首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
METHODS: After a familiarization period, six well-trained males participated in a diet and exercise regimen lasting 9 d and comprising three cycling tests to exhaustion. A work rate was selected during the familiarization period that would result in fatigue after approximately 90-100 min at an ambient temperature of 10 degrees C (i.e., approximately 75% of VO2max). The first exercise test was a depletion trial and was preceded by a period during which the subjects' normal diet was consumed. A prescribed 70% carbohydrate (CHO) diet was then consumed for 3.5 d. After this diet, a second exercise test was performed; one of two isoenergetic experimental meals was consumed 4 h before this test (70% CHO meal, CHO trial; or 90% fat meal, fat trial). The second exercise test was followed by a further 3.5-d period on the high CHO diet. Four hours before the third test, subjects consumed the other meal. Heparin was administered intravenously 30 min (1000 U), 15 min (500 U), and 0 min (500 U) before exercise on the fat trial. Subjects were assigned to the two meals in randomized order. RESULTS: Time to exhaustion increased from 118.2 (12.4) min on the CHO trial to 127.9 (12.1) min on the fat trial (P = 0.001). Although no difference in VO2, RER, HR or RPE was found between trials, there was an earlier reduction in RER and an earlier rise in RPE on the fat trial. No difference in total CHO oxidation was found between trials (383 +/- 70 g on the CHO trial and 362 +/- 59 g on the fat trial). CONCLUSIONS: These results suggest that increasing fat availability immediately before exercise by acute fat feeding and heparin infusion can improve endurance exercise in a cool environment in well-trained individuals. This study was not intended to have immediate application to the sports performance field but rather to contribute to our understanding of the factors that may limit endurance performance. Heparin injection to elevate plasma fatty acid concentration would not represent sound medical practice.  相似文献   

2.
PURPOSE: The purpose of this study was to examine the effect of high and low glycemic index (GI) carbohydrate (CHO) pre-exercise meals on endurance running capacity. METHODS: Eight active subjects (five male and three female) ran on a treadmill at approximately 70% VO2max to exhaustion on two occasions separated by 7 d. Three hours before the run after an overnight fast, each subject was given in a single-blind, random order, isoenergetic meal of 850+/-21 kcal (mean+/-SEM; 67% carbohydrate, 30% protein, and 3% fat) containing either high (HGI) or low (LGI) GI carbohydrate foods providing 2.0 g CHO.kg(-1) body weight. RESULTS: Ingestion of the HGI meal resulted in a 580% and 330% greater incremental area under the 3-h blood glucose and serum insulin response curves, respectively. Performance times were not different between the HGI and LGI trials (113+/-4 min and 111+/-5 min, respectively). During the first 80 min of exercise in the LGI trial, CHO oxidation was 12% lower and fat oxidation was 118% higher than in the HGI trial. Although serum insulin concentrations did not differ between trials, blood glucose at 20 min into exercise in the HGI trial was lower than that during the LGI trial at the same time (3.6+/-0.3 mmol.L(-1) vs 4.3+/-0.3 mmol.L(-1); P < 0.05). During exercise, plasma glycerol and serum free fatty acid concentrations were lower in the HGI trial than in the LGI trial. CONCLUSIONS: This results demonstrate that although there is a relative shift in substrate utilization from CHO to fat when a low GI meal is ingested before exercise compared with that for a high GI meal, there is no difference in endurance running capacity.  相似文献   

3.
This study examined the effect of ingesting different amounts of carbohydrate (CHO) during 4 h recovery (REC) from prolonged running, on subsequent endurance running capacity when subjects were fully rehydrated. Nine men ran at 70% VO2max on a treadmill for 90 min (T1), followed by the REC and a run to exhaustion at the same speed (T2) on two occasions. Thirty minutes into REC, subjects ingested 50 g of CHO from a 6.5% CHO-electrolyte solution (CE) on both occasions. Thereafter, subjects ingested either the same CE or a placebo (PL) every 30 min for the first 3 h of REC. The total volume ingested was equal to 150% of the body mass lost during T1 which achieved rehydration during REC in both trials. Higher blood glucose and serum insulin concentrations (P<0.05) were observed during REC in the CE trial. Nevertheless, similar run times were achieved during T2 in both trials (CE: 56.9+/-8.1 min and PL: 65.4+/-7.8 min) (+/- S.E.M) (NS). Therefore, these results suggest that ingestion of 50 g of CHO immediately after prolonged exercise, and rehydration with a placebo solution, results in a similar endurance capacity, after a 4 h recovery, as ingesting 3 times more CHO (approximately 167 g CHO) over the same period.  相似文献   

4.
INTRODUCTION: The purpose of this study was to determine whether endurance cycling performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO+P; 7.3% and 1.8% concentrations) versus a carbohydrate-only (CHO; 7.3%) beverage. METHODS: Fifteen male cyclists (mean (.-)VO(2peak) = 52.6 +/- 10.3 mL x kg x min) rode a cycle ergometer at 75% (.-)VO(2peak) to volitional exhaustion, followed 12 - 15 h later by a second ride to exhaustion at 85% (.-)VO(2peak). Subjects consumed 1.8 mL x kg BW of randomly assigned CHO or CHO+P beverage every 15 min of exercise, and 10 mL x kg BW immediately after exercise. Beverages were matched for carbohydrate content, resulting in 20% lower total caloric content per administration of CHO beverage. Subjects were blinded to treatment beverage and repeated the same protocol seven to 14 d later with the other beverage. RESULTS: In the first ride (75% (.-)VO(2peak)), subjects rode 29% longer (P < 0.05) when consuming the CHO+P beverage (106.3 +/- 45.2 min) than the CHO beverage (82.3 +/- 32.6 min). In the second ride (85% (.-)VO(2peak)), subjects performed 40% longer when consuming the CHO+P beverage (43.6 +/- 12.5 min) than when consuming the CHO beverage (31.2 +/- 8.7 min). Peak postexercise plasma CPK levels, indicative of muscle damage, were 83% lower after the CHO+P trial (216.3 +/- 122.0 U x L) than the CHO trial (1318.1 +/- 1935.6 U x L). There were no significant differences in exercising levels of (.-)VO(2), ventilation, heart rate, RPE, blood glucose, or blood lactate between treatments in either trial. CONCLUSION: A carbohydrate beverage with additional protein calories produced significant improvements in time to fatigue and reductions in muscle damage in endurance athletes. Further research is necessary to determine whether these effects were the result of higher total caloric content of the CHO+P beverage or due to specific protein-mediated mechanisms.  相似文献   

5.
Endurance improved by ingestion of a glucose polymer supplement   总被引:3,自引:0,他引:3  
The effect of glucose polymer (GP) ingestion upon endurance performance during walking exercise at 45% VO2max was examined. Also, performance on a battery of psychomotor tests was assessed to determine if exhaustion from endurance exercise was related to central nervous system dysfunction. Ten trained male subjects ingested approximately 120 g of GP in four equally-divided dosages 60, 90, 120, and 150 min following the start of exercise. This treatment significantly increased time to exhaustion by 11.5% as compared to the control (C) group (GP=299.0 +/- 9.8 min; C=268.3 +/- 11.8 min). No difference in VO2 (1 X min-1) or perceived exertion was noted between treatments. As a result of the GP feedings the rate of carbohydrate utilization during the GP trial was 0.53 g X min-1 greater than during the C trial. However, during the GP trial plasma glucose did not fall below the pre-exercise level and was significantly higher than the C plasma glucose concentration at exhaustion. No differences in psychomotor performance between treatments or between rested and exhausted states for either the C or GP treatments were noted. These data suggest that exhaustion was not a result of hypoglycemia or central nervous system dysfunction and that glucose polymer supplements may enhance endurance capacity.  相似文献   

6.
Effects of preexercise feedings on endurance performance   总被引:1,自引:0,他引:1  
Eight male and female students were studied during exercise to exhaustion on a bicycle ergometer at 80 and 100% of Vo2max following the ingestion of water (W), 75 g of glucose (G) or a liquid meal (M) (10 g protein, 12.5 g fat, 15 g CHO). When compared to the endurance ride (80% Vo2max) in the W treatment, endurance performance time was reduced by 19%, (p less than .05) (53.2 to 43.2 min) as a result of the preexercise glucose feeding (Trial G). No difference in performance at 80% Vo2max was found between the W and M trials. The preexercise feedings had no effect on exercise time to exhaustion at 100% Vo2max. During the G and M trials at 80% Vo2max, most of the subjects demonstrated a transient decline in serum glucose (less than 3.5 mM). After 30-40 min. of exercise, however, serum glucose returned to normal and was seldom low at the time of exhaustion. Serum free fatty acids (FFA) were depressed throughout the G trial. The results of these experiments indicate impaired lipid mobilization following CHO ingestion. The present data support our earlier findings (11) which demonstrate that glucose feedings 30-45 minutes before endurance exercise increase the rate of CHO oxidation and impede the mobilization of FFA, thereby reducing exercise time to exhaustion.  相似文献   

7.
Drinking a concentrated glucose solution less than 1 h before the start of prolonged submaximal exercise has been reported to reduce endurance capacity during cycling. The purpose of this study was to re-examine the influence of pre-exercise ingestion of a concentrated glucose solution on endurance running capacity. Nine recreational runners (five men and four women) ran to exhaustion on a level treadmill, at speeds equivalent to 70% VO2max, on two occasions separated by at least 1 week. The runners ingested either a solution containing 75 g of glucose in 300 ml of water (G trial), or 300 ml of sweetened water (P trial) 30 min before each trial. As a consequence, the blood glucose concentrations were 55% higher at the beginning of the G trial compared with those recorded for the P trial (G trial, mean(s.e.) blood glucose = 6.3(0.7) mmol l-1 versus P trial, mean(s.e.) blood glucose = 4.1(0.3) mmol l-1; P < 0.01). Nevertheless, there were no differences in the running times to exhaustion between the two trials (G trial, mean(s.e.) 133.79(11.0) min versus P trial, mean(s.e.) 121.16(8.1) min). The results of this study show that ingesting a 25% glucose solution 30 min before exercise does not reduce the endurance capacity of recreational runners when the exercise intensity is equivalent to 70% VO2max.  相似文献   

8.
Ten men were studied during 4 h of cycling to determine the effect of solid carbohydrate (CHO) feedings on muscle glycogen utilization and exercise performance. In the experimental trial (E) the subjects ingested 43 g of sucrose in solid form along with 400 ml of water at 0, 1, 2 and 3 h of exercise. During the control trial (C) they received 400 ml of an artificially sweetened drink without solid CHO. No differences in VO2, heart rate, or total energy expenditure were observed between trials; however, respiratory exchange ratios were significantly (P less than 0.05) higher during E. Blood glucose was significantly (P less than 0.05) elevated 20 min post-feeding in E; however, by 50 min no differences were observed between trials until 230 min (E = 4.5 +/- 0.2 mmol X l-1 vs C = 3.9 +/- 0.2, means +/- SE; P less than 0.05). Muscle glycogen utilization was significantly (P less than 0.05) lower during E (100.7 +/- 10.2 mmol X kg-1 w.w.) than C (126.2 +/- 5.5). During a sprint (100% VO2max) ride to exhaustion at the end of each trial, subjects performed 45% longer when fed CHO (E = 126.8 +/- 24.7 s vs C = 87.2 +/- 17.5; P less than 0.05). It was concluded that repeated solid CHO feedings maintain blood glucose levels, reduce muscle glycogen depletion during prolonged exercise, and enhance sprint performance at the end of such activity.  相似文献   

9.
This study examined the effects of pre-exercise food on different glycemic indexes (GI) on exercise metabolism and endurance running capacity. 9 subjects performed 3 exercise trials on different days 15 min after ingesting: lentils, (LGI), potatoes, (HGI), and placebo. Each subject ingested an equal amount of each food (1 g/kg body mass) and ran on a level treadmill for 5 min at 60%, 45 min at 70% and then at 80% of VO (2max) until exhaustion. Serum glucose concentrations were higher ( P<0.01) 15 min after the HGI trial compared to the LGI and placebo trials. In addition, serum glucose levels were higher ( P<0.05) during the LGI trial at the time of exhaustion compared to the HGI and placebo trials. Plasma insulin levels, 15 min after ingestion, were higher ( P<0.001) in the HGI trial as compared to the LGI and placebo trials. Exercise time was longer during the LGI trial ( P<0.05) compared to the placebo, but the time to exhaustion in the HGI condition did not differ from the placebo (LGI: 90.0 ± 7.9; HGI: 81.8 ± 5; placebo: 73.0 ± 6.4 min). These results suggest that lentils, the LGI food, ingested 15 min before prolonged exercise maintained euglycemia during exercise and enhanced endurance running capacity.  相似文献   

10.
Nine men were studied during three 4-h cycling bouts to determine the effect of frequency and dosage of solid carbohydrate (CHO) feedings (86 g) on muscle glycogen utilization and exercise performance. In the frequency trial (F), the subjects ingested 10.75 g of CHO along with 200 ml of water at 30-min intervals; in the dosage trial (D), the subjects ingested 21.5 g of CHO with 400 ml of water at 60-min intervals. During the control trial (C), the subjects ingested 400 ml of an artificially sweetened placebo at 60-min intervals. Respiratory exchange ratios were significantly elevated in both trials D and F (P less than 0.05). Blood glucose was significantly elevated in trial D 20 min post-feeding but had returned to control levels by 50 min. In trial F, blood glucose was maintained at a constant level throughout the entire 4 h. In trial C, blood glucose declined steadily during the entire 4 h. Despite the differences in blood glucose levels between the three trials, there were no significant differences in the rate of muscle glycogen utilization in any of the trials (D = 82.9 +/- 6.6 [SE] mmol X kg-1 vs C = 80.9 +/- 6.9 mmol X kg-1 vs F = 74.4 +/- 12.2 mmol X kg-1). In a sprint ride (100% VO2max) to exhaustion at the end of each trial, the subjects performed significantly longer in trial F compared to C (120.97 +/- 9.6 vs 81.0 +/- 7.1 s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
PURPOSE AND METHODS: Seven subjects exercised to exhaustion on a bicycle ergometer at a workload corresponding to an intensity of 70% maximal oxygen uptake (VO2max). On one occasion (FED), subjects consumed a preexercise carbohydrate (CHO) containing breakfast (100 g CHO) 3 h before exercise. On the other occasion (FASTED), subjects exercised after an overnight fast. Exercise time to fatigue was significantly longer (P < 0.05) when subjects consumed the breakfast (136+/-14 min) compared with when they exercised in the fasted state (109+/-12 min). RESULTS: Pre- and post-exercise muscle glycogen concentrations, respiratory exchange ratio, carbohydrate and fat oxidation, and lactate and insulin concentrations were not significantly different between the two trials. Insulin concentrations decreased significantly (P < 0.05) from 4.7+/-0.05 microIU.mL(-1) to 2.8+/-0.4 microIU.mL(-1) in FED and from 6.6+/-0.6 microIU.mL(-1) to 3.7+/-0.6 microIU.mL(-1) in FASTED subjects and free fatty acid concentrations (FFA) increased significantly (P < 0.05) from 0.09+/-0.02 mmol.L(-1) to 1.4+/-0.6 mmol.L(-1) in FED and from 0.17+/-0.02 mmol.L(-) to 0.74+/-0.27 mmol.L(-1) in FASTED subjects over the duration of the trials. CONCLUSIONS: In conclusion, the important finding of this study is the increased time to fatigue when subjects ingested the CHO meal with no negative effects ascribed to increased insulin concentrations and decreased FFA concentrations after CHO ingestion.  相似文献   

12.
运动前进食不同血糖指数食物对长跑能力的影响   总被引:4,自引:1,他引:3  
目的 :探讨运动前进食不同血糖指数食物对长跑能力的影响。方法 :实验设计采用平衡重复测试法 ,8名男子耐力长跑运动员在间隔期不少于 7天内 ,在隔夜空腹情况下分别进食含相等热量的低血糖指数 [Glycemicindex (GI) ](GI =37)或高GI(GI =77)的碳水化合物 (CHO)食物 (CHO∶1 5g/kg体重 )。 2小时后 ,受试者在水平跑台上进行 2 1km的长跑能力测试。首 5km中 ,受试者以其 70 %VO2 max的速度跑步 ,而其后的 16km ,则可随意选择速度以最短时间完成。结果 :与高GI试验相比 ,所有受试者在进食低GI食物后的跑步时间明显缩短 (98 7± 2 0vs 10 1 5± 2 1min ,P<0 0 1)。整个跑步全程中 ,低GI试验的血糖及血清游离脂肪酸 (FFA)的水平较高GI试验为高。虽然进食高GI食物后两小时的血清胰岛素较高 ,但在运动过程中 ,血清胰岛素、皮质醇、血乳酸水平与低GI试验相比均无显著差异。与高GI试验相比 ,低GI试验中CHO氧化在能量供应上的依赖低 9 5 % ,而脂肪氧化则高 17 9%。结论 :在运动前 2小时进食低血糖指数的CHO食物 ,比提供同等热量的高血糖指数食物能更有效地提高长跑运动的能力。  相似文献   

13.
OBJECTIVE: To examine the effect of a carbohydrate-electrolyte solution on endurance capacity during prolonged intermittent running. METHODS: Nine subjects (eight men and one woman) ran to exhaustion on a motorised treadmill on two occasions separated by at least 10 days. After an overnight fast, they performed repeated 15 second bouts of fast running (at 80% Vo2MAX for the first 60 minutes, at 85% Vo2MAX from 60 to 100 minutes of exercise, and finally at 90% Vo2MAX from 100 minutes of exercise until exhaustion), separated by 10 seconds of slow running (at 45% Vo2MAX). On each occasion they drank either a water placebo (P) or a 6.9% carbohydrate-electrolyte (CHO) solution immediately before the run (3 ml/kg body mass) and every 20 minutes thereafter (2 ml/kg body mass). RESULTS: Performance times were not different between the two trials (112.5 (23.3) and 110.2 (21.4) min for the P and CHO trials respectively; mean (SD)). Blood glucose concentration was higher in the CHO trial only at 40 minutes of exercise (4.5 (0.6) v 3.9 (0.3) mmol/1 for the CHO and P trials respectively; p < 0.05), but there was no difference in the total carbohydrate oxidation rates between trials. CONCLUSION: These results suggest that drinking a 6.9% carbohydrate-electrolyte solution during repeated bouts of submaximal intermittent high intensity running does not delay the onset of fatigue.




  相似文献   

14.
The effect of carbohydrate mouth rinse on 1-h cycle time trial performance   总被引:1,自引:0,他引:1  
PURPOSE AND METHOD: To investigate the possible role of carbohydrate (CHO) receptors in the mouth in influencing exercise performance, seven male and two female endurance cyclists (VO(2max) 63.2 +/- 2.7 (mean +/- SE) mL.kg*(-1).min(-1)) completed two performance trials in which they had to accomplish a set amount of work as quickly as possible (914 +/- 40 kJ). On one occasion a 6.4% maltodextrin solution (CHO) was rinsed around the mouth for every 12.5% of the trial completed. On the other occasion, water (PLA) was rinsed. Subjects were not allowed to swallow either the CHO solution or water, and each mouthful was spat out after a 5-s rinse. RESULTS: Performance time was significantly improved with CHO compared with PLA (59.57 +/- 1.50 min vs 61.37 +/- 1.56 min, respectively, P = 0.011). This improvement resulted in a significantly higher average power output during the CHO compared with the PLA trial (259 +/- 16 W and 252 +/- 16 W, respectively, P = 0.003). There were no differences in heart rate or rating of perceived exertion (RPE) between the two trials (P > 0.05). CONCLUSION: The results demonstrate that carbohydrate mouth rinse has a positive effect on 1-h time trial performance. The mechanism responsible for the improvement in high-intensity exercise performance with exogenous carbohydrate appears to involve an increase in central drive or motivation rather than having any metabolic cause. The nature and role of putative CHO receptors in the mouth warrants further investigation.  相似文献   

15.
This study was undertaken to determine the effects of ingesting 5.0 (CHO-5), 6.0 (CHO-6), and 7.5 g/100 ml (CHO-7.5) carbohydrate (CHO) solutions on blood glucose and counterregulatory hormonal responses during prolonged intermittent exercise. Eight well-trained cyclists performed four trials consisting of seven 12-min cycling bouts at 70% of VO2max with 3 min rest between each ride. A final 12 min ride was an all-out self-paced performance ride. During the rest interval the subjects ingested either a water placebo (WP) or one of the CHO solutions at a rate of 8.5 mg/kg/h (approx. 150 ml). Blood samples were taken at 0, 25, 55, 85, and 115 min of exercise and were assayed for glucose, glucagon (GG), cortisol (CT), insulin (IN), epinephrine (EP), and norepinephrine (NE). Blood glucose levels were significantly lower in the WP trial compared to the CHO trials at 25 (4.6 +/- 0.2 vs 5.7 +/- 0.5 mmol/l) and 55 min (4.4 +/- 0.3 vs 5.0 +/- 0.8 mmol/l). At 85 min blood glucose was significantly lower in the WP compared to the CHO-6 and CHO-7.5 trials. GG and IN levels were not significantly different between trials; however, the GG:IN molar ratio was significantly higher in the WP than in the CHO-7.5 trial. CT was significantly elevated in the WP trial compared to the CHO-7.5 trial. EP and NE levels were not affected by CHO ingestion. These data suggest that CHO feedings prevent the typical hormonal responses which are responsible for hepatic glucose release, thus eliciting a possible hepatic glycogen sparing.  相似文献   

16.
PURPOSE: To determine whether eating a breakfast cereal with a moderate glycemic index could alter substrate utilization and improve exercise duration. METHODS: Six active women (age, 24 +/- 2 yr; weight, 62.2 +/- 2.6 kg; VO(2peak), 46.6 +/- 3.8 mL x kg(-1) x min(-1)) ate 75 g of available carbohydrate in the form of regular whole grain rolled oats (RO) mixed with 300 mL of water or water alone (CON). The trials were performed in random order and the meal or water was ingested 45 min before performing cycling exercise to exhaustion (60% of VO(2peak)). Blood samples were drawn for glucose, glucose kinetics, free fatty acids (FFA), glycerol, insulin, epinephrine (EPI), and norepinephrine (NE) determination. A muscle biopsy was obtained from the vastus lateralis muscle before the trial and immediately after exercise for glycogen determination. Glucose kinetics (Ra) were determined using a [6,6-(2)H] glucose tracer. RESULTS: Compared with CON, plasma FFA and glycerol levels were suppressed (P < 0.05) during the first 120 min of exercise for the RO trial. Respiratory exchange ratios (RER) were also higher (P < 0.05) for the first 120 min of exercise for the RO trial. At exhaustion, glucose, insulin, FFA, glycerol, EPI, NE, RER, and muscle glycogen were not different between trials. Glucose Ra was greater (P < 0.05) during the RO trial compared with CON (2.36 +/- 0.22 and 1.92 +/- 0.27 mg x kg(-1) x min(-1), respectively). Exercise duration was 5% longer during RO, but the mean times were not significantly different (253.6 +/- 6 and 242.0 +/- 15 min, respectively). CONCLUSIONS: Increased hepatic glucose output before fatigue provides some evidence of glucose sparing after the breakfast cereal trial. However, exercise duration was not significantly altered, possibly because of the sustained suppression of lipid metabolism and increased carbohydrate utilization throughout much of the exercise period.  相似文献   

17.
PURPOSE: To examine the influence of ingesting a carbohydrate-electrolyte (CHO-E) solution on muscle glycogen use and intermittent running capacity after consumption of a carbohydrate (CHO)-rich diet. METHODS: Six male volunteers (mean +/- SD: age 22.7 +/- 3.4 yr; body mass (BM) 75.0 +/- 4.3 kg; V O2 max 60.2 +/- 1.6 mL x kg(-1) x min(-1)) performed two trials separated by 14 d in a randomized, crossover design. Subjects consumed either a 6.4% CHO-E solution or a placebo (PLA) in a double-blind fashion immediately before each trial (8 mL x kg(-1) BM) and at 15-min intervals (3 mL x kg(-1) BM) during intermittent high-intensity running to fatigue performed after CHO loading for 2 d. Muscle biopsy samples were obtained before exercise, after 90 min of exercise, and at fatigue. RESULTS: Subjects ran longer in the CHO-E trial (158.0 +/- 28.4 min) compared with the PLA trial (131.0 +/- 19.7 min; P < 0.05). There were no differences in muscle glycogen use for the first 90 min of exercise (approximately 2 mmol of glucosyl units per kilogram of dry matter (DM) per minute). However, there was a trend for a greater use in the PLA trial after 90 min (4.2 +/- 2.8 mmol x kg(-1) DM x min(-1)) compared with the CHO-E trial (2.5 +/- 0.7 mmol x kg(-1) DM x min(-1); P = 0.10). Plasma glucose concentrations were higher at fatigue in the CHO-E than in the PLA trial (P < 0.001). CONCLUSIONS: These results suggest that CHO-E ingestion improves endurance capacity during intermittent high-intensity running in subjects with high preexercise muscle glycogen concentrations. The greater endurance capacity cannot be explained solely by differences in muscle glycogen, and it may actually be a consequence of the higher plasma glucose concentration towards the end of exercise that provided a sustained source of CHO for muscle metabolism and for the central nervous system.  相似文献   

18.
PURPOSE: This study aimed to investigate gender differences in i) pancreatic insulin secretory (beta-cell sensitivity) and whole body insulin sensitivity responses to an intravenous carbohydrate (CHO) load, and (ii) metabolic responses to exercise after both intravenous and oral CHO loads. METHODS: Seven untrained healthy men and seven age-, body mass-, and VO2max-matched women performed two trials. In one trial they cycled for 60 min at 50% VO2max, starting 60 min after ingestion of a carbohydrate-rich meal (ME trial). In the other trial, subjects were infused with 20% dextrose solution to maintain blood glucose concentration at approximately 8 mmol x L(-1) for 60 min (INF trial), then the infusion rate was maintained constant during the following 60 min while exercising at 50% VO2max. RESULTS: There was no gender effect on beta-cell sensitivity (serum insulin: 161 +/- 37 and 159 +/- 28 pmol x L(-1) for men and women, respectively) and whole body insulin sensitivity (155 +/- 24 and 135 +/- 29 mg x KgFFM(-1) x min(-1) per pmol x L(-1) x 100 for men and women, respectively). This may explain the similarity in glycemic, substrate oxidation and other metabolic responses to exercise after both intravenous and oral CHO loads in men and women. CONCLUSION: These results suggest that moderate exercise performed in the postprandial state presents a similar challenge to the ability of healthy, untrained men and women to perform exercise without a substantial decline in plasma glucose concentration below fasting values.  相似文献   

19.
The present study examined whether a pre-exercise consumption of glucose by subjects having adhered to a 3-day low carbohydrate (CHO) or normal CHO diet would influence supramaximal intermittent exercise performance. Sixteen moderately active men volunteers (mean(s.d.) age 20.0(1.3) years) agreed to undertake three exercise tests over an 8-day period; in addition to completing a VO2max test, the subjects performed two identical maximal interval tests (MIT1 and MIT2). Periods of 3 days separated each of the three tests. The interval tests involved five 60-s 'all-out' cycling bouts working against a resistance of 0.075 kg kg-1 body mass; each bout was separated by 5 min of passive recovery. For 3 days preceding the first interval test (MIT1), all subjects adhered to a 'moderate' CHO diet which comprised 59.1% (approximately 4.1 g kg-1 body mass) of the daily energy intake as CHO. Following MIT1 and for 3 days before MIT2 subjects were randomly assigned to follow either a moderate CHO diet (60.8%) or a low CHO diet (14.4% or 1.1 g kg-1 body mass). All food and drink consumed during the experimental period was weighed and recorded for later dietary analysis. One hour before MIT2, eight subjects were administered (in single blind fashion) a 15% glucose solution (1 g kg-1 body mass) while the other eight subjects consumed a low-energy sweetened placebo. During both interval tests, values of work, exercise VO2, plasma glucose, plasma lactate and venous blood pH were statistically analysed. No changes in performance between MIT1 and MIT2 across conditions were found (P > 0.05). However, those subjects who consumed the glucose solution before MIT2 (irrespective of their dietary CHO intake) consumed significantly less oxygen during exercise than those who had been given the placebo solution (P<0.05). While these findings question the ergogenic potential of consuming glucose before supramaximal exercise, the VO(2) data implicate a possible shift in substrate utilization during repeated sprint exercise after pre-exercise glucose ingestion.  相似文献   

20.
We examined the hypothesis that acute therapeutic glucocorticoid intake could change the contribution of fat and carbohydrate (CHO) in energy production during exercise. Nine healthy recreationally-trained male subjects twice performed submaximal exercise (60 min at 60 % VO2max) after ingestion of placebo (Pla) or 20 mg of prednisolone (Pred), according to a double blind and randomized protocol. Respiratory exchange was monitored during exercise and blood samples were collected at rest, every 10 min during exercise and after 5, 10, and 20 min of passive recovery. Pred intake significantly increased total energy expenditure during exercise, but CHO oxidation was lower and fat oxidation higher after Pred vs. Pla. ACTH and IL-6 concentrations were significantly decreased with Pred during exercise, whereas no variations were found in GH, insulin, blood glucose, and lactate between the 2 treatments. In conclusion, it appears that acute prednisolone systemic administration does reduce total carbohydrate oxidation during submaximal exercise. Further studies are necessary to clarify the mechanisms involved and to determine whether this modification in the substrate oxidation balance under glucocorticoid administration in recreationally-trained male subjects could result in a competitive advantage in elite athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号