首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Retinoic acid (RA), the active derivative of vitamin A, is involved in various developmental and homeostatic processes. To define whether certain developmental events are particularly sensitive to a decrease in embryonic RA levels, we generated mice bearing a hypomorphic allele of the RA-synthesizing enzyme Raldh2. The resulting mutant mice, which die perinatally, exhibit the features of the human DiGeorge syndrome (DGS) with heart outflow tract septation defects and anomalies of the aortic arch-derived head and neck arteries, laryngeal-tracheal cartilage defects, and thymus/parathyroid aplasia or hypoplasia. Analysis of Raldh2 hypomorph embryos reveal selective defects of the posterior (third to sixth) branchial arches, including absence or hypoplasia of the corresponding aortic arches and pharyngeal pouches, and local down-regulation of RA-target genes. Thus, a decreased level of embryonic RA (through genetic and/or nutritional causes) could represent a major modifier of the expressivity of human 22q11del-associated DiGeorge/velocardiofacial syndromes and, if severe enough, could on its own lead to the clinical features of the DiGeorge syndrome.  相似文献   

2.
Retinoic acid (RA) has several established functions during cardiac development, including actions in the fetal epicardium required for myocardial growth. An open question is if retinoid effects are limited to growth factor stimulation pathway(s) or if additional actions on uncommitted progenitor/stem populations might drive cardiac differentiation. Here we report the dual effects of RA deficiency on cardiac growth factor signaling and progenitor/stem biology using the mouse retinaldehyde dehydrogenase 2 (Raldh2) knockout model. Although early heart defects in Raldh2−/− embryos result from second-heart-field abnormalities, it is unclear whether this role is transient or whether RA has sustained effects on cardiac progenitors. To address this, we used transient maternal RA supplementation to overcome early Raldh2−/− lethality. By embryonic day 11.5–14.5, Raldh2−/− hearts exhibited reduced venticular compact layer outgrowth and altered coronary vessel development. Although reductions in Fgf2 and target pERK levels occurred, no alterations in Wnt/β-catenin expression were observed. Cell proliferation is increased in compact zone myocardium, whereas cardiomyocyte differentiation is reduced, alterations that suggest progenitor defects. We report that the fetal heart contains a reservoir of stem/progenitor cells, which can be isolated by their ability to efflux a fluorescent dye and that retinoid signaling acts on this fetal cardiac side population (SP). Raldh2−/− hearts display increased SP cell numbers, with selective increases in expression of cardiac progenitor cell markers and reduced differentiation marker levels. Hence, although lack of RA signaling increases cardiac SP numbers, simultaneous reductions in Fgf signaling reduce cardiomyocyte differentiation, possibly accounting for long-term defects in myocardial growth.  相似文献   

3.
4.
5.
6.
The retinoic acid (RA) signal, produced locally from vitamin A by retinaldehyde dehydrogenase (Raldh) and transduced by the nuclear receptors for retinoids (RA receptor and 9-cis-RA receptor), is indispensable for ontogenesis and homeostasis of numerous tissues. We demonstrate that Raldh3 knockout in mouse suppresses RA synthesis and causes malformations restricted to ocular and nasal regions, which are similar to those observed in vitamin A-deficient fetuses and/or in retinoid receptor mutants. Raldh3 knockout notably causes choanal atresia (CA), which is responsible for respiratory distress and death of Raldh3-null mutants at birth. CA is due to persistence of nasal fins, whose rupture normally allows the communication between nasal and oral cavities. This malformation, which is similar to isolated congenital CA in humans and may result from impaired RA-controlled down-regulation of Fgf8 expression in nasal fins, can be prevented by a simple maternal treatment with RA.  相似文献   

7.
Tbx1 is the candidate gene of DiGeorge syndrome and is required in humans and mice for the development of the cardiac outflow tract (OFT) and aortic arch arteries. Loss of function mutants present with reduced cell proliferation and premature differentiation of cardiac progenitor cells of the second heart field (SHF). Tbx1 regulates Fgf8 expression hence the hypothesis that the proliferation impairment may contribute to the heart phenotype of mutants. Here we show that forced Fgf8 expression modifies and partially rescues the OFT septation defects of Tbx1 mutants but only if there is some residual expression of Tbx1. This genetic experiment suggests that Tbx1, directly or indirectly, affects tissue response to Fgf8. Indeed, Tbx1−/− mouse embryonic fibroblasts were unable to respond to Fgf8 added to the culture media and showed defective response of Erk1/2 and Rsk1. Our data suggest a coordinated pathway modulating Fgf8 ligand expression and tissue response to it in the SHF.  相似文献   

8.
9.
10.
Two isomers of retinoic acid (RA) may be necessary as ligands for retinoid signaling: all-trans-RA for RA receptors (RARs) and 9-cis-RA for retinoid X receptors (RXRs). This was explored by using retinaldehyde dehydrogenase (Raldh)2-/- mouse embryos lacking mesodermal RA synthesis that display early growth arrest unless rescued by all-trans-RA administration. Because isomerization of all-trans-RA to 9-cis-RA can occur, it is unclear whether both ligands are needed for rescue. We show here that an RAR-specific ligand can rescue Raldh2-/- embryos as efficiently as all-trans-RA, whereas an RXR-specific ligand has no effect. Further, whereas all-trans-RA was detected in embryos, 9-cis-RA was undetectable unless a supraphysiological dose of all-trans-RA was administered, revealing that 9-cis-RA is of pharmacological but not physiological significance. Because 9-cis-RA is undetectable and unnecessary for Raldh2-/- rescue, and others have shown that 4-oxo-RA is unnecessary for mouse development, all-trans-RA emerges as the only ligand clearly necessary for retinoid receptor signaling.  相似文献   

11.
Asymmetric expression of Sonic hedgehog (Shh) in Hensen's node of the chicken embryo plays a key role in the genetic cascade that controls left-right asymmetry, but its involvement in left-right specification in other vertebrates remains unclear. We show that mouse embryos lacking Shh display a variety of laterality defects, including pulmonary left isomerism, alterations of heart looping, and randomization of axial turning. Expression of the left-specific gene Lefty-1 is absent in Shh(-/-) embryos, suggesting that the observed laterality defects could be the result of the lack of Lefty-1. We also demonstrate that retinoic acid (RA) controls Lefty-1 expression in a pathway downstream or parallel to Shh. Further, we provide evidence that RA controls left-right development across vertebrate species. Thus, the roles of Shh and RA in left-right specification indeed are conserved among vertebrates, and the Shh and RA pathways converge in the control of Lefty-1.  相似文献   

12.
Hop is an unusual homeobox gene expressed in the embryonic and adult heart. Hop acts downstream of Nkx2-5 during development, and Nkx2-5 mutations are associated with cardiac conduction system (CCS) defects. Inactivation of Hop in the mouse is lethal in half of the expected null embryos. Here, we show that Hop is expressed strongly in the adult CCS. Hop-/- adult mice display conduction defects below the atrioventricular node (AVN) as determined by invasive electrophysiological testing. These defects are associated with decreased expression of connexin40. Our results suggest that Hop functions in the adult CCS and demonstrate conservation of molecular hierarchies between embryonic myocardium and the specialized conduction tissue of the mature heart.  相似文献   

13.
Vitamin A is required for female reproduction. Rodent uterine cells are able to synthesize retinoic acid (RA), the active vitamin A derivative, and express RA receptors. Here, we report that two RA-synthesizing enzymes [aldehyde dehydrogenase 1 (Aldh1) and retinaldehyde dehydrogenase 2 (Raldh2)] and a cytochrome P450 (Cyp26) that metabolizes vitamin A and RA into more polar metabolites exhibit dynamic expression patterns in the mouse uterus, both during the ovarian cycle and during early pregnancy. Aldh1 expression is up-regulated during diestrus and proestrus in the uterine glands, whereas Raldh2 is highly induced in the endometrial stroma in metestrus. Cyp26 expression, which is not detectable during the normal ovarian cycle, is strongly induced in the uterine luminal epithelium, 24 h after human CG hormonal administration. Raldh2 stromal expression also strongly responds to gonadotropin (PMSG and human CG) induction. Furthermore, Raldh2 expression can be hormonally induced in stromal cells of the vagina and cervix. All three enzymes exhibit differential expression profiles during early pregnancy. Aldh1 glandular expression is sharply induced at 2.5 gestational days, whereas Raldh2 stromal expression increases more steadily until the implantation phase. Cyp26 epithelial expression is strongly induced between 3.5-4.5 gestational days, i.e. when the developing blastocysts colonize the uterine lumen. These data suggest a need for precise regulation of RA synthesis and/or metabolism, in both cycling and pregnant uterus.  相似文献   

14.
The effect of ethanol on early avian cardiovascular development was investigated in stage 8 quail embryos grown in culture for 24 hr. When the culture medium contained 1 % ethanol, 50% of the embryos developed abnormalities of the cardiovascular system, some of which resembled vitamin A deficiency. Only 15% of the embryos grown in control media developed abnormalities attributed to the manipulation of the embryo. When all-trans-retinoic acid, the active form of vitamin A, was added at 10−8 M to the ethanol-containing medium, the cardiovascular development was similar to that of untreated controls. Inclusion of 4-methylpyrarole and citral, enzyme inhibitors for the conversion of retinol to retinoic acid, produced cardiovascular abnormalities in embryos similar to those observed in vitamin A deficiency. These abnormalities were partially prevented by the presence of 10−8 M all- trans -retinoic acid in the medium. lmmunohistochemical studies using antibodies specific for the heart muscle myosin heavy chain (MF-20) and quail endothelial cells (QH-1) revealed that looping of the heart of ethanol-treated embryos was prevented, and the embryonal circulation had no or minimal vascular connections to the extraembryonic circulation. Our studies provide indirect evidence that ethanol is producing vitamin A deficiency during embryonic cardiovascular development and that these effects are specifically prevented by the presence of retinoic acid. These findings may explain some of the symptoms of fetal alcohol syndrome.  相似文献   

15.
Loss-of-function mutations in the human ERG1 potassium channel (hERG1) frequently underlie the long QT2 (LQT2) syndrome. The role of the ERG potassium channel in cardiac development was elaborated in an in vivo model of a homozygous, loss-of-function LQT2 syndrome mutation. The hERG N629D mutation was introduced into the orthologous mouse gene, mERG, by homologous recombination in mouse embryonic stem cells. Intact homozygous embryos showed abrupt cessation of the heart beat. N629D/N629D embryos die in utero by embryonic day 11.5. Their developmental defects include altered looping architecture, poorly developed bulbus cordis, and distorted aortic sac and branchial arches. N629D/N629D myocytes from embryonic day 9.5 embryos manifested complete loss of I(Kr) function, depolarized resting potential, prolonged action potential duration (LQT), failure to repolarize, and propensity to oscillatory arrhythmias. N629D/N629D myocytes manifest calcium oscillations and increased sarcoplasmic reticulum Ca(+2) content. Although the N629D/N629D protein is synthesized, it is mainly located intracellularly, whereas +/+ mERG protein is mainly in plasmalemma. N629D/N629D embryos show robust apoptosis in craniofacial regions, particularly in the first branchial arch and, to a lesser extent, in the cardiac outflow tract. Because deletion of Hand2 produces apoptosis, in similar regions and with a similar final developmental phenotype, Hand2 expression was evaluated. Robust decrease in Hand2 expression was observed in the secondary heart field in N629D/N629D embryos. In conclusion, loss of I(Kr) function in N629D/N629D cardiovascular system leads to defects in cardiac ontogeny in the first branchial arch, outflow tract, and the right ventricle.  相似文献   

16.
17.
Gene targeting in the mouse has become a standard approach, yielding important new insights into the genetic factors underlying cardiovascular development and disease. However, we still have very limited understanding of how mutations affect developing cardiovascular function, and few studies have been performed to measure altered physiological parameters in mouse mutant embryos. Indeed, although in utero lethality due to embryonic heart failure is one of the most common results of gene targeting experiments in the mouse, the underlying physiological mechanisms responsible for embryonic demise remain elusive. Using in utero ultrasound biomicroscopy (UBM), we studied embryonic day (E) 10.5 to 14.5 NFATc1-/- embryos and control littermates. NFATc1-/- mice, which lack outflow valves, die at mid-late gestation from presumed defects in forward blood flow with resultant heart failure. UBM showed increasing abnormal regurgitant flow in the aorta and extending into the embryonal-placental circulation, which was evident after E12.5 when outflow valves normally first develop. Reduced NFATc1-/- net volume flow and diastolic dysfunction contributed to heart failure, but contractile function remained unexpectedly normal. Among 107 NFATc1-/- embryos imaged, only 2 were observed to be in acute decline with progressive bradyarrhythmia, indicating that heart failure occurs rapidly in individual NFATc1-/- embryos. This study is among the first linking a specific physiological phenotype with a defined genotype, and demonstrates that NFATc1-/- embryonic heart failure is a complex phenomenon not simply attributable to contractile dysfunction.  相似文献   

18.
It is still controversial whether the bone-derived hormone fibroblast growth factor-23 (FGF23) has additional physiological functions apart from its well-known suppressive actions on renal phosphate reabsorption and vitamin D hormone synthesis. Here we analyzed premature aging, mineral homeostasis, carbohydrate metabolism, and fat metabolism in 9-month-old male wild-type (WT) mice, vitamin D receptor mutant mice (VDR(Δ/Δ)) with a nonfunctioning vitamin D receptor, and Fgf23?/?/VDR(Δ/Δ) compound mutant mice on both a standard rodent chow and a rescue diet enriched with calcium, phosphorus, and lactose. Organ atrophy, lung emphysema, and ectopic tissue or vascular calcifications were absent in compound mutants. In addition, body weight, glucose tolerance, insulin tolerance, insulin secretory capacity, pancreatic beta cell volume, and retroperitoneal and epididymal fat mass as well as serum cholesterol and triglycerides were indistinguishable between vitamin D receptor and compound mutants. In contrast to VDR(Δ/Δ) and Fgf23?/?/VDR(Δ/Δ) mice, which stayed lean, WT mice showed obesity-induced insulin resistance. To rule out alopecia and concomitantly elevated energy expenditure present in 9-month-old VDR(Δ/Δ) and Fgf23?/?/VDR(Δ/Δ) mice as a confounding factor for the lacking effect of Fgf23 deficiency on fat mass, we analyzed whole-body composition in WT, Fgf23?/?, VDR(Δ/Δ), and Fgf23?/?/VDR(Δ/Δ) mice at the age of 4 wk, when the coat in VDR(Δ/Δ) mice is still normal. Whole-body fat mass was reduced in Fgf23?/? mice but almost identical in WT, VDR(Δ/Δ), and Fgf23?/?/VDR(Δ/Δ) mice. In conclusion, our data indicate that Fgf23 has no molecular vitamin D-independent role in aging, insulin signaling, or fat metabolism in mice.  相似文献   

19.
20.
Semilunar valve malformations are common human congenital heart defects. Bicuspid aortic valves occur in 2-3% of the population, and pulmonic valve stenosis constitutes 10% of all congenital heart disease in adults (Brickner et al., 2000) [1]. Semilunar valve defects cause valve regurgitation, stenosis, or calcification, leading to endocarditis or congestive heart failure. These complications often require prolonged medical treatment or surgical intervention. Despite the medical importance of valve disease, the regulatory pathways governing semilunar valve development are not entirely clear. In this report we investigated the spatiotemporal role of calcineurin/Nfatc1 signaling in semilunar valve development. We generated conditional knockout mice with calcineurin gene disrupted in various tissues during semilunar valve development. Our studies showed that calcineurin/Nfatc1 pathway signals in the secondary heart field (SHF) but not in the outflow tract myocardium or neural crest cells to regulate semilunar valve morphogenesis. Without SHF calcineurin/Nfatc1 signaling, the conal endocardial cushions-the site of prospective semilunar valve formation--first develop and then regress due to apoptosis, resulting in a striking phenotype with complete absence of the aortic and pulmonic valves, severe valve regurgitation, and perinatal lethality. This role of calcineurin/Nfatc1 signaling in the SHF is different from the requirement of calcineurin/Nfatc1 in the endocardium for semilunar valve formation (Chang et al., 2004) [2], indicating that calcineurin/Nfatc1 signals in multiple tissues to organize semilunar valve development. Also, our studies suggest distinct mechanisms of calcineurin/Nfat signaling for semilunar and atrioventricular valve morphogenesis. Therefore, we demonstrate a novel developmental mechanism in which calcineurin signals through Nfatc1 in the secondary heart field to promote semilunar valve morphogenesis, revealing a new supportive role of the secondary heart field for semilunar valve formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号