首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Literature often refers to a 300 pps limit for cochlear implant (CI) electrical stimulation, above which pulse rate discrimination deteriorates or above which rate pitch is not perceived to increase. The present study investigated the effect on pulse rate difference limens (PRDLs) when using compound stimuli in which identical pulse trains were applied to multiple electrodes across the length of the electrode array and compared the results to those of single-electrode stimuli. PRDLs of seven CI users were determined in two stimulus pulse phase conditions, one in which the phase delays between pulses on different electrodes were minimised (burst mode) and a second in which they were maximised (spread mode). PRDLs were measured at base rates of 100 to 600 pps in 100 pps intervals, using compound stimuli on one, two, five, nine and 18 electrodes. As smaller PRDLs were expected to reflect improved rate pitch perception, 18-electrode spread mode stimuli were also included in a pitch ranking task. PRDLs improved markedly when multi-electrode compound stimuli were used, with average spread mode PRDLs across listeners between 6 and 8 % of the base rate in the whole range tested (i.e. up to 600 pps). PRDLs continued to improve as more electrodes were included, up to at least nine electrodes in the compound stimulus. Stimulus pulse phase had a significant influence on the results, with PRDLs being smaller in spread mode. Results indicate that pulse rate discrimination may be manipulated with stimulus parameter choice so that previously observed deterioration of PRDLs at 300 pps probably does not reflect a fundamental limitation to rate discrimination. However, rate pitch perception did not improve in the conditions that resulted in smaller PRDLs. This may indicate that listeners used cues other than pitch to perform the rate discrimination task or may reflect limitations in the electrically evoked neural excitation patterns presented to a rate pitch extraction mechanism.  相似文献   

2.
Electrical interaural time delay (ITD) discrimination was measured using 300-ms bursts applied to binaural pitch matched electrodes at basal, mid, and apical locations in each ear. Six bilateral implant users, who had previously shown good ITD sensitivity at a pulse rate of 100 pulses per second (pps), were assessed. Thresholds were measured as a function of pulse rate between 100 and 1,000 Hz, as well as modulation rate over that same range for high-rate pulse trains at 6,000 pps. Results were similar for all three places of stimulation and showed decreasing ITD sensitivity as either pulse rate or modulation rate increased, although the extent of that effect varied across subjects. The results support a model comprising a common ITD mechanism for high- and low-frequency places of stimulation, which, for electrical stimulation, is rate-limited in the same way across electrodes because peripheral temporal responses are largely place invariant. Overall, ITD sensitivity was somewhat better with unmodulated pulse trains than with high-rate pulse trains modulated at matched rates, although comparisons at individual rates showed that difference to be significant only at 300 Hz. Electrodes presenting with the lowest thresholds at 600 Hz were further assessed using bursts with a ramped onset of 10 ms. The slower rise time resulted in decreased performance in four of the listeners, but not in the two best performers, indicating that those two could use ongoing cues at 600 Hz. Performance at each place was also measured using single-pulse stimuli. Comparison of those data with the unmodulated 300-ms burst thresholds showed that on average, the addition of ongoing cues beyond the onset enhanced overall ITD sensitivity at 100 and 300 Hz, but not at 600 Hz. At 1,000 Hz, the added ongoing cues actually decreased performance. That result is attributed to the introduction of ambiguous cues within the physiologically relevant range and increased dichotic firing.  相似文献   

3.
Sensitivity to interaural time differences (ITDs) is important for sound localization. Normal-hearing listeners benefit from across-frequency processing, as seen with improved ITD thresholds when consistent ITD cues are presented over a range of frequency channels compared with when ITD information is only presented in a single frequency channel. This study aimed to clarify whether cochlear-implant (CI) listeners can make use of similar processing when being stimulated with multiple interaural electrode pairs transmitting consistent ITD information. ITD thresholds for unmodulated, 100-pulse-per-second pulse trains were measured in seven bilateral CI listeners using research interfaces. Consistent ITDs were presented at either one or two electrode pairs at different current levels, allowing for comparisons at either constant level per component electrode or equal overall loudness. Different tonotopic distances between the pairs were tested in order to clarify the potential influence of channel interaction. Comparison of ITD thresholds between double pairs and the respective single pairs revealed systematic effects of tonotopic separation and current level. At constant levels, performance with double-pair stimulation improved compared with single-pair stimulation but only for large tonotopic separation. Comparisons at equal overall loudness revealed no benefit from presenting ITD information at two electrode pairs for any tonotopic spacing. Irrespective of electrode-pair configuration, ITD sensitivity improved with increasing current level. Hence, the improved ITD sensitivity for double pairs found for a large tonotopic separation and constant current levels seems to be due to increased loudness. The overall data suggest that CI listeners can benefit from combining consistent ITD information across multiple electrodes, provided sufficient stimulus levels and that stimulating electrode pairs are widely spaced.  相似文献   

4.
Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system—much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar configurations. To test whether monopolar intracochlear stimulation can produce selective activation of the inferior colliculus, we measured activation widths along the tonotopic axis of the inferior colliculus for acoustic tones and 1,000-pulse/s electrical pulse trains in guinea pigs and cats. Electrical pulse trains were presented using an array of 6–12 stimulating electrodes distributed longitudinally on a space-filling silicone carrier positioned in the scala tympani of the cochlea. We found that for monopolar, bipolar, and acoustic stimuli, activation widths were significantly narrower for sustained responses than for the transient response to the stimulus onset. Furthermore, monopolar and bipolar stimuli elicited similar activation widths when compared at stimulus levels that produced similar peak spike rates. Surprisingly, we found that in guinea pigs, monopolar and bipolar stimuli produced narrower sustained activation than 60 dB sound pressure level acoustic tones when compared at stimulus levels that produced similar peak spike rates. Therefore, we conclude that intracochlear electrical stimulation using monopolar pulse trains can produce activation patterns that are at least as selective as bipolar or acoustic stimulation.  相似文献   

5.
Cochlear implants (CIs) convey fundamental-frequency information using primarily temporal cues. However, temporal pitch perception in CI users is weak and, when measured using rate discrimination tasks, deteriorates markedly as the rate increases beyond 300 pulses-per-second. Rate pitch may be weak because the electrical stimulation of the surviving neural population of the implant recipient may not allow accurate coding of inter-pulse time intervals. If so, this phenomenon should prevent listeners from detecting when a pulse train is physically temporally jittered. Performance in a jitter detection task was compared to that in a rate-pitch discrimination task. Stimuli were delivered using direct stimulation in cochlear implants, on a mid-array and an apical electrode, and at two different rates (100 and 300 pps). Average performance on both tasks was worse at the higher pulse rate and did not depend on electrode. However, there was a large variability across and within listeners that did not correlate between the two tasks, suggesting that rate-pitch judgement and regularity detection are to some extent limited by task-specific processes. Simulations with filtered pulse trains presented to NH listeners yielded broadly similar results, except that, for the rate discrimination task, the difference between performance with 100- and 300-pps base rates was smaller than observed for CI users.  相似文献   

6.
A cochlear implant (CI) electrode in a “cochlear dead region” will excite neighboring neural populations. In previous research that simulated such dead regions, stimulus information in the simulated dead region was either added to the immediately adjacent frequency regions or dropped entirely. There was little difference in speech perception ability between the two conditions. This may imply that there may be little benefit of ensuring that stimulus information on an electrode in a suspected cochlear dead region is transmitted. Alternatively, performance may be enhanced by a broader frequency redistribution, rather than adding stimuli from the dead region to the edges. In the current experiments, cochlear dead regions were introduced by excluding selected CI electrodes or vocoder noise-bands. Participants were assessed for speech understanding as well as spectral and temporal sensitivities as a function of the size of simulated dead regions. In one set of tests, the normal input frequency range of the sound processor was distributed among the active electrodes in bands with approximately logarithmic spacing (“redistributed” maps); in the remaining tests, information in simulated dead regions was dropped (“dropped” maps). Word recognition and Schroeder-phase discrimination performance, which require both spectral and temporal sensitivities, decreased as the size of simulated dead regions increased, but the redistributed and dropped remappings showed similar performance in these two tasks. Psychoacoustic experiments showed that the near match in word scores may reflect a tradeoff between spectral and temporal sensitivity: spectral-ripple discrimination was substantially degraded in the redistributed condition relative to the dropped condition while performance in a temporal modulation detection task degraded in the dropped condition but remained constant in the redistributed condition.  相似文献   

7.
Currently there is a growing population of cochlear-implant (CI) users with (near) normal hearing in the non-implanted ear. This configuration is often called SSD (single-sided deafness) CI. The goal of the CI is often to improve spatial perception, so the question raises to what extent SSD CI listeners are sensitive to interaural time differences (ITDs). In a controlled lab setup, sensitivity to ITDs was investigated in 11 SSD CI listeners. The stimuli were 100-pps pulse trains on the CI side and band-limited click trains on the acoustic side. After determining level balance and the delay needed to achieve synchronous stimulation of the two ears, the just noticeable difference in ITD was measured using an adaptive procedure. Seven out of 11 listeners were sensitive to ITDs, with a median just noticeable difference of 438 μs. Out of the four listeners who were not sensitive to ITD, one listener reported binaural fusion, and three listeners reported no binaural fusion. To enable ITD sensitivity, a frequency-dependent delay of the electrical stimulus was required to synchronize the electric and acoustic signals at the level of the auditory nerve. Using subjective fusion measures and refined by ITD sensitivity, it was possible to match a CI electrode to an acoustic frequency range. This shows the feasibility of these measures for the allocation of acoustic frequency ranges to electrodes when fitting a CI to a subject with (near) normal hearing in the contralateral ear.  相似文献   

8.
The effect of the stimulation intensity (current amplitude) on the ability to discriminate electrodes was tested in an experiment with four adult users of the Nucleus-22 cochlear implant. A total of 12 adjacent pairs of electrodes were used in the four-interval forced-choice discrimination task with random current variation. Tests were carried out at three average stimulation levels: 40 and 70% of the dynamic range and close to maximum comfortable loudness. Analysis of variance revealed a significant (P<0.0001) deterioration in electrode discrimination with a decreasing level. However, the overall effect was very small, representing a deterioration in the discrimination score of only 18% correct from the highest to lowest levels tested. The reason for the small deterioration in discriminability with a decreasing level is difficult to determine from this experiment, however, the results are consistent with the hypothesis that changes in the 'peak' or 'edge' of the excitation pattern are more important for discrimination tasks than the relative amount of non-overlap of the excitation areas from the two electrodes.  相似文献   

9.
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.  相似文献   

10.
Binaural signal detection in an NoSπ task relies on interaural disparities introduced by adding an antiphasic signal to diotic noise. What metric of interaural disparity best predicts performance? Some models use interaural correlation; others differentiate between dynamic interaural time differences (ITDs) and interaural level differences (ILDs) of the effective stimulus. To examine the relative contributions of ITDs and ILDs in binaural detection, we developed a novel signal processing technique that selectively degrades different aspects (potential cues) of binaural stimuli (e.g., only ITDs are scrambled). Degrading a particular cue will affect performance only if that cue is relevant to the binaural processing underlying detection. This selective scrambling technique was applied to the stimuli of a classic N0Sπ task in which the listener had to detect an antiphasic 500-Hz signal in the presence of a diotic wideband noise masker. Data obtained from five listeners showed that (1) selective scrambling of ILDs had little effect on binaural detection, (2) selective scrambling of ITDs significantly degraded detection, and (3) combined scrambling of ILDs and ITDs had the same effect as exclusive scrambling of ITDs. Regarding the question which stimulus properties determine detection, we conclude that for this binaural task (1) dynamic ITDs dominate detection performance, (2) ILDs are largely irrelevant, and (3) interaural correlation of the stimulus is a poor predictor of detection. Two simple stimulus-based models that each reproduce all binaural aspects of the data quite well are described: (1) a single-parameter detection model using ITD variance as detection criterion and (2) a compressive transformation followed by a crosscorrelation analysis. The success of both of these contrasting models shows that our data alone cannot reveal the mechanisms underlying the dominance of ITD cues. The physiological implications of our findings are discussed.  相似文献   

11.
The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways.  相似文献   

12.
Fu QJ 《Hearing research》2005,202(1-2):55-62
In cochlear implant speech processor design, acoustic amplitudes are mapped to electric currents with the intention of preserving loudness relationships across electrodes. Many parameters may affect the growth of loudness with electrical stimulation. The present study measured the effects of stimulation rate and electrode configuration on loudness growth in six Nucleus-22 cochlear implant users. Loudness balance functions were measured for stimuli that differed in terms of stimulation rate, electrode configuration and electrode location; a 2-alternative, forced-choice adaptive procedure (double-staircase) was used. First, subjects adaptively adjusted the amplitude of a 100-pulse-per-second (pps) pulse train to match the loudness of a 1000-pps standard pulse train. For a range of reference stimulation levels, the loudness of the 100-pps stimulus was matched to that of the 1000-pps standard stimulus; loudness balancing was performed for three electrode pairs [(20,22), (1,3), (1,22)]. The results showed that the loudness balance functions between the 100- and 1000-pps stimulation rates were highly subject-dependent. Some subjects' loudness balance functions were logarithmic, while others' were nearly linear. Loudness balance functions were also measured across electrode locations [(20,22) vs. (1,3)] for two stimulation rates (100, 1000 pps). Results showed that the loudness balance functions between the apical and basal electrode pairs highly depended on the stimulation rate. For all subjects, at the 1000-pps rate, the loudness balance functions between the two electrode locations were nearly linear; however, at the 100-pps rate, the loudness balance function was highly nonlinear in two out of six subjects. These results suggest that, for some cochlear implant patients, low-frequency stimulation may be processed differently at different electrode locations; for these patients, acoustic-to-electric amplitude mapping may need to be sensitive to this place-dependent processing when relatively low stimulation rates are used.  相似文献   

13.
The discrimination of a change in a stimulus is determined both by the magnitude of that change and by the variability in the neural response to the stimulus. When the stimulus is itself noisy, then the relative contributions of the neural (intrinsic) and stimulus induced variability becomes a critical question. We measured the contribution of intrinsic neural noise and interstimulus variability to the discrimination of interaural time differences (ITDs) and interaural correlation (IAC). We measured discharge rate versus characteristic frequency (CF) tone ITD functions, and CF-centered narrowband noise ITD and IAC functions in interleaved blocks in the same units in the inferior colliculus of urethane-anesthetized guinea pigs. Ten “frozen” tokens of noise were synthesized and the responses to each token were separately analyzed to allow the relative contributions of intrinsic and stimulus variability to be assessed. ITD and IAC discrimination thresholds were determined for a simulated two-interval forced-choice experiment, based on the firing rate distributions, using receiver operating characteristic analysis. On average, between stimulus variability contributed 19% (range, 1.5–30%) of the variance in noise ITD discrimination and 27% (range, 3–50%) in IAC discrimination. Noise ITD thresholds were slightly higher than tone ITD thresholds. Taking the mean of the thresholds for individual noise tokens gave a similar result to pooling across all noise tokens. This implies that although the stimulus induced variability is measurable, it is insignificant in relation to the intrinsic noise in ITD and IAC discrimination.  相似文献   

14.
OBJECTIVES: The main purpose of the study was to measure thresholds for interaural time differences (ITDs) and interaural level differences (ILDs) for acoustically presented noise signals in adults with bilateral cochlear implants (CIs). A secondary purpose was to assess the correlation between the ILD and ITD thresholds and error scores in a horizontal-plane localization task, to test the hypothesis that localization by individuals with bilateral implants is mediated by the processing of ILD cues. DESIGN: Eleven adults, all postlingually deafened and all bilaterally fitted with MED-EL COMBI 40+ CIs, were tested in ITD and ILD discrimination tasks in which signals were presented acoustically through headphones that fit over their two devices. The stimulus was a 200-msec burst of Gaussian noise bandpass filtered from 100 to 4000 Hz. A two-interval forced-choice adaptive procedure was used in which the subject had to respond on each trial whether the lateral positions of the two sound images (with the interaural difference favoring the left and right sides in the two intervals) moved from left-to-right or right-to-left. RESULTS: In agreement with previously reported data, ITD thresholds for the subjects with bilateral implants were poor. The best threshold was approximately 400 microsec, and only five of 11 subjects tested achieved thresholds <1000 microsec. In contrast, ILD thresholds were relatively good; mean threshold was 3.8 dB with the initial compression circuit on the implant devices activated and 1.9 dB with the compression deactivated. The ILD and ITD thresholds were higher than previously reported thresholds obtained with direct electrical stimulation (generally, <1.0 dB and 100 to 200 microsec, respectively). When the data from two outlying subjects were omitted, ILD thresholds were highly correlated with total error score in a horizontal-plane localization task, computed for sources near midline (r = 0.87, p < 0.01). CONCLUSIONS: The higher ILD and ITD thresholds obtained in this study with acoustically presented signals (when compared with prior data with direct electrical stimulation) can be attributed-at least partially-to the signal processing carried out by the CI in the former case. The processing strategy effectively leaves only envelope information as a basis for ITD discrimination, which, for the acoustically presented noise stimuli, is mainly coded in the onset information. The operation of the compression circuit reduces the ILDs in the signal, leading to elevated ILD thresholds for the acoustically presented signals in this condition. The large magnitude of the ITD thresholds indicates that ITDs could not have contributed to the performance in the horizontal-plane localization task. Overall, the results suggest that for subjects using bilateral implants, localization of noise signals is mediated entirely by ILD cues, with little or no contribution from ITD information.  相似文献   

15.
Auditory steady state responses are neural potentials in response to repeated auditory stimuli. This study shows that electrically evoked auditory steady state responses (EASSRs) to low-rate pulse trains can be reliably recorded by electrodes placed on the scalp of a cochlear implant (CI) user and separated from the artifacts generated by the electrical stimulation. Response properties are described, and the predictive value of EASSRs for behaviorally hearing thresholds is analyzed. For six users of a Cochlear Nucleus CI, EASSRs to symmetric biphasic pulse trains with rates between 35 and 47 Hz were recorded with seven scalp electrodes. The influence of various stimulus parameters was assessed: pulse rate, stimulus intensity, monopolar or bipolar stimulation mode, and presentation of either one pulse train on one electrode or interleaved pulse trains with different pulse rates on multiple electrodes. To compensate for the electrical artifacts caused by the stimulus pulses and radio frequency transmission, different methods of artifact reduction were employed. The validity of the recorded responses was confirmed by recording on–off responses, determination of response latency across the measured pulse rates, and comparison of amplitude growth of stimulus artifact and response amplitude. For stimulation in the 40 Hz range, response latencies of 35.6 ms (SD = 5.3 ms) were obtained. Responses to multiple simultaneous stimuli on different electrodes can be evoked, and the electrophysiological thresholds determined from EASSR amplitude growth in the 40 Hz range correlate well with behaviorally determined threshold levels for pulse rates of 41 Hz.  相似文献   

16.
Five users of cochlear implants who had residual acoustic hearing in the implanted ear postoperatively participated in a study comparing the percepts elicited by acoustic and electric stimuli. The stimuli comprised pulse trains delivered to single electrodes and pure tones presented ipsilaterally. In the experiments, 12 equally loud stimuli with differing frequencies, electrode positions, and pulse rates were generated. Subjects listened to all of the possible pairs of stimuli in each set, and provided a relative dissimilarity rating for the members of each stimulus pair. The data were analyzed using non-metric multi-dimensional scaling techniques. Stimulus spaces were plotted in two dimensions to represent the results for each subject with each stimulus set. The results suggested that one dimension was associated with a pitch-like percept, related to the acoustic tone frequency and the active electrode position. The second dimension separated the acoustic stimuli from the electric stimuli. Generally, the electric pulse rate seemed to have a relatively small perceptual effect in this experimental context. Overall, the results show that acoustic pure tones are perceived as very different from electric pulse trains delivered to single electrode positions with constant rate, even when both the acoustic and the electric stimuli are presented to the same ear.  相似文献   

17.
Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency–channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable.  相似文献   

18.
Baumann U  Nobbe A 《Hearing research》2004,196(1-2):49-57
Pulse rate difference limen (PRDL) and amplitude modulation difference limen (AMDL) were assessed as a function of base rate and cochlear electrode location in seven (three for AMDL) subjects implanted with the MED-EL COMBI 40+ implant. The MED-EL COMBI 40+ electrode array allows deep insertion of the electrode up to the apex of the cochlea to minimize the rate/place mismatch for pulse rates below 500 pps. A three interval, two alternative forced-choice procedure with feedback was used to measure the difference limen. The base rate was in the range between 200 and 800 pps. The carrier rate for the AMDL measurement was 5081 pps. The PRDL increased with increasing base pulse rate. At 200 pps the average PRDL measured at the apical electrode amounted to 48.7 pps, at 400 pps the average PRDL reached 206.6 pps. No significant difference between PRDL obtained from apical or basal electrodes could be observed. AMDL was higher than PRDL at all tested base rates. The ability to discriminate rate changes is limited to base rates up to about 283 pps. The results indicate that rate changes smaller than a major third do not elicit distinguishable auditory perceptions in electrical hearing. The absence of a difference between apical and basal electrode locations indicates that a reduction of the rate/place mismatch does not improve discrimination performance.  相似文献   

19.
Electrically evoked auditory steady-state responses (EASSRs) are EEG potentials in response to periodic electrical stimuli presented through a cochlear implant. For low-rate pulse trains in the 40-Hz range, electrophysiological thresholds derived from response amplitude growth functions correlate well with behavioral T levels at these rates. The aims of this study were: (1) to improve the correlation between electrophysiological thresholds and behavioral T levels at 900 pps by using amplitude-modulated (AM) and pulse-width-modulated (PWM) high-rate pulse trains, (2) to develop and evaluate the performance of a new statistical method for response detection which is robust in the presence of stimulus artifacts, and (3) to assess the ability of this statistical method to determine reliable electrophysiological thresholds without any stimulus artifact removal. For six users of a Nucleus cochlear implant and a total of 12 stimulation electrode pairs, EASSRs to symmetric biphasic bipolar pulse trains were recorded with seven scalp electrodes. Responses to six different stimuli were analyzed: two low-rate pulse trains with pulse rates in the 40-Hz range as well as two AM and two PWM high-rate pulse trains with a carrier rate of 900 pps and modulation frequencies in the 40-Hz range. Responses were measured at eight different stimulus intensities for each stimulus and stimulation electrode pair. Artifacts due to the electrical stimulation were removed from the recordings. To determine the presence of a neural response, a new statistical method based on a two-sample Hotelling T (2) test was used. Measurements from different recording electrodes and adjacent stimulus intensities were combined to increase statistical power. The results show that EASSRs to modulated high-rate pulse trains account for some of the temporal effects at 900 pps and result in improved electrophysiological thresholds that correlate very well with behavioral T levels at 900 pps. The proposed statistical method for response detection based on a two-sample Hotelling T (2) test has comparable performance to previously used one-sample tests and does not require stimulus artifacts to be removed from the EEG signal for the determination of reliable electrophysiological thresholds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号