首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The Nal-Glu GnRH antagonist (GnRHA) was given to castrate male and female rats 7 days after gonadectomy to assess the impact of selective GnRH inhibition on the steady state mRNA levels of FSH beta, LH beta, and alpha-subunit and serum levels of FSH and LH. A low dose of GnRHA (125 micrograms/kg.day) given to female rats for 1, 3, or 7 days resulted in suppression of serum FSH and LH levels by 7 days to 50% and 40%, respectively, of ovariectomized control values. LH beta mRNA levels decreased in a time-dependent manner, so that by 7 days, LH beta mRNA levels were less than those in intact controls. There were significant but less dramatic declines in alpha and FSH beta mRNA levels. A higher dose of GnRHA (500 micrograms/kg.day) for 7 or 14 days administered to castrate male or female rats resulted in inhibition of serum LH and FSH to or below levels in intact controls. At this dose, all three gonadotropin subunit mRNA levels fell from castrate values toward or below those in intact controls. Thus, although low dose GnRHA administration suppressed LH beta mRNA more than FSH beta mRNA levels, high dose GnRHA treatment resulted in equal suppression of all three gonadotropin subunits. No stimulatory effects on alpha-subunit mRNA levels were observed with either dose of GnRHA. We conclude that the pretranslational control of gonadotropin subunit biosynthesis is GnRH dependent. Adequate dose and length of administration of the potent Nal-Glu GnRHA results in suppression of both the serum gonadotropins FSH and LH and the mRNAs for FSH beta, LH beta, and alpha-subunit in female and male rats.  相似文献   

2.
The role of GnRH in regulating gonadotropin subunit gene expression was examined in adult female rats. Animals were ovariectomized, estradiol implants inserted sc, and jugular cannulae placed into the right atria. On the next day, animals were given GnRH pulses (saline to controls) every 30 min for up to 48 h and alpha, LH beta, and FSH beta mRNA levels measured by hybridization to cDNA probes. To determine the effects of GnRH treatment duration, rats received GnRH pulses (25 ng at 30-min intervals) for 6, 12, 24, and 48 h. FSH beta mRNA was increased (by 92%) after 6 h of pulses and remained elevated through 48 h. alpha mRNA was not increased until 12 h (27% increase) and rose further (57%) by 48 h. LH beta mRNA levels were only transiently increased at 12 h (67%) and values were not different from saline controls after 24 or 48 h. To examine whether the rise in serum PRL which is characteristic of the ovariectomized-estradiol animal model was responsible for the decrease in LH beta mRNA responsiveness to GnRH over longer durations, studies were repeated in bromocriptine-treated animals (0.6 mg sc, twice daily). The results showed similar response patterns for all three subunit mRNAs including the decrease in LH beta after 48 h. A third experiment examined the effect of varying GnRH pulse amplitude (0.5-250 ng/pulse at 30-min intervals) over 12 h. alpha mRNA levels were increased by all GnRH doses greater than 5 ng with maximum responses after 250 ng pulses. LH and FSH beta mRNAs were both elevated by GnRH pulse doses of 0.5-25 ng (P less than 0.05 vs. saline controls). Maximal increases (2-fold) were seen after 5 ng pulses for LH beta and after 15-ng pulses for FSH beta mRNA. These results show that pulsatile GnRH increases FSH beta mRNA more rapidly than alpha or LH beta mRNAs in female rats. In addition, high amplitude GnRH pulses increase only alpha mRNA, whereas both LH beta and FSH beta mRNAs show maximum responses to lower doses. The data suggest that alterations in the amplitude of the GnRH pulsatile signal can exert differential effects on gonadotropin gene expression.  相似文献   

3.
The hypothalamic decapeptide GnRH is known to regulate the synthesis and secretion of LH and FSH by pituitary gonadotrope cells. The frequency of pulsatile GnRH secretion changes and LH and FSH are differentially secreted in various physiological situations. To investigate the potential role of altered frequency of GnRH stimulation in regulating differential secretion of LH and FSH, we examined the effects of GnRH frequency on expression of the alpha, LH beta, and FSH beta genes. GnRH pulses (25 ng/pulse) were administered to castrate testosterone-replaced rats at intervals of 8-480 min to cover the range of physiological pulsatile GnRH secretion. Fast frequency GnRH pulses (8-min pulse intervals) increased alpha-subunit mRNA concentrations 3-fold above those in saline-pulsed controls (controls, 1.01 fmol cDNA bound/100 micrograms pituitary DNA) and LH beta mRNA by 50% (controls, 0.18 fmol cDNA bound), but FSH beta mRNA was unchanged (controls, 0.38 fmol cDNA bound). GnRH pulses given every 30 min increased all three subunit mRNAs (alpha, 3-fold, LHbeta, 2-fold; FSH beta, 2-fold), and acute LH release and serum FSH concentrations were maximal after this frequency. Slower frequency GnRH stimuli (120- to 480-min pulse intervals) did not change alpha and LH beta mRNA levels, but increased FSH beta mRNA 2- to 2.5-fold, and FSH secretion was maintained. Equalization of the total dose of GnRH given at different intervals over 24 h confirmed the frequency dependence of subunit mRNA expression. Fast frequency GnRH stimuli (8 min) increased alpha mRNA 1.5- to 2.5-fold, while the same total GnRH doses were ineffective when given at slow frequency (480 min). Similarly, LH beta mRNA was only increased by GnRH pulses given at 8-min intervals. In contrast, FSH beta mRNA increased 2-fold after pulses given every 480 min, and the 8-min pulse interval was ineffective. The data show that the frequency of GnRH stimulation can differentially regulate gonadotropin subunit mRNA expression and may be a mechanism that enables a single GnRH peptide to selectively regulate gonadotropin subunit gene expression and hormone secretion.  相似文献   

4.
Testosterone (T) inhibits GnRH secretion and can also modulate the effects of GnRH on gonadotropin synthesis and secretion. To assess the effect of T on GnRH stimulation of alpha, LH beta, and FSH beta mRNA expression, we replaced T at three levels to reproduce low (1.5 +/- 0.5 ng/ml), medium (3.5 +/- 0.3 ng/ml), and high (6.2 +/- 0.6 ng/ml) physiological plasma concentrations. Additionally, as peripheral conversion to dihydrotestosterone (DHT) or estradiol (E2) may mediate T action, the effects of GnRH pulses in the presence of DHT and E2 were also studied. Male rats were castrated, and steroids were replaced via implants containing either T (three doses) or DHT or E2 (two doses each). GnRH pulses (10-250 ng/pulse) were administered iv at 30-min intervals for 48 h. Pituitary subunit mRNA concentrations, gonadotropin content, and LH and FSH secretion were determined. The patterns of alpha, LH beta, and FSH beta mRNA responses to increasing GnRH pulse amplitude were similar at all concentrations of plasma T. Alpha mRNA concentrations were increased 2- to 4-fold by GnRH pulses. At the same plasma T concentration, all doses of GnRH produced similar increases in alpha mRNA, but the response tended to be lower at the higher (6.2 ng/ml) levels of T. LH beta mRNA showed a clear dependence on GnRH pulse amplitude, with the maximum responses (2- to 3-fold) occurring after 10- to 25-ng GnRH pulses. At the higher (3.5 and 6.2 ng/ml) T concentrations, the dose-response curve was shifted to the left. The lowest GnRH pulse dose (10 ng) produced maximum responses, and LH beta mRNA increments in response to the higher GnRH doses were suppressed. FSH beta mRNA concentrations were increased by T in saline-pulsed controls. FSH beta mRNA responses were similar (2- to 3-fold) after all GnRH doses and at all concentrations of T. Increasing GnRH pulse doses reduced the pituitary content of both LH and FSH at all levels of T. Acute LH secretion was maximal after 10- and 25-ng pulses of GnRH when plasma T was low, but increased progressively with GnRH dose at the highest plasma T concentrations. Plasma FSH did not show any differential responsiveness to GnRH pulse dose or to increasing plasma T. Thus, LH synthesis and secretion are affected more than those of FSH by changing plasma concentrations of T. T may modulate posttranslational events in LH secretion. The higher GnRH doses effected LH release without increasing LH beta mRNA in the presence of higher physiological concentrations of T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Y Anouar  T Benie  M De Monti  R Counis  J Duval 《Endocrinology》1991,129(5):2393-2399
Estradiol (E2) effects on the pituitary and adrenal secretogranin II (SgII) and chromogranin A (CgA) proteins and mRNA levels were analyzed in the adult female rat. Animals were ovariectomized or sham-operated for 2 weeks and then daily injected with various doses of 17 beta-E2 (from 5-100 micrograms) for the following week. SgII and CgA levels were determined by Western blot analysis using two specific antisera. Messenger RNA (mRNA) levels were measured by RNA slot blot analysis using specific cDNA probes. Simultaneously, pituitary LH content and gonadotropin subunit (LH beta, FSH beta, alpha) mRNAs were quantified. Ovariectomy promoted a significant increase in pituitary SgII and CgA proteins (2-fold vs. sham-operated animals, P less than 0.01) and a concomitant rise in their mRNA levels (2.5-fold and 4.5-fold for SgII mRNA and CgA mRNA, respectively, P less than 0.01). In the same animals LH beta, FSH beta, and alpha-subunit mRNA levels increased by 20-, 12-, and 6-fold, respectively. Estrogen replacement resulted in a parallel decrease of CgA and LH beta mRNA to the control values, starting from the lowest steroid dose (5 micrograms). The SgII mRNA decrease was initiated only with a higher concentration of E2 (10 micrograms), as was that of alpha-subunit mRNA; yet, the SgII mRNA level remained significantly higher than in the control pituitary, even with the highest steroid dose (P less than 0.05) at variance with the alpha-mRNA level. Concerning protein concentration, the postcastration increase in CgA was fully reverted with 10 micrograms E2 while that of SgII remained unaffected, as was the pituitary LH content. In the adrenal gland, neither the ovariectomy nor the E2 therapy altered significantly the SgII or CgA protein and mRNA concentrations. We conclude that, in rats, 1) ovarian factors regulate the pituitary SgII and CgA protein and mRNA steady-state levels while such factors are inefficient in the adrenal gland, 2) CgA and LH beta mRNAs exhibit the same sensitivity to E2 while SgII and alpha-subunit mRNAs appear less sensitive, and 3) SgII and LH pituitary contents present a similar pattern of variations when the estrogenic status of the animal is modified.  相似文献   

6.
G Saade  D R London  R N Clayton 《Endocrinology》1989,124(4):1744-1753
We have investigated the interaction of estrogen with GnRH on the regulation of LH subunit mRNA in female hypogonadal (hpg) mice receiving constant frequency and amplitude pulsatile GnRH treatment for up to 18 days. The level of cytosolic common alpha mRNA in female hpg mouse pituitaries was 45 +/- 6% of normal female littermate values, and treatment with pulsatile GnRH increased alpha mRNA to 40% above the normal value at 24 h and 2-4 times normal at 7 and 12 days (P less than 0.001); by 18 days levels had returned to those of untreated hpg controls. Concurrent treatment with estradiol (E2) did not affect those changes. However, in ovariectomized hpg mice the 2- to 4-fold rise in alpha mRNA was sustained for 18 days with GnRH treatment. E2 treatment alone for 7 and 12 days doubled alpha mRNA. LH beta mRNA levels in untreated female hpg mice were between 5-10% of normal values. Levels increased significantly (77 +/- 6.4%) 24 h after GnRH treatment and were normal at 7, 12, and 18 days. E2 together with GnRH did not affect the LH beta mRNA increase at 12 days, but reduced it to 45% of normal at 18 days. Ovariectomy did not alter the LH beta mRNA response to GnRH treatment, and E2 treatment alone did not increase LH beta mRNA. Serum LH concentrations were normalized by GnRH treatment at all times and did not increase in ovariectomized animals. LH release was prevented when E2 was combined with GnRH. Pituitary LH content in hpg mice was 20% of normal and increased gradually with GnRH treatment. Neither concurrent treatment with E2 nor ovariectomy affected the GnRH-induced synthesis of LH. PRL mRNA levels were 30-40% of normal littermate values in untreated female hpg mice, and pulsatile GnRH increased these to 70-80% of normal. E2 alone raised PRL mRNA slightly above normal values, although together with GnRH this rise was attenuated by about 40%. Pulsatile GnRH treatment of ovariectomized hpg mice did not increase PRL mRNA. E2 increased pituitary PRL content, and GnRH did not attenuate this aspect of E2 action. Serum PRL levels rose with E2 treatment at 7 and 12 days, and concurrent GnRH treatment prevented the rise at 12 days. We conclude the following: 1) The stimulatory action of pulsatile GnRH on the expression of both common alpha and LH beta mRNA is rapid (less than 24 h).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
There is accumulating evidence that the negative feedback actions of testosterone on the pituitary may contribute to the differential regulation of FSH and LH secretion in males. In the present study we measured steady state levels of the mRNAs encoding the gonadotropin subunits in pituitary cell cultures treated with 10 nM testosterone (T) as well as in T-treated pituitary cells perifused with pulses of GnRH to explore further the direct actions of T on the pituitary. T treatment of pituitary cells in monolayer culture for 72 h increased FSH beta mRNA 1.5-fold (P less than 0.05), decreased alpha-subunit mRNA to 45% of the control level (P less than 0.05), and decreased LH beta mRNA to 75% of the control level (P less than 0.05). FSH and uncombined alpha-subunit secretion were increased and decreased by T, respectively, whereas basal LH secretion was unchanged. Treatment with 0.1 nM estradiol, a physiological concentration for males, did not change gonadotropin secretion or subunit mRNA concentrations. Between days 2 and 5 in culture in the absence of steroid treatment, steady state levels of LH beta and alpha-subunit mRNA declined (P less than 0.01) 52% and 61%, respectively, but FSH beta mRNA levels were unchanged. Pulsatile stimulation with 2.5 nM GnRH every 1 h for 10 h increased FSH beta mRNA 2.8-fold (P less than 0.05) and increased (P less than 0.05) alpha-subunit mRNA to 117% of the control level. When cell cultures were pretreated with T for 48 h and then perifused with pulses of GnRH, FSH beta, LH beta, and alpha-subunit mRNA levels were 66%, 74%, and 70% of the value during GnRH alone (P less than 0.05). T treatment also reduced (P less than 0.01) the amplitudes of FSH, LH, and alpha-subunit secretory pulses by 18%, 26%, and 41%, respectively. These data indicate that a portion of the negative feedback action of T is at the pituitary to regulate gonadotropin subunit gene expression. Our data reveal two opposing effects of T on FSH beta mRNA: a stimulatory action, which is GnRH independent, and an inhibitory effect, which is related to the actions of GnRH. These divergent actions of T represent one mechanism through which FSH and LH are differentially regulated.  相似文献   

8.
In order to reveal the action of gonadotropin-releasing hormone (GnRH) on the synthesis of gonadotropins in the pituitary gland of castrated rats, passive immunization to GnRH designed to block the activity of GnRH was performed. The levels of prolactin mRNA in castrated and rabbit anti-GnRH serum (RAGnRH)-treated rats decreased, whereas TSH beta mRNA showed no statistically significant change. In contrast, mRNAs encoding common alpha, LH beta and FSH beta were increased 2.7-, 1.7- and 1.5-fold, respectively, by castration. These elevated mRNA levels of gonadotropin subunits in castrated rats well explain the increased hormone levels in serum and in the pituitary. Two days later, a single administration of RAGnRH to the castrated rats significantly suppressed the mRNA levels to 2.0-fold for alpha, 1.2-fold for LH beta and 1.1-fold for FSH beta relative to the respective control values. These results showed that the two gonadotropin beta genes respond more rapidly to GnRH action that the common alpha gene.  相似文献   

9.
In vivo regulation of FSH synthesis by inhibin and activin   总被引:1,自引:0,他引:1  
The effect of a single sc injection of the gonadal peptide, recombinant human activin A (rhActivin A), on gonadotropin synthesis and secretion was examined in adult and immature male and female rats and the effect of recombinant human inhibin A (rhInhibin A) was examined in adult male rats. Pituitary FSH beta, LH beta and alpha messenger RNA (mRNA) levels were determined by blot hybridization. Trunk blood was collected to measure serum FSH levels. Treatment with rhInhibin A (100 micrograms/kg) resulted in a decrease in FSH beta mRNA to 2% of controls levels 6 h after injection. FSH beta mRNA levels started to rebound at 10 h, but were still significantly lower than vehicle-treated controls. Serum FSH levels were significantly reduced at 2 h and were reduced further at 6 and 10 h. There were no significant changes in alpha and LH beta mRNA levels. RhActivin A, at the highest dose (500 micrograms/kg), in immature male rats had only a modest effect (1.2- and 1.3-fold increase) on FSH beta mRNA levels and FSH secretion, respectively, at 2 h. No increase in FSH synthesis and FSH secretion was observed in adult male rats. In contrast, both immature and adult-ovariectomized E2 implanted females showed a robust response to rhActivin A. In immature females, 2 h after rhActivin A (100 and 500 micrograms/kg) administration, FSH beta mRNA levels were elevated 2.0- and 2.2-fold. At this time serum FSH was also elevated. At 6 and 10 h rhActivin A significantly reduced FSH beta mRNA levels from vehicle-treated controls. In contrast, FSH secretion was elevated at 6 h and returned to baseline at 10 h. Administration of rhActivin A (500 micrograms/kg) to adult, ovariectomized-E2 females resulted in a significant increase in FSH beta mRNA levels and FSH secretion at 2 and 6 h. There were no significant changes in alpha and LH beta mRNA levels in either males or females. Thus, these in vivo studies have shown that rhInhibin A can inhibit FSH beta mRNA levels and FSH secretion in the adult male rat. RhActivin A stimulates FSH synthesis and secretion in the immature and adult ovariectomized-E2 females, but has little or no effect in immature and adult males. Hence, there is a sexual dimorphic response to rhActivin A in vivo in the rat.  相似文献   

10.
The postnatal development of the gonadal negative feedback control of gonadotropins was studied in female rats. Neonatal (5-day-old) and randomly cycling young (60-day-old) and more mature (180-day-old) adult rats were ovariectomized, and half of them received Silastic implants containing the synthetic estrogen, diethylstilbestrol. The neonatal rats were killed 5, 10 or 15 days, and the adult rats 7 days after the operation. Age-matched and sham-operated animals served as controls. There were no statistically significant responses of serum LH or FSH concentrations or of the pituitary gonadotropin subunit mRNA levels to ovariectomy at any of the neonatal ages. A marked increase (p < 0.01) after ovariectomy was seen in serum gonadotropins and in the cognate mRNA levels at both adult ages. In spite of the weak feedback response of the neonatal rats to ovariectomy, diethylstilbestrol suppressed the basal pituitary gonadotropin concentrations and the specific LH and FSH beta-chain mRNAs (p < 0.01-0.05). These results demonstrate that the gonadal negative feedback regulation of gonadotropin synthesis and secretion is not fully developed in neonatal and prepubertal female rats before 20 days of age. This is probably due to the steroidogenic quiescence of the ovaries in early life. However, the capability of the pituitary to respond to negative estrogen feedback has developed in the neonatal female, as demonstrated by the suppressive effects of diethylstilbestrol treatment on gonadotropin secretion.  相似文献   

11.
Effects of recombinant human inhibin (rh inhibin) and testosterone on follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion and mRNA levels of gonadotropin subunits were investigated in superfused male rat pituitary cell cultures. During superfusion, the cells were stimulated with gonadotropin-releasing hormone (GnRH) pulses (10 nM, 6 min/h) and exposed to rh inhibin (2 ng/ml) and/or testosterone (10 nM) for up to 20 h. The concentrations of FSH and LH were measured in effluent media by radioimmunoassay (RIA), and subunit mRNAs were determined by Northern blot hybridizations using rat FSH beta, LH beta and alpha genomic and cDNA probes. Rh inhibin suppressed the secretion of FSH (30-40% of control) and the secretion of LH to 50-60% of control, but inhibited only FSH beta mRNA (to non-detectable levels). Testosterone alone suppressed the release of LH to 50% of control, whereas FSH release was increased to 130-160% (P less than 0.05) of control. This increase was due to higher interpulse values without significant changes in the pulse amplitude. Also FSH beta mRNA level was increased (1.5-fold, P less than 0.05) but only after 17-20 h of treatment. On the other hand, testosterone had no effect on LH beta and alpha subunit mRNA levels. Testosterone in combination with rh inhibin showed an inhibitory effect on LH beta mRNA; however, the pattern of LH release was not significantly different from that observed with rh inhibin or testosterone alone. Combined effects of testosterone and rh inhibin on FSH secretion and FSH beta mRNA were similar to those observed with rh inhibin alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Activation of the stress axis by glucocorticoids suppresses reproductive function in many species. Here, we performed studies to determine whether these effects are mediated at the level of the hypothalamus or pituitary or both, and to dissect the underlying molecular mechanisms, using two established rodent models. Rats were treated either chronically or acutely with glucocorticoids, and circulating gonadotropins, GnRH mRNA levels, and gonadotropin subunit mRNAs levels were measured. In model I, chronic treatment for 6 days with corticosterone (CORT) was used in adult intact male rats. CORT caused a significant decrease in serum LH but not FSH secretion compared to vehicle. Whereas pituitary LHbeta and FSHbeta mRNA levels were not affected by CORT treatment, hypothalamic GnRH mRNA was significantly decreased by 35-40%. In model II, acute blockade of the estradiol (E(2))-induced gonadotropin surge by dexamethasone (DEX) was used in 28-day-old female rats. DEX treatment resulted in substantially lower serum LH and FSH concentrations compared to vehicle, although DEX had no effect on GnRH mRNA and LHbeta mRNA levels. By contrast, FSHbeta mRNA levels were about 14-fold lower in DEX-treated females. Taken together, these results indicate that suppression of gonadotropin levels by chronic elevations in glucocorticoids/stress may be accounted for in part by suppression of GnRH mRNA levels, whereas short-term glucocorticoid treatment to block the gonadotropin surge appears to involve other mechanisms including decreased FSHbeta mRNA levels.  相似文献   

13.
M R Lalloz  A Detta  R N Clayton 《Endocrinology》1988,122(4):1681-1688
Pre- and postcastration changes in LH beta and common alpha mRNAs were correlated with pituitary and serum LH levels in two different species after abolition of pituitary stimulation by GnRH. A GnRH antagonist (GnRH-ANT) was used to block gonadotroph GnRH receptors in male rats, and a GnRH antiserum (GnRH-AS) was used to inhibit GnRH stimulation of female and male mouse and male rat pituitaries. The postcastration increases in LH beta and common alpha mRNA levels (2- and 3.5-fold, respectively) were abolished in male rats after 7 days of continuous GnRH-ANT infusion. The postcastration increases in LH beta and common alpha mRNA in female (1.9- and 2.2-fold respectively) and male mice (1.4- and 3.6-fold, respectively) were also prevented after daily sc injection of GnRH-AS, as were the rises in LH beta (3-fold) and common alpha (4-fold) in castrated male rats. The pituitary LH content (postgonadectomy) was no different from intact control levels in all experimental animals regardless of treatment, while the increase in serum LH concentration in rats (7- and 8-fold) and in female (4.8-fold) and male mice (9.8-fold) was prevented by both GnRH-ANT and GnRH-AS administration. In intact rats treated with GnRH-ANT the LH beta mRNA level decreased (57%) while the common alpha mRNA level was unaffected after 7 days. Neither pituitary nor serum LH levels were altered in intact rats or mice after appropriate treatments. We conclude that endogenous GnRH is required for the postcastration rise of both LH beta and common alpha-subunit mRNA levels in rats and mice.  相似文献   

14.
We investigated whether the increase in the gonadotrophin response to gonadotrophin-releasing hormone (GnRH) during the last days of pregnancy and the occurrence of parturition on day 22 of pregnancy in rats are due to the increase in the plasma concentrations of oestradiol-17 beta after luteolysis, which occurs around day 20. In a first series of experiments we studied the effects of s.c. implantation of two capsules containing oestradiol on basal and GnRH-stimulated secretion of LH and FSH before and after luteolysis. Before luteolysis, ovariectomy increased basal LH and FSH; oestradiol treatment prevented this increase partly (FSH) or completely (LH). Ovariectomy also lowered the LH response to the infusion of GnRH (100 ng/h). Oestradiol treatment on the other hand, increased the LH and FSH responses of both intact and ovariectomized rats above the level in intact non-treated control rats. After luteolysis, ovariectomy increased basal FSH only. Treatment with oestradiol did not prevent the increase in basal FSH and ovariectomy diminished the LH response to GnRH infusion. Oestradiol treatment maintained the LH response in ovariectomized rats at the control level and increased the FSH responses of both intact and ovariectomized rats to a higher level than in control rats. Furthermore, the LH and FSH responses of the oestradiol-treated groups of intact and ovariectomized rats were higher after luteolysis than before. In a second series of experiments two capsules containing progesterone were s.c. implanted before or after luteolysis. Progesterone treatment suppressed the plasma concentration of oestradiol and the gonadotrophin responses to infusion of GnRH on the expected day of parturition in both groups of rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
B Attardi  J Vaughan  W Vale 《Endocrinology》1992,130(1):557-559
This study investigated the role of endogenous inhibin in regulating FSH beta mRNA levels subsequent to the gonadotropin surge in the immature, estradiol (E2)-treated female rat. Rats which undergo FSH surges on day 29 have low to undetectable levels of FSH beta mRNA at 0900 h on day 30, whereas those treated simultaneously with E2 and progesterone (P) implants to block these surges have considerably higher levels of FSH beta mRNA. In view of the profound inhibitory effect of inhibin on FSH beta mRNA, we examined the possibility that increased inhibin secretion is responsible for the decline in FSH beta mRNA levels on the morning after the FSH surge by immunoneutralization of endogenous inhibin. Twenty-eight day-old rats which received E2 and blank (B1) or P implants were injected iv with 0.4 ml of a potent anti-rat inhibin serum (anti I alpha, prepared in sheep against rat inhibin alpha (1-26)-Tyr27 coupled to human alpha-globulins) or normal sheep serum at 1700 to 1830 h on day 29 and were killed at 0900 h on day 30. Animals which received the inhibin antiserum showed significantly (P less than 0.001) elevated serum FSH levels (22.9 +/- 1.9 ng/ml [E2 + B1] and 17.1 +/- 0.6 ng/ml [E2 + P]) compared to those which received normal serum (4.4 +/- 0.1 [E2 + B1] and 4.2 +/- 0.1 [E2 + P]). Serum LH was undetectable (less than 0.6 ng/ml) in all groups. Free glycoprotein alpha-subunit was also increased (P less than 0.001) by antiserum to inhibin in E2 + B1-treated rats but was significantly suppressed by P after injection of either normal serum or anti I alpha. Total pituitary RNA was extracted and hybridized to cDNA probes for rat FSH beta, LH beta, and the common alpha-subunit by Northern blot analysis; RNA levels were normalized with beta-actin or cyclophilin probes. As expected, in rats which received normal serum, FSH beta mRNA levels were about 4-fold higher after treatment with E2 + P implants than after treatment with E2 + B1 implants. However, injection with anti-inhibin serum resulted in a striking elevation of FSH beta mRNA levels: 13-fold in animals treated with E2 + B1 implants and 5-fold in animals treated with E2 + P implants. There were no significant differences in levels of LH beta or alpha-subunit mRNAs between rats which received anti-inhibin or normal serum although there was a 30-40% decrease in alpha mRNA after P treatment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Pituitary GnRH receptor (GnRH-R) levels and LH secretion are suppressed in the lactating rat. To determine if LH synthesis is also inhibited, we have measured LH subunit mRNA levels in the pituitary of lactating rats. We have also examined the temporal relationship among restoration of GnRH-R, LH secretion, and LH synthesis after withdrawing the sensory stimulus of suckling. Pituitary alpha-subunit and LH beta mRNA levels were sharply reduced on day 10 of lactation in both intact and ovariectomized (OVX) animals compared with those in cycling diestrous rats or OVX controls. Removal of the suckling stimulus from OVX animals led to significant increases in alpha-subunit and LH beta mRNA levels by 24 h. Upon removal of the suckling stimulus from intact rats, alpha-subunit mRNA levels were restored by 48 h, but LH beta mRNA levels did not return to diestrous levels until 72 h. Pituitary GnRH-R levels were clearly up-regulated within 1 day after pup removal. Some LH pulses were observed by 48 h, but consistent plasma LH pulses were not detected until 72 h. When pulsatile GnRH was administered during the 24 h after pup removal from intact rats, the regimen of pulsatile GnRH was successful in inducing LH secretion; however, the restoration of pulsatile LH was not accompanied by increases in alpha-subunit and LH beta mRNA levels. The present studies provide further evidence to support the hypothesis that during lactation, the suppression of pituitary gonadotroph function is mainly due to the loss of hypothalamic GnRH secretion. Our data also show that 1) the restoration of GnRH-R alone is not sufficient to activate LH subunit mRNA and LH secretion; 2) the normal restoration of pulsatile LH secretion and increases in LH subunit mRNA are temporally correlated, as increases in LH secretion appear to precede increases in LH subunit mRNA; and 3) the restoration of pituitary LH subunit mRNA levels and pulsatile LH secretion took longer in the intact rat than in the OVX rat, suggesting that ovarian steroids may play a role in the inhibitory effect of lactation.  相似文献   

17.
18.
Pituitary gonadotropin responses to GnRH were measured using both in vitro and in vivo methods to investigate the contribution of increased pituitary responsiveness to GnRH in generating the rise in serum gonadotropin levels after gonadectomy. We compared in vitro GnRH-stimulated secretion rates of LH and FSH of perifused pituitaries obtained from intact female (metestrous) and male rats, and rats gonadectomized 2 or 6 days earlier. GnRH pulses (peak amplitude, 50, 500, or 5000 ng/ml; frequency, one per h) caused significant dose-dependent increases in gonadotropin secretion rates. However, gonadectomy resulted in decreased secretion rates of LH and FSH. Similar findings were observed for in vivo serum gonadotropin responses to a single iv injection of GnRH (males received 250 or 1000 ng; females received 1000 or 4000 ng). These results indicate that increases in serum LH and FSH levels 2 or 6 days after gonadectomy are not mediated by increased responses of the rat anterior pituitary to GnRH. We have also shown that perifused pituitaries from proestrous and diestrous rats exhibit significantly higher GnRH-stimulated gonadotropin secretion rates than pituitaries from metestrous and estrous rats. Therefore, we tested the effect of in vivo pretreatment with 17 beta-estradiol (E2) or testosterone (T) in both female and male rats on the in vitro secretion of LH and FSH. Rats were gonadectomized and received a sc Silastic implant containing E2, T, or no steroid as a control 6 days before perifusion. Perifused pituitaries received pulses of GnRH (peak amplitude, 50 ng/ml; frequency, one per h). In vivo pretreatment with E2, but not T, caused significant increases of in vitro LH and FSH secretion rates for pituitaries of both sexes. Overall, our data demonstrate that gonadectomy does not cause increases in LH and FSH secretory responses to GnRH, and that prior exposure to E2 in vivo has a major stimulatory influence on the in vitro secretion of both gonadotropins regardless of sex.  相似文献   

19.
M R Lalloz  A Detta  R N Clayton 《Endocrinology》1988,122(4):1689-1694
In this study we investigated changes in steady state cytoplasmic mRNA levels for LH subunits in pituitaries of male rats desensitized by continuous infusion of GnRH in vivo. Seven days of GnRH infusion (340 micrograms/day) reduced (P less than 0.01) LH beta mRNA levels in intact adult male rats and prevented the LH beta mRNA rise observed after castration. In contrast, common alpha mRNA doubled (P less than 0.05) in intact rats, and the elevated alpha mRNA after 7 days castration was unchanged. Serum and pituitary LH levels were suppressed below values of intact controls. Fourteen days of GnRH infusion (290 micrograms/day) further reduced LH beta mRNA levels in both intact and castrated male rat pituitaries. alpha mRNA levels in intact rat pituitaries were unchanged by 14 days of GnRH infusion, while in castrated rats there was a 23% (P less than 0.05) decrease, though values were still twice those of intact controls. As at 7 days, serum and pituitary LH were suppressed. Infusion of a superagonist analog (Buserelin) at a dose of 14 micrograms/day for 28 days reduced LH beta mRNA to 15% of intact control values in both castrated and intact rats. Common alpha mRNA was significantly (P less than 0.05) increased in intact rats and reduced by 13% (P less than 0.05) in castrates by superagonist infusion. These results were similar to those produced by 20- to 30-fold higher doses of native GnRH. GnRH and agonist analog effects were specific since no changes were observed in other mRNA species (GH, PRL, actin). These results indicate that in GnRH-desensitized gonadotropes LH beta gene expression is inhibited, and this may largely explain the reduced LH biosynthesis. However, there is a differential effect of continuous GnRH or agonist analog treatment on LH subunit gene expression, with a time-dependent stimulation of common alpha gene expression in intact rats. This may be caused by a stimulatory interaction between GnRH and progestagens at the level of the gonadotrope. Thus, common alpha gene expression is less tightly coupled than that of LH beta to GnRH action.  相似文献   

20.
We have previously shown that a pulsatile gonadotrophin-releasing hormone (GnRH) stimulus can increase steady-state levels of alpha and LH-beta subunit mRNAs in the male rat pituitary. Since alpha subunit is produced in both thyrotroph and gonadotroph cells, the effect of GnRH specifically on gonadotroph alpha gene expression is uncertain. To address this tissue, adult male rats were given injections of tri-iodothyronine (T3; 20 micrograms/100 g body wt, i.p.) daily for 8 days (day 8 = day of death) in order to decrease thyrotroph alpha mRNA levels (+T3 group). Saline injections (i.p.) were given to control animals (-T3group). Three days before GnRH administration, the animals were castrated and testosterone implants inserted s.c., to inhibit endogenous GnRH secretion. GnRH pulses (25 ng/pulse; 30-min interval) were given to freely moving animals (saline pulses to controls) via an atrial cannula for 12,24 or 48 h. Serum LH and FSH were measured before and 20 min after the last GnRH pulse. Pituitary RNA was extracted and alpha, LH-beta, FSH-beta and prolactin mRNA levels were determined by dotblot hybridization using 32P-labelled cDNA probes. Castration and testosterone replacement reduced alpha and LH-beta mRNA levels by 30 and 40% respectively, compared with levels in untreated intact males, but did not decrease FSH-beta concentrations. T3 administration further decreased alpha mRNA to 30% of values seen in intact males, but LH-beta mRNA levels were unchanged. FSH-beta mRNA concentrations were decreased by 23% in T3-treated rats (P less than 0.05 vs intact controls).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号