首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of a 670-MeV/amu 20Ne beam at the Lawrence Berkeley Laboratory Bevalac heavy-ion accelerator with various thicknesses of water absorber were obtained with the BERKLET. The BERKLET, a simple three-stage solid-state telescope detector, has been described previously. This instrument measures the linear energy transfer (LET) and residual energy of particles, allows the identification of the particle's charge, and provides a means of obtaining LET and energy statistics for the beam, separated by particle charge. The track and dose averaged LET dependence on the amount of water absorber was determined for each species of fragment in the beam. Large numbers of low-LET particles in the fragmented beam were detected. The results of the analysis are presented followed by a discussion of the effects of multiple scattering and secondary fragmentation on the measurements. A brief discussion of the implications of the BERKLET measurements for radiobiology is also presented.  相似文献   

2.
The responses of a commercial diamond detector (type 60003, PTW-Freiburg) to several heavy ions were examined. The responses to heavy-ion beams reached stable levels with relatively small pre-irradiation doses compared to photon-beam irradiations. The responses also reached stable levels with a smaller pre-irradiation dose when the dose rate of the He beams was increased. A total accumulated dose of about 5 Gy was required for the pre-irradiation dose of heavy-ion beams. No angular dependence of the detector responses was observed within a deviation of 5%. The dose-rate dependence of the detector responses to heavy-ion beams was far smaller than that to gamma rays. The decrease in the response was within 0.9%, with a variation from 0.88 to 18.2 Gy min(-1) in the carbon beam. We examined the LET dependence of the diamond detector responses using various kinds of heavy-ion beams. The responses had particle dependence in addition to LET dependence. The responses decreased more with higher LET particles and decreased less with large-Z particles. We proposed a gradual-saturation model based on the track structure under several simple assumptions to explain the LET and particle dependences of the response.  相似文献   

3.
Small dosimeters as solid state detectors can be useful for the dosimetric characterization and periodic quality control of radiotherapy proton beams. The calibration of solid state detectors for proton beams is not a solved problem especially for ophthalmologic proton beams, where these detectors present a LET-dependent signal. In this work a PTW diamond detector has been selected because of its good signal reproducibility (0.3%) and stable response with accumulated dose. A method that takes into account the LET dependence of the diamond detector signal, at 62 MeV proton beam, is here proposed. In particular an empirical correction factor, kDD(Eo) (Rres), has been determined as a function of the residual range quality index, to correct the diamond detector signal for a proton beam of incident effective energy E0= 62 MeV. A dedicated software allows us to use the diamond detector as an on-line reference dosimeter, where an ionization chamber may be difficult to use, or for periodic quality control procedures. The article also reports a comparison between the signal dependence on proton energy of silicon, diamond, and radiochromic film detectors.  相似文献   

4.
Owing to the potentially therapeutic enhancement of delayed particles in treating malignant diseases by radioactive 9C-ion beam, LET spectra at different penetration depths for a 9C beam with 5% momentum spread, produced in the secondary beam line (SBL) at HIMAC, were measured with a multi-wire parallel-plate proportional counter. To compare these LET spectra with those of a therapeutic 12C beam under similar conditions, the 12C beam was replaced with an 11C beam, yielded in the SBL as well and having almost the same range as that of the 9C beam. The LET spectra of the 9C beam and its counterpart, i.e. the 11C beam, at various depths were compared, especially around the Bragg peak regions. The results show that nearby the Bragg peak lower LET components decreased in the LET spectra of the 9C beam while extra components between the LET peak caused by the primary beam and the lower components due to the fragments could be observed. These additional contributions in the LET spectra could be attributed to parts of the emitted particles from the radioactive 9C ions with suitable conditions regarding the LET counter. Integrating these LET spectra in different manners, depth-dose and dose-averaged LET distributions were obtained for the 9C and 11C beams, forming the basic data sets for further studies. In general, the depth-dose distributions of the 9C and 11C beams are comparative, i.e. almost the same peak-to-plateau ratio. The ratio for the 9C beam, however, has room to increase due to the geometric structure limitation of the present detector. The dose-averaged LETs along the beam penetration are always lower for the 9C beam than for the 11C beam except at the falloff region beyond the Bragg peak. Applying the present depth-dose and dose-averaged LET data sets as well as the essential radiobiological parameters obtained with 12C beams previously for HSG cells, an estimate concerning the HSG cell surviving effects along the penetration of the 9C and 11C beams shows that lower survival fractions for the 9C beam at the distal part of the Bragg peak, corresponding to the stopping region of the incoming 9C ions, can be expected when the same entrance dose is given. It is still hard to appreciate the potential of 9C beams in cancer therapy based on the present LET spectrum measurement, but it provides a substantial basis for upcoming radiobiological experiments.  相似文献   

5.
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF(4) scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF(4) gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical (12)C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd(2)O(2)S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.  相似文献   

6.
A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.  相似文献   

7.
Three-dimensional dosimetry with good spatial resolution can be performed using polymer gel dosimetry, which has been investigated for dosimetry of different types of particles. However, there are only sparse data concerning the influence of the linear energy transfer (LET) properties of the radiation on the gel absorbed dose response. The purpose of this study was to investigate possible LET dependence for a polymer gel dosimeter using proton beam absorbed dose measurements. Polymer gel containing the antioxidant tetrakis(hydroxymethyl)phosphonium (THP) was irradiated with 133 MeV monoenergetic protons, and the gel absorbed dose response was evaluated using MRI. The LET distribution for a monoenergetic proton beam was calculated as a function of depth using the Monte Carlo code PETRA. There was a steep increase in the Monte Carlo calculated LET starting at the depth corresponding to the front edge of the Bragg peak. This increase was closely followed by a decrease in the relative detector sensitivity (Srel = Dgel/Ddiode), indicating that the response of the polymer gel detector was dependent on LET. The relative sensitivity was 0.8 at the Bragg peak, and reached its minimum value at the end of the proton range. No significant effects in the detector response were observed for LET < 4.9 keV microm(-1), thus indicating that the behaviour of the polymer gel dosimeter would not be altered for the range of LET values expected in the case of photons or electrons in a clinical range of energies.  相似文献   

8.
A fully automatic radiophotoluminescent glass rod dosimeter (GRD) system has recently become commercially available. This article discusses the dosimetric properties of the GRD including uniformity and reproducibility of signal, dose linearity, and energy and directional dependence in high-energy photon beams. In addition, energy response is measured in electron beams. The uniformity and reproducibility of the signal from 50 GRDs using a 60Co beam are both +/- 1.1% (one standard deviation). Good dose linearity of the GRD is maintained for doses ranging from 0.5 to 30 Gy, the lower and upper limits of this study, respectively. The GRD response is found to show little energy dependence in photon energies of a 60Co beam, 4 MV (TPR20(10)=0.617) and 10 MV (TPR(20)10=0.744) x-ray beams. However, the GRD responses for 9 MeV (mean energy, Ez = 3.6 MeV) and 16 MeV (Ez = 10.4 MeV) electron beams are 4%-5% lower than that for a 60Co beam in the beam quality dependence. The measured angular dependence of GRD, ranging from 0 degrees (along the long axis of GRD) to 120 degrees is within 1.5% for a 4 MV x-ray beam. As applications, a linear accelerator-based radiosurgery system and Cyber-Knife output factors are measured by a GRD and compared with those from various detectors including a p-type silicon diode detector, a diamond detector, and an ion chamber. It is found that the GRD is a very useful detector for small field dosimetry, in particular, below 10 mm circular fields.  相似文献   

9.
The production of projectile fragments is one of the most important, but not yet perfectly understood, problems to be considered when planning for the utilization of high-energy heavy charged particles for radiotherapy. This paper reports our investigation of the fragments' fluence and linear energy transfer (LET) spectra produced from various incident ions using an experimental approach to reveal these physical qualities of the beams. Polymethyl methacrylate, as a substitute for the human body, was used as a target. A deltaE-E counter telescope with a plastic scintillator and a BGO scintillator made it possible to identify the species of fragments based on differences of various elements. By combining a gas-flow proportional counter with a counter telescope system, LET spectra as well as fluence spectra of the fragments were derived for each element down from the primary particles to hydrogen. Among them, the information on hydrogen and helium fragments was derived for the first time. The result revealed that the number of light fragments, such as hydrogen and helium, became larger than the number of primaries in the vicinity of the range end. However, the greater part of the dose delivered to a cell was still governed by the primaries. The calculated result of a simulation used for heavy-ion radiotherapy indicated room for improving the reaction model.  相似文献   

10.
Dynamic beam delivery techniques are being increasingly used for cancer therapy. Scanning ion beams require extensive and time-demanding quality assurance procedures and beam tuning. Accordingly, fast measurement techniques improving the efficiency of the procedures and accommodating the safety requirements are highly desirable. Major requirements for a detector used for beam-shape measurements are high spatial resolution in two dimensions, reusability, online readout and easy handling. At the Heidelberg Ion Beam Therapy Facility (Germany), we examined the performance of the RID 256 L flat-panel detector for beam spot measurements. The two-dimensional beam profiles of proton and carbon ion beams measured were compared to measurements with radiographic films at intermediate energies using the index. The difference to the beam width measured with radiographic films of less than 3% demonstrates sufficient accuracy of ion beam width measurements possible with this detector for both proton and carbon ion beams. The beam shapes were also measured at different beam intensities. At both the highest and lowest energies available at the HIT, no beam spot-shape deformation was found with increasing beam intensities, as long as the boundary of the dynamic range was not exceeded. The signal leak along the readout direction was identified as an undesirable effect. However, due to small amplitudes and static beams, this effect is of minor importance for beam spot measurements. Distortion of results due to detector radiation damage was monitored. No detector radiation damage was observed over the experiments. Moreover, the observed short-time detector response stability (within ±0.1%) as well as medium term stability (within 0.5% in 15 months) was excellent. This flat-panel detector is compact and easy to use. Together with its low weight, this helps to speed up measurement procedures substantially. All these properties make this an ideal detector for the fast, high-resolution imaging of static ion beam spots needed for constancy measurements in daily beam quality assurance and for accelerator tuning. For daily use, radiation damage has to be monitored continuously and corrected for if necessary.  相似文献   

11.
Laser-driven particle acceleration is a potentially cost-efficient and compact new technology that might replace synchrotrons or cyclotrons for future proton or heavy-ion radiation therapy. Since the energy spectrum of laser-accelerated particles is rather wide, compared to the monoenergetic beams of conventional machines, studies have proposed the usage of broader spectra for the treatment of at least certain parts of the target volume to make the process more efficient. The thereby introduced additional uncertainty in the applied energy spectrum is analysed in this note. It is shown that the uncertainty can be categorized into a change of the total number of particles, and a change in the energy distribution of the particles. The former one can be monitored by a simple fluence detector and cancels for a high number of statistically fluctuating shots. The latter one, the redistribution of a fixed number of particles to different energy bins in the window of transmitted energies of the energy selection system, only introduces smaller changes to the resulting depth dose curve. Therefore, it might not be necessary to monitor this uncertainty for all applied shots. These findings might enable an easier uncertainty management for particle therapy with broad energy spectra.  相似文献   

12.
Carbon beam radiotherapy for cancer patients was initiated in Japan in June 1994. This study attempts to clarify the radiobiological effects of heavy ion beams. In this study, human cancer cell lines (RMG-1, MDA-MB231) and V79 cells were used. The cell killing was determined by colony forming assay, and mutation induction was determined by counting the number of 6-thioguanine resistant colonies (hprt locus mutation assay). The cell lines were irradiated with carbon (20 or 80 keV/microm) or neon beams (80 keV/microm). Carbon ions with a higher LET value (80 keV/microm) had an enhanced cytotoxic effect compared to those with a lower LET value (20 keV/microm). Carbon beams produced a slightly stronger cytotoxic effect than neon beams when irradiated at the same LET level (80 keV/microm), but the difference was not remarkable. The mutant fraction was significantly higher in all cell lines when they were irradiated with heavy ion beams, compared to the results for X-ray irradiation. The mutant fraction increased when the LET of the carbon beams increased. At equivalent LET values, the mutant fraction was lower for neon beams than for carbon beams. Fractionation of carbon beam irradiation had no effect on survival, but reduced the mutant fraction. Neon beams might be more appropriate for heavy ion therapy, especially when higher doses are being used. In addition, the fractionation of heavy ion beam administration might be appropriate for reducing the mutant fraction.  相似文献   

13.
This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simulations the particles start at a source and lose energy as they travel towards the region of interest, i.e., the designated point of detection. Conversely, with adjoint Monte Carlo simulations, the so-called adjoint particles start at the region of interest and gain energy as they travel towards the source where they are detected. In this respect, the particles travel backwards and the real source and real detector become the adjoint detector and adjoint source, respectively. At the adjoint detector, an adjoint function is obtained with which numerically the same result, e.g., dose or flux in the tumor, can be derived as with forward Monte Carlo. In many cases, the adjoint method is more efficient and by that is much quicker when, for example, the response in the tumor or organ at risk for many locations and orientations of the treatment beam around the patient is required. However, a problem occurs when the treatment beam is mono-directional as the probability of detecting adjoint Monte Carlo particles traversing the beam exit (detector plane in adjoint mode) in the negative direction of the incident beam is zero. This problem is addressed here and solved first with the use of next event estimators and second with the application of a Legendre expansion technique of the angular adjoint function. In the first approach, adjoint particles are tracked deterministically through a tube to a (adjoint) point detector far away from the geometric model. The adjoint particles will traverse the disk shaped entrance of this tube (the beam exit in the actual geometry) perpendicularly. This method is slow whenever many events are involved that are not contributing to the point detector, e.g., neutrons in a scattering medium. In the second approach, adjoint particles that traverse an adjoint shaped detector plane are used to estimate the Legendre coefficients for expansion of the angular adjoint function. This provides an estimate of the adjoint function for the direction normal to the detector plane. In a realistic head model, as described in this paper, which is surrounded by 1020 mono-directional neutron/gamma beams and from which the best ones are to be selected, the example calculates the neutron and gamma fluxes in ten tumors and ten organs at risk. For small diameter beams (5 cm), and with comparable relative errors, forward Monte Carlo is seen to be 1.5 times faster than the adjoint Monte Carlo techniques. For larger diameter neutron beams (10 and 15 cm), the Legendre technique is found to be 6 and 20 times faster, respectively. In the case of gammas alone, for the 10 and 15 cm diam beams, both adjoint Monte Carlo Legendre and point detector techniques are respectively 2 and 3 times faster than forward Monte Carlo.  相似文献   

14.
C Richman 《Medical physics》1981,8(3):273-291
The introduction of negative pions into cancer therapy has required the construction of large new proton accelerators together with special magnetic systems to form and direct the pion beam to a patient. A summary is presented of the fundamental properties of pions and of the methods used to study the therapeutic beams. The dosimetry of these beams requires the use of the older techniques as well as new methods for determining the different LET components. The data for a number of beams is given and the utilization of this data in treatment planning is reviewed. An important problem for therapy is the behavior of inhomogeneities in the pion beam, and experimental methods are described which illuminate this problem. The studies of the effects of inhomogeneities in a beam point the way toward fruitful comparisons with the computerized treatment planning codes known as PION-1 and PIPLAN. A useful step in treatment is the verification of doses in patients during therapy. For this purpose the new methods for measuring the high LET doses in patients are described as well as a timing measurement for checking the stopping effect of the tissues as obtained from the CT scans.  相似文献   

15.
A method is described in some detail for measuring the magnitude and penetration of the electron contamination in photon beams using a pancake charge detector. It is shown that the response of the detector to a photon beam can be separated from the component due to the electron contamination. In the present work, the detector is used to measure the electron fluence in a 60Co photon beam. This fluence is subsequently converted to dose by comparison with the fluence and dose measured from a pure electron beam (90Sr). This study proves, within experimental error, that the observed changes in the buildup region, with the collimator opening for both filtered and unfiltered 60Co beams, are due to electron, rather than photon, contamination.  相似文献   

16.
A radioactive ion beam like 9C serves as a double radiation source and may be useful in cancer treatment, where the essential irradiation comes from the external beam itself and the extra one is due to the low-energy particles emitted internally during the decay of 9C. Based on the microdosimetric specific energy spectrum in cell nuclei, a model to evaluate the biological effect induced by the internally emitted particles from a beta-delayed particle decay beam has been developed. In this paper, using this model the additional contributions to the cell-killing effect due to the emitted particles from stopping 9C ions were incorporated in the design of spread-out Bragg peaks (SOBP) for radioactive 9C beams. For this purpose, a simulated annealing algorithm was employed to optimize the superposing weighting fractions of all monoenergetic beams so that a uniform cell survival level could be realized across the SOBP within an acceptable deviation of 5%. SOBPs with different widths and at different cell survival levels were designed for both therapeutic 9C and 12C beams for comparison. The potential use of the 9C beam in radiotherapy compared to the 12C beam, which is commonly adopted in the practices of current heavy-ion therapy, is shown systematically in terms of the distributions of biological effective dose and cell survival along the beam penetration.  相似文献   

17.
The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations.  相似文献   

18.
Influence of detector size in photon beam profile measurements   总被引:2,自引:0,他引:2  
Correction is necessary to account for the detector size in clinical dosimetry of photon and electron beams. This correction is due to the absorbed dose gradient present in a finite-size detector. Further corrections are necessary when the detector and phantom materials are not the same. These corrections are due to the perturbation in the charged-particle fluence. Generally these corrections are applied to measurements along the central axis of the beam. Cross beam profile measurements, however, are not usually corrected for detector size. The ionization profile is also usually assumed to be equivalent to the absorbed dose profile. We have corrected the ionization chamber size effect by two approaches: extrapolation of measurements to zero detector size and deconvolution of measurements using a simple model for the detector response function. We have measured absorbed dose profiles to water using a small water-equivalent plastic scintillation detector. Film profile measurements were also studied. The ionization profile corrected for detector size and absorbed dose profile were not equal, probably due to loss of charged-particle equilibrium in the beam edges. For ionization chamber measurements, knowledge of the charged-particle spectrum is needed to convert ionization to absorbed dose to water. This is not necessary for relative absorbed dose measurements under charged-particle equilibrium. Film has been shown to be a straightforward and reliable method for cross beam profile measurements.  相似文献   

19.
GafChromic (MD-55-2) radiochromic film has become increasingly popular for medical applications and has proven to be useful for brachytherapy dosimetry. To measure the absolute dose near a brachytherapy source, the response of the proposed detector in the measurement conditions relative to the response of the detector in calibration conditions must be known. MD-55-2 radiochromic film has been exposed in four different photon beams, a 30 and 40 kVp tungsten anode x-ray beam, a 75 kVp orthovoltage therapy beam, and a 60Co teletherapy beam to measure the relative detector response. These measurements were combined with coupled photon/electron Monte Carlo transport calculations to determine the absolute detector response. The Los Alamos National Laboratory Monte Carlo transport code MCNP4B2 was used. The measured relative response of this batch of MD-55-2 film varies from 8.79 mOD/Gy, measured for the 60Co beam, by as much as 42% for the low-energy x-ray beams. However, the absolute detector response varies from 4.32 mOD/Gy for the 60Co beam by, at most, only 6.3%. In this work we demonstrate that the absolute detector response of MD-55-2 radiochromic film is a constant and independent of beam quality. Further, this work shows that MCNP4B2 accurately simulates the energy response and geometry artifacts of the radiochromic film.  相似文献   

20.
Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post-exposure treatment and no developer and darkroom facilities are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号