clonic seizures were reported in a healthy man after taking tadalafil, the influence of tadalafil on seizure susceptibility has not been studied so far. Therefore, the aim of the present study was to investigate the effect of tadalafil on seizure threshold as well as on the activity of some first- and second-generation antiepileptic drugs in three acute seizure tests in mice. The obtained results showed that tadalafil, at the highest dose tested (20 mg/kg), significantly decreased the threshold for the first myoclonic twitch in the intravenous pentylenetetrazole (i.v. PTZ) seizure test. It did not affect the threshold for generalized clonic seizure and forelimb tonus in the i.v. PTZ, for tonic hindlimb extension in the maximal electroshock seizure threshold test, and for psychomotor seizure in the 6-Hz-induced seizure threshold test. Tadalafil did not alter the anticonvulsant activity of any of the studied antiepileptic drugs in electrically induced seizure tests. Interestingly, tadalafil potentiated the anticonvulsant activity of clonazepam and decreased the anticonvulsant activity of oxcarbazepine in the i.v. PTZ test. These interactions were pharmacodynamic in nature, as tadalafil did not alter clonazepam and oxcarbazepine concentrations both in serum and brain tissue. Furthermore, neither tadalafil alone nor its combinations with the studied antiepileptic drugs produced any significant impairment of motor coordination (assessed in the chimney test), muscular strength (investigated in the grip-strength test), and long-term memory (assessed in the passive avoidance task). In conclusion, tadalafil may increase the risk of myoclonic seizure and decrease the anticonvulsant efficacy of oxcarbazepine. Further studies are warranted to evaluate the safety of tadalafil usage in patients with epilepsy.  相似文献   

18.
Hamada K  Song HK  Ishida S  Yagi K  Seino M 《Epilepsia》2001,42(11):1379-1386
PURPOSE: Zonisamide (ZNS) and acetazolamide (AZM) are two antiepileptic drugs (AEDs) that differ in clinical efficacy. To elucidate the mechanisms of action of these compounds, we investigated their therapeutic and prophylactic effects in rats by using a kindling model of partial epilepsy. METHODS: Electrodes were implanted into the left amygdala of adult male Wistar rats. The animals were stimulated at the afterdischarge threshold until five stage 5 seizures were induced. The generalized seizure threshold was then determined. Therapeutic effects were examined in rats manifesting successive convulsions with near-threshold stimulation. To test prophylactic effects, drugs were administered intraperitoneally before daily kindling stimulation until the animal had a stage 5 seizure or reached day 18. RESULTS: ZNS (10-40 mg/kg; n=6) suppressed kindled seizures in a dose-dependent manner. Repeated administration for 7 days produced tolerance to anticonvulsive effects. AZM (25-200 mg/kg; n=7) showed limited therapeutic effect, alleviating only the clonic convulsion in stage 5 seizures and reducing afterdischarge duration. Secondary generalization was not significantly suppressed during repeated treatment (50-200 mg/kg; n=6). ZNS, 25 or 40 mg/kg (n=8), significantly retarded seizure development; 15.0 or 17.0 daily stimulations were required to produce a stage 5 seizure. AZM, 50-200 mg/kg (n=6), also retarded seizure development, with 14.0-14.8 stimulations required. CONCLUSIONS: ZNS exhibited modest therapeutic and prophylactic effects, whereas AZM showed mainly prophylactic effects. Hypotheses are presented that may explain the mechanisms of action of these drugs.  相似文献   

19.
Magnesium sulfate has been used as an anticonvulsant in the treatment of eclampsia, but efficacy of magnesium in other types of seizure disorders is poorly documented. We examined the effects of magnesium sulfate (MgSO4) on seizures produced in mice by maximal electroshock (MES) and pentylenetetrazol (PTZ), MgSO4 injection (6.7 mEq/kg i.p.) caused weakness in all animals. With suprathreshold electroshock, 10/10 controls and 11/12 treated animals had seizures with tonic hind limb extension (P = NS). Electroshock threshold was unaltered by magnesium treatment (n = 48; P = 0.47). PTZ induced clonic seizures in 12/12 controls and 5/14 treated animals (P less than 0.05). This difference was likely due to muscular weakness because frequency of EEG spikes was the same in PTZ and PTZ + MgSO4 groups. Mean serum magnesium levels were 2.3 +/- 0.3 mEq/l in animals not given MgSO4; 10.9 +/- 1.4 mEq/l and 12.8 +/- 2.2 mEq/l in treated animals with and without seizures (P = NS). We conclude that magnesium sulfate had no significant anticonvulsant activity in mouse MES and PTZ models for epilepsy. The relevance of these findings to the possible efficacy of magnesium sulfate in eclamptic seizures and other types of epilepsy remains to be determined.  相似文献   

20.
Valproic acid (VPA) is a major antiepileptic drug (AED) with efficacy against multiple seizure types. It has a rapid onset of action but its anticonvulsant activity increases during prolonged treatment, which cannot be explained by drug or metabolite accumulation in plasma or brain. Among numerous other effects on diverse drug targets, VPA is an inhibitor of histone deacetylases (HDACs) that are involved in modulation of gene expression. The functional consequences of HDAC inhibition typically develop slowly during treatment with HDAC inhibitors such as VPA. We therefore hypothesized that inhibition of brain HDACs by VPA and resultant increases in gene expression could explain the increase in anticonvulsant activity during prolonged treatment with this drug. This hypothesis was tested by comparing the effects of VPA and the selective HDAC inhibitor, trichostatin A (TSA), in a mouse model of generalized seizures. Intravenous infusion of pentylenetetrazole (PTZ) was used to determine the effects of the drugs on different seizure types, i.e., myoclonic, clonic and tonic seizures. VPA (200mg/kg b.i.d.) rapidly increased PTZ thresholds to all seizure types, but this effect increased up to threefold during prolonged treatment. Following low (0.5mg/kg b.i.d.) or high (5mg/kg b.i.d.) dose treatment with TSA, no dose-dependent anticonvulsant effects were determined. This finding argues against a role of HDAC inhibition for the anticonvulsant activity of VPA. In view of the multiple extra- and intracellular targets of VPA, the experimental strategy used in the present study may be helpful to assess which specific molecular effects of VPA are relevant for the antiepileptic activity of this drug, and which are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号