首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Mechanical failure of poly(methyl methacrylate) (PMMA) bone cement is linked to failure of cemented total joint prostheses. An essential step to minimize, if not eliminate, cement fracture is to understand the material characteristics controlling fracture resistance. At least four phases of bone cement can be identified that may affect the damage zone formation: pre-polymerized beads, interbead matrix polymer, BaSO4, and porosity. Gel permeation chromatography (GPC) was used to determine the molecular weight (MW) distributions of the two polymer phases. Mechanical testing, scanning electron microscopy and light microscopy were used to analyse fracture mechanisms. Fatigue crack propagation of bone cement was distinctly different from rapid crack propagation. Microcracks defined the damage zone for fatigue fracture. The microcracks developed in the interbead matrix and not through the pre-polymerized beads. Light microscopy revealed evidence of craze formation on surfaces of fractured beads during rapid fracture, but not on fatigue surfaces. GPC analysis indicated an increase in MW from the bead phase alone to the fully cured bone cement, indicating a greater MW in the interbead matrix polymer. Increases of 36 and 176% were measured for two different bone cements, but the bulk of the polymer has an MW of less than 1 × 106. Three factors were suggested to explain why the microcracks seem to prefer to grow in the interbead matrix: the presence of BaSO4, shrinkage during the curing process, and the different polymerization processes of the bead and the interbead polymers. Pores had an affect on the microcrack formation as well, and did not need to be directly in front of the crack tip to interact with the damage zone. The pores seemed to act as nucleation sites for microcracks. The porosity-microcrack nucleation interaction may explain and reconcile the apparently disparate results concerning the effect of porosity on fracture toughness and fatigue life. Porosity may, however, also provide positive contributions to the fracture properties of bone cement by dispersing the energy at the crack tip, forming a larger damage zone, and effectively blunting the crack. The crack propagation mechanisms revealed by this research indicated the importance of microstructure in the fatigue failure of PMMA.  相似文献   

2.
In all but one of the acrylic bone cement brands used in cemented arthroplasties, N,N-dimethyl-4-toluidine (DMPT) serves as the activator of the polymerization reaction. However, many concerns have been raised about this activator, all related to its toxicity. Thus, various workers have assessed a number of alternative activators, with two examples being N,N-dimethylamino-4-benzyl laurate (DMAL) and N,N-dimethylamino-4-benzyl oleate (DMAO). The results of limited characterization of cements that contain DMAL or DMAO have been reported in the literature. The present work is a comprehensive comparison of cements that contain one of these three activators, in which the values of a large array of their properties were determined. These properties range from the setting time and maximum exotherm temperature of the curing cement to the variation of the loss elastic modulus of the cured cement with frequency of the applied indenting force in dynamic nanoindentation tests. The present results, taken in conjunction with those presented in previous reports by the present authors and co-workers on other properties of these cements, indicate that both DMAL and DMPT are suitable alternatives to DMPT.  相似文献   

3.
It has been suggested in the literature that a lower polymerization rate of an acrylic bone cement is favorable for the in vivo longevity of a cemented arthroplasty. The present work was a study of the influence of three changes in the composition of an acrylic bone cement (when taken separately) on the cement polymerization rate at 37 degrees C (assumed to be the temperature in the bone bed during a cemented arthroplasty) [k']. The changes were the amount of copolymer as a proportion of the total powder weight (in cements in which there is a copolymer in the powder), the amount of DMPT as a proportion of the total volume of the liquid monomer, and the accelerator. k' was calculated using values of the activation energy and the frequency factor (assuming the polymerization reaction is Arrhenius in nature) that were computed from measurements made using the nonisothermal mode of differential scanning calorimetry. Statistical analysis (one-way ANOVA, with Bonferroni correction, and factorial ANOVA) of the k' values showed that the change in accelerator had a significant influence on k'. The importance of this finding, together with results from two relevant literature reports, is discussed within the context of the use of modified bone cements in cemented arthroplasties.  相似文献   

4.
In our previous study, we manufactured a reinforced poly(methylmethacrylate) (PMMA) bone cement with 3 wt% of the surface-modified ultra high molecular weight polyethylene (UHMWPE) powder to improve its poor mechanical and thermal properties resulting from unreacted methylmethacrylate (MMA), the generation of bubble and shrinkage, and high curing temperature. In the present study, the effect of ratios of MMA and N,N'-dimethyl-p-toluidine (DMPT) solutions in redox polymerization system was investigated for the surface modification of UHMWPE powder. We characterized physical and chemical properties of surface-modified UHMWPE powder and reinforced bone cements by a scanning electron microscope, ultimate tensile strength (UTS) and curing temperature (Tmax). It was found that UTSs (41.3-51.3 MPa) of the reinforced PMMA bone cements were similar to those (44.5 MPa) of conventional PMMA bone cement (control), as well as significantly higher (P < 0.05) than those (33.8 MPa) of 3 wt% unmodified UHMWPE powder-impregnated bone cement. In particular, the UTS of redox polymerization system using MMA/DMPT solution was better than that of radical system using MMA/xylene solution. Also, Tmax of the reinforced PMMA bone cements decreased from 103 to 72-84 degrees C. From these results, we confirmed that the surface-modified UHMWPE powder can be used as reinforcing agent to improve the mechanical and thermal properties of conventional PMMA bone cement.  相似文献   

5.
A composite bone cement of Alcoa A-10 Alumina and very finely ground poly(methyl methacrylate) beads (PMMA) was fabricated. It was tested in an attempt to improve on the conventionally used pure PMMA bone cement.

By knowing the densities of the powders and their volumes, the mass of each was calculated for the most efficient packing of PMMA and Al2O3 powders and a 65% PMMA: 35% Al2O3 ratio by weight composition was determined. This was tested, as well as the pure cement so comparisons could be made. Cylinders for the strength tests were also made of silane treated Al2O3.

The compositions were tested for compressive and tensile strengths. The pure PMMA, composite and silane treated composite had compressive strengths of 79.64 ± 13.0, 83.17 ± 4.8, and 71.52±8.6 MPa and the tensile strengths were 6.69 ±0.6, 5.12 ±0.3, and 7.12±0.5 MPa respectively. Also the 65%–35% PMMA-Al2O3 composite required 64% less monomer for mixing than did the pure cement which is thought to be better for tissue healing. The maximum temperature attained from room temperature was 110°–115°C for both cements. The composite took 6.5 min longer to reach its peak temperature than did the pure cement. The bone cements were implanted for one week in a rabbit and both compositions seemed acceptable by the tissue.  相似文献   


6.
Novel antimicrobial poly(methyl methacrylate) (PMMA)-based bone cement was synthesized by co-polymerizing PMMA/MMA with various percentages of quaternary amine dimethacrylate (QADMA) by free radical bulk polymerization technique at room temperature using benzoyl peroxide and N,N-dimethyl-p-toulidine (DMPT) as a redox initiator. The modified bone cement was characterized by FT-IR and 1H-NMR spectral studies. The thermal and physical properties of the bone cements of varying composition of QADMA were evaluated by thermogravimetric analysis (TGA), differential calorimetry (DSC) and contact angle measurements. Peak exothermic temperature was observed to decrease, while setting time increased with increase in QADMA content in the bone cement formulations. The antibacterial activity of the synthesized bone cement containing quaternary amine dimethacrylate against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition, colony count method and scanning electron microscopy (SEM). QADMA containing acrylic bone cement showed a broad spectrum of contact killing antimicrobial properties. Retention of E. coli onto the surface of PMMA bone cement was observed, whereas there was complete prevention of retention of E. coli onto the modified PMMA bone cement with 15% QADMA. The studies were compared with the acrylic bone cement synthesized using 15% N-vinyl-2-pyrrolidone (NVP) in place of QADMA to which iodine was added as an antimicrobial agent during co-polymerization.  相似文献   

7.
Biological and mechanical properties of PMMA-based bioactive bone cements   总被引:6,自引:0,他引:6  
We reported previously that a bioactive PMMA-based cement was obtained by using a dry method of silanation of apatite-wollastonite glass ceramic (AW-GC) particles, and using high molecular weight PMMA particles. But handling and mechanical properties of the cement were poor (Mousa et al., J Biomed Mater Res 1999;47:336-44). In the present study, we investigated the effect of the characteristics of PMMA powder on the cement. Different cements containing different PMMA powders (CMW1, Surgical Simplex, Palacos-R and other two types of PMMA powders with Mw 270,000 and 1,200,000) and AW-GC filler in 70 wt% ratio except Palacos-R (abbreviated as B-CMW1 and B-Surg Simp, B-Palacos 50 [50 wt% AW-GC filler] and B-Palacos 70 [70 wt% AW-GC filler], B-270 and B-1200) were made. Dough and setting times of B-CMW1, B-Surg Simp B-270 and B-1200 were similar to the commercial CMW1 cement which did not contain bioactive powder (C-CMW1), but B-palacos which contained large PMMA beads with high Mw had delayed setting time. B-270 had the highest bending strength among the tested cements. After 4 and 8 weeks of implantation in the medullary canals of rat tibiae, the bone-cement interface was examined using SEM. The affinity index of B-1200 was significantly higher than the other types of cements. B-270 showed good combination of handling properties, high mechanical properties and showed higher bioactivity with minimal soft tissue interposition between bone and cement compared with commercial PMMA bone cement. This may increase the strength of the bone-cement interface and increase the longevity of cemented arthroplasties.  相似文献   

8.
9.
Novel antimicrobial poly(methyl methacrylate) (PMMA)-based bone cement was synthesized by co-polymerizing PMMA/MMA with various percentages of quaternary amine dimethacrylate (QADMA) by free radical bulk polymerization technique at room temperature using benzoyl peroxide and N, N-dimethyl-p-toulidine (DMPT) as a redox initiator. The modified bone cement was characterized by FT-IR and 1H-NMR spectral studies. The thermal and physical properties of the bone cements of varying composition of QADMA were evaluated by thermogravimetric analysis (TGA), differential calorimetry (DSC) and contact angle measurements. Peak exothermic temperature was observed to decrease, while setting time increased with increase in QADMA content in the bone cement formulations. The antibacterial activity of the synthesized bone cement containing quaternary amine dimethacrylate against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition, colony count method and scanning electron microscopy (SEM). QADMA containing acrylic bone cement showed a broad spectrum of contact killing antimicrobial properties. Retention of E. coli onto the surface of PMMA bone cement was observed, whereas there was complete prevention of retention of E. coli onto the modified PMMA bone cement with 15% QADMA. The studies were compared with the acrylic bone cement synthesized using 15% N-vinyl-2-pyrrolidone (NVP) in place of QADMA to which iodine was added as an antimicrobial agent during co-polymerization.  相似文献   

10.
The composition of acrylic bone cement has been identified as one of the important parameters affecting its mechanical properties and may, in turn, ultimately influence the longevity of a cemented arthroplasty. Our aim in this study was to determine the influence of change of one compositional variable, the activator, on the fatigue performance and fracture toughness of specimens of the fully cured cement. To that end, three sets of cements were prepared, containing either the conventional activator, 4-N,N dimethyl p-toluidine (DMPT), or novel ones that are tertiary amines based on long-chain fatty acids, that is, 4-N,N dimethylaminobenzyl oleate (DMAO) and 4-N,N dimethylaminobenzyl laurate (DMAL). In the fatigue tests, the specimens were subjected to tension-tension loading, and the results (number of cycles to failure, Nf) were analyzed using the linearized form of the three-parameter Weibull equation. The fracture toughness (KIc) tests were conducted with rectangular compact tension specimens. All fracture surfaces were subsequently examined with scanning electron microscopy. We found that the Weibull mean fatigue lives for specimens fabricated using the DMPT, DMAL, and DMAO containing cements were 272,823, 453,551, and 583,396 cycles, respectively. The corresponding values for KIc were 1.94 +/- 0.05, 2.06 +/- 0.09, and 2.00 +/- 0.07 MPa radical m, respectively. Statistical analyses showed that for both the DMAL- and DMAO-containing cements, the mean values of Nf were significantly higher compared to the corresponding value for the DMPT-containing cement (Mann-Whitney test; alpha < 0.10). This result is attributed to the higher molecular weights of the former cements compared to the latter. The same trend was found for the mean KIc values (Mann-Whitney test; alpha < 0.05), with the trend being explained in terms of the differences seen in the crack morphologies. These results thus demonstrate that these novel amines are viable alternatives to DMPT for incorporation into acrylic bone cement formulations in the future.  相似文献   

11.
Solutions of poly(methyl methacrylate) (PMMA) powder predissolved in methyl methacrylate (MMA) have been developed as an alternative to current powder/liquid bone cements. They utilize the same addition polymerization chemistry as commercial cements, but in mixing and delivering via a closed system, porosity is eliminated and the dependence of material properties on the surgical technique is decreased. Twelve different sets of compositions were prepared, with two solutions of constant polymer-to-monomer ratio (80 g of PMMA/100 mL of MMA) and all combinations of four benzoyl peroxide (BPO) initiator levels added to the first solution and three N, N-dimethyl-p-toluidine (DMPT) activator levels added to the second. These compositions were tested, along with Simplex-P bone cement, for effects of BPO and DMPT concentrations on polymerization exotherm, setting time, flexural strength, modulus, and maximum strain. The results show that each of these dependent variables was affected significantly by the individual concentrations of BPO and DMPT and their interactions. The flexural strength, modulus, and polymerization exotherm reached their maximums at about a 1:1 molar ratio of BPO to DMPT. Most compositions had exotherms, setting times, and maximum strains within the range of commercial cements and flexural strengths and moduli up to 54 and 43% higher than Simplex-P, respectively.  相似文献   

12.
Porous-free, two-solution bone cements have been developed in our laboratory as an alternative to commercial powder/liquid formulations. Each pair of solutions consist of poly(methyl methacrylate) (PMMA) powder dissolved in methyl methacrylate (MMA) monomer, with benzoyl peroxide (BPO) added to one solution as the initiator and N,N-dimethyl-p-toluidine (DMPT) added to the other as the activator. When mixed, the solutions polymerize via a free radical reaction, which is governed by the concentrations of initiator and activator and their molar stoichiometry. Previous work by the authors has demonstrated that these two-solution cement compositions are comparable to Simplex P bone cement in polymerization exotherm, setting time, and flexural mechanical properties. This study was designed to evaluate the effect of BPO and DMPT concentrations, along with their molar ratio, on the fracture toughness, fatigue strength, and residual monomer content of the experimental compositions. The results showed that fracture toughness and fatigue strength for the solution cements were comparable to Simplex P and were not significantly affected by the BPO concentration or the BPO:DMPT molar ratio; however, the highest DMPT concentration yielded significantly lower values for both variables. Residual monomer content was significantly affected by both the individual concentrations of BPO and DMPT and their molar ratios. The two-solution cements had significantly higher residual monomer contents versus Simplex P; however, this can be attributed to their higher initial monomer concentration rather than a lower degree of conversion.  相似文献   

13.
The in vitro leaching characteristics of tobramycin from acrylic resin (PMMA) bone cement beads have been determined by a radioimmune assay. Tobramycin was incorporated at two concentrations into bone cement beads fabricated from three commercial brands of acrylic resin. Antibiotic leaching followed a curvilinear relationship of the form X . Y = A . X + B . Y. All beads showed similar tobramycin leaching rates over time but the initial amount of leached material differed with the amount of tobramycin incorporated in the bead and the source of the PMMA bone cement. The data indicate that tobramycin-impregnated PMMA beads permit antibiotic leaching at a controlled rate compatible with possible clinical application.  相似文献   

14.
The composition and viscosity of an acrylic bone cement have both been identified in the literature as being parameters that affect the mechanical properties of the material and, by extension, the in vivo longevity of cemented arthroplasties. The objective of the present study was to determine the relative influence of these parameters on a key cement mechanical property; namely, its fracture toughness. Two sets of cements were selected purposefully to allow the study objective to be achieved. Thus, one set comprised two cements with very similar compositions but very different viscosities (Cemex RX, a medium-viscosity brand, and Cemex Isoplastic, a high-viscosity brand) while the other set comprised two cements with similar viscosities but with many differences in composition (Cemex Isoplastic and CMW 1). Values of the fracture toughness (as determined using chevron-notched short rod specimens) [K(ISR)] obtained for Cemex RX and Cemex Isoplastic were 1.83 +/- 0.12 and 1.85 +/- 0.12 MPa square root(m), respectively, with the difference not being statistically significant. The K(ISR) values obtained for Cemex Isoplastic and CMW 1 were 1.85 +/- 0.12 and 1.64 +/- 0.18 MPa square root(m), respectively, with the difference being statistically significant. Thus, the influence of cement composition on its K(ISR) is more marked relative to the influence of cement viscosity. Explanations of this finding are offered, together with comments on the implications of the results for the in vivo longevity of cemented arthroplasties.  相似文献   

15.
We have developed two types of polymethylmethacrylate (PMMA)-based bioactive bone cements containing bioactive glass beads (designated GBC) or apatite-wollastonite containing glass-ceramic powder (designated AWC) as the filler. A new method was used to evaluate the bone-cement interfacial strength of these bioactive bone cements. Two types of bioactive bone cements (GBC and AWC) and PMMA cement (CMW-1) were put in a frame attached to the smooth tibial metaphyseal cortex of the rabbit and polymerized in situ. The load required to detach the cement from the bone was measured at 4, 8, and 16 weeks after implantation. The interfacial tensile strength of GBC and AWC showed significantly higher values than PMMA cement from 4 weeks, and increased with time. For GBC, strength reached a maximum value of 12.39 +/- 1.79 kgf 16 weeks after implantation. Histological examination of rabbit tibiae up to 16 weeks demonstrated no intervening layer between the bioactive bone cements and the bone, whereas fibrous tissue was observed at the interface between the PMMA cement and the bone. From this study, we conclude that PMMA-based bioactive bone cements have a relatively higher adhesiveness at the interface than the conventionally used PMMA cement, showing potential as a promising alternative.  相似文献   

16.
A new bioactive bone cement, designated GBC, has been developed. It consists of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler. The bioactive beads, consisting of MgO--CaO--SiO(2)--P(2)O(5)--CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to evaluate the effects on mechanical properties and osteoconductivity of adding a phosphoric ester (PE) monomer to the cement as an adhesion-promoting agent. Four kinds of cements were prepared: GBC, GBC with PE (designated GBC/PE), a cement consisting of the same PMMA used in GBC with apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC), and AWC with PE (designated AWC/PE). Each filler was added to the cement at 70 wt %. Adding PE to either GBC or AWC resulted in increases in the bending strength and decreases in the Young's modulus compared with the unmodified cements. Cements were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after operation. The affinity index (length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface) was calculated for each cement. Adding PE to either GBC or AWC resulted in significant increases in the affinity index compared with the unmodified cements. The affinity index for GBC was significantly higher than that of AWC, and that for GBC/PE was also significantly higher than that of AWC/PE. The affinity indices for each cement increased significantly with time up to 8 weeks. Our study revealed that the higher osteoconductivity of GBC/PE was due to the large alkyl group in the PE monomer, to the hydrophilicity of the phosphoric acid in the PE monomer, and to the higher bioactivity of the bioactive glass beads at the cement surface. GBC/PE shows promise as an alternative bone cement with improved properties compared with conventional PMMA bone cement.  相似文献   

17.
An iodinated quaternary amine dimethacrylate monomer was synthesized and incorporated as a comonomer in acrylic bone cements. Bone cement is used in orthopaedic surgery and imparting antibacterial properties to the cement can be beneficial in the lowering of bacterial infection post surgery. PMMA based bone cements were modified by copolymerising the monomer methylmethacrylate (MMA) with a quaternary amine dimethacrylate by using the redox initiator activator system as used for curing commercial bone cements. The cements were prepared using the commercial PMMA bone cement CMW and the liquid component was modified with the amine to render antimicrobial properties to the cement. The physical, mechanical, and antimicrobial properties of the modified cements were evaluated; in addition, the viability of the cement to function as a orthopaedic cement was also established, especially with an advantage of it being radiopaque, due to the inclusion of the iodine containing quaternary amine. The cytotoxicity of the modified cements were tested using a human cell model and the results indicated that the cells remained metabolically active and proliferated when placed in direct contact with the experimental cement specimens. The cements and their eluants did not evoke any cytotoxic response.  相似文献   

18.
Acrylic (polymethylmethacrylate or PMMA) bone cement was modified by the addition of high-strength zirconia fibers with average lengths of 200 microm and diameters of 15 microm or 30 microm. A novel emulsion polymerization process was developed to encapsulate individual fibers in PMMA. Improvements in tensile and compressive properties as well as in fracture toughness were investigated upon incorporation of uncoated and acrylic coated zirconia fibers. Bone cements were reinforced with 2% by volume of the 15 microm diameter and 5% by volume of the 30 microm fibers. Results indicate that elastic modulus and ultimate strength of bone cements reinforced with zirconia fibers were higher than controls, being the largest for cements reinforced with 30 microm diameter fibers. The fracture toughness of the cement increased by 23% and 41% by the addition of 15 microm and 30 microm fibers, respectively. Coating of individual zirconia fibers did not result in improved material properties of bone cements. The use of uncoated or acrylic coated 30 microm fibers is recommended based on the significant increases in ultimate strength and fracture toughness of the cements.  相似文献   

19.
Injectable bone cements (IBCs) are used for a variety of orthopaedic applications, examples being poly (methyl methacrylate) (PMMA) bone cements used for anchoring total joint replacements (TJRs) (high load-bearing application), PMMA bone cements used in the vertebral body augmentation procedures of vertebroplasty (VP) and balloon kyphoplasty (BKP) (medium load-bearing application), and calcium phosphate-based and calcium sulfate-based cements used as bone void fillers/bone graft substitutes (low load-bearing application). For each of these applications, the viscoelastic properties of the cement are very important. For example, (1) creep of the cement has an influence on the longevity of a cemented TJR (for example, creep allows the cement to remodel, thereby maximizing the contact area of the cement-bone interface and, hence, minimizing stress concentration at that interface); and (2) in VP and BKP, the likelihood of cement extravasation is directly related to the profile of the viscosity-versus-time elapsed from commencement of mixing of the cement. There are a few reviews of the literature on a number of viscoelastic properties of some IBCs but a comprehensive review of the literature on all viscoelastic properties of all IBCs is lacking. The objective of this contribution is to present such a review. In addition, a number of ideas for future study in the field of viscoelastic properties of IBCs are described.  相似文献   

20.
Poly(methyl methacrylate) (PMMA) bone cements have a long and successful history of use for implant fixation, but suffer from a relatively low fracture and fatigue resistance which can result in failure of the cement and the implant. Fiber or particulate reinforcement has been used to improve mechanical properties, but typically at the expense of the pre-cured cement viscosity, which is critical for successful integration with peri-implant bone tissue. Therefore, the objective of this study was to investigate the effects of zirconia fiber reinforcement on the fatigue life of acrylic bone cements while maintaining a relatively low pre-cured cement viscosity. Sintered straight or variable diameter fibers (VDFs) were added to a PMMA cement and tested in fully reversed uniaxial fatigue until failure. The mean fatigue life of cements reinforced with 15 and 20 vol% straight zirconia fibers was significantly increased by ~40-fold, on average, compared to a commercial benchmark (Osteobond?) and cements reinforced with 0–10 vol% straight zirconia fibers. The mean fatigue life of a cement reinforced with 10 vol% VDFs was an order of magnitude greater than the same cement reinforced with 10 vol% straight fibers. The time-dependent viscosity of cements reinforced with 10 and 15 vol% straight fibers was comparable to the commercial benchmark during curing. Therefore, the addition of relatively small amounts of straight and variable diameter zirconia fibers was able to substantially improve the fatigue resistance of acrylic bone cement while exhibiting similar handling characteristics compared to current commercial products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号