首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is implicated in the pathogenesis of cancer, rheumatoid arthritis, and atherosclerosis and in the treatment of coronary artery and peripheral vascular disease. Here, cholesterol-lowering agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are shown to interfere with angiogenesis. In vivo, the HMG-CoA reductase inhibitor simvastatin dose-dependently inhibited capillary growth in both vascular endothelial growth factor-stimulated chick chorioallantoic membranes and basic fibroblast growth factor-stimulated mouse corneas. In vitro, the development of tubelike structures by human microvascular endothelial cells cultured on 3D collagen gels was inhibited at simvastatin concentrations similar to those found in the serum of patients on therapeutic doses of this agent. HMG-CoA reductase inhibitors interfered with angiogenesis via inhibition of the geranylgeranylation and membrane localization of RhoA. Simvastatin inhibited membrane localization of RhoA with a concentration dependence similar to that for the inhibition of tube formation, whereas geranylgeranyl pyrophosphate, the substrate for the geranylgeranylation of Rho, reversed the effect of simvastatin on tube formation and on the membrane localization of RhoA. Furthermore, tube formation was inhibited by GGTI, a specific inhibitor of the geranylgeranylation of Rho; by C3 exotoxin, which inactivates Rho; and by the adenoviral expression of a dominant-negative RhoA mutant. The expression of a dominant-activating RhoA mutant reversed the effect of simvastatin on tube formation. Finally, HMG-CoA reductase inhibitors inhibited signaling by vascular endothelial growth factor, Akt, and focal adhesion kinase, three RhoA-dependent pathways known to be involved in angiogenesis. This study demonstrates a new relationship between lipid metabolism and angiogenesis and an antiangiogenic effect of HMG-CoA reductase inhibitors with possible important therapeutic implications.  相似文献   

2.
OBJECTIVE: Adverse atrial and ventricular myocardial remodeling is characterized by fibrosis, myocyte death or hypertrophy and fibroblast proliferation. HMG-CoA reductase inhibitors (statins) are widely prescribed cholesterol-lowering drugs that also appear to have beneficial effects on myocardial remodeling. Although statins are known to reduce myocyte hypertrophy, their effect on cardiac fibroblast proliferation is unknown. The purpose of this study was to investigate the effects of simvastatin on human atrial myofibroblast proliferation. METHODS: Cardiac myofibroblasts were cultured from biopsies of human right atrial appendage. Proliferation was quantified by cell counting and cell cycle progression determined by immunoblotting for Cyclin A. The expression, activation and intracellular localization of RhoA were investigated using immunoblotting and immunocytochemistry. RESULTS: Simvastatin (0.1-1.0 micromol/l) inhibited serum-induced myofibroblast proliferation in a concentration-dependent manner at a point upstream of Cyclin A expression. These effects were reversed by mevalonate or geranylgeranyl pyrophosphate (GGPP), but not squalene or farnesyl pyrophosphate (FPP), indicating a mechanism involving inhibition of Rho-family GTPases and independent of cholesterol synthesis. The effects of simvastatin were mimicked by inhibiting Rho geranylgeranylation or Rho-kinase activation. Furthermore, we demonstrated that simvastatin inhibited RhoA function by preventing its association with the plasma membrane and hence, its interaction with downstream effectors required for cell proliferation. CONCLUSIONS: Simvastatin reduced proliferation of cultured human atrial myofibroblasts independently of cholesterol synthesis via a mechanism involving inhibition of RhoA geranylgeranylation. Statins may therefore have an important role in preventing adverse myocardial remodeling associated with cardiac myofibroblast proliferation.  相似文献   

3.
3-Hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors (statins) present beneficial effects in cardiovascular diseases. Angiotensin II (Ang II) contributes to cardiovascular damage through the production of profibrotic factors, such as connective tissue growth factor (CTGF). Our aim was to investigate whether HMG-CoA reductase inhibitors could modulate Ang II responses, evaluating CTGF expression and the mechanisms underlying this process. In cultured vascular smooth muscle cells (VSMCs) atorvastatin and simvastatin inhibited Ang II-induced CTGF production. The inhibitory effect of statins on CTGF upregulation was reversed by mevalonate and geranylgeranylpyrophosphate, suggesting that RhoA inhibition could be involved in this process. In VSMCs, statins inhibited Ang II-induced Rho membrane localization and activation. In these cells Ang II regulated CTGF via RhoA/Rho kinase activation, as shown by inhibition of Rho with C3 exoenzyme, RhoA dominant-negative overexpression, and Rho kinase inhibition. Furthermore, activation of p38MAPK and JNK, and redox process were also involved in Ang II-mediated CTGF upregulation, and were downregulated by statins. In rats infused with Ang II (100 ng/kg per minute) for 2 weeks, treatment with atorvastatin (5 mg/kg per day) diminished aortic CTGF and Rho activation without blood pressure modification. Rho kinase inhibition decreased CTGF upregulation in rat aorta, mimicking statin effect. CTGF is a vascular fibrosis mediator. Statins diminished extracellular matrix (ECM) overexpression caused by Ang II in vivo and in vitro. In summary, HMG-CoA reductase inhibitors inhibit several intracellular signaling systems activated by Ang II (RhoA/Rho kinase and MAPK pathways and redox process) involved in the regulation of CTGF. Our results may explain, at least in part, some beneficial effects of statins in cardiovascular diseases.  相似文献   

4.
Recent studies have shown that the mevalonate pathway plays an important role in skeletal metabolism. Statins stimulate bone morphogenetic proteins-2 (BMP-2) production in osteoblasts, implicating a possible beneficial role for statins in promoting anabolic effects on bone. Here, we investigated the effects of a lipophilic simvastatin on osteoblast differentiation using mouse myoblast C2C12 cells, in the presence of tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine that inhibits osteogenesis. The addition of TNF-alpha to C2C12 cells suppressed the BMP-2-induced expression of key osteoblastic markers including Runx2 and alkaline phosphatase (ALP) activity. Simvastatin had no independent effects on Runx2 and alkaline phosphatase activity; however, it reversed the suppressive effects of TNF-alpha. The ability of simvastatin to reverse TNF-alpha inhibition of BMP-induced Smad1,5,8 phosphorylation and Id-1 promoter activity suggests the involvement of Smad signaling pathway in simvastatin action. In addition, cDNA array analysis revealed that simvastatin increased expression levels of Smads in C2C12 cells exposed to TNF-alpha that also activated mitogen-activated protein kinase (MAPK) signaling pathways, including extracellular signal-regulated kinase 1/2 (ERK1/2), P38, and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Simvastatin potently suppressed TNF-alpha-induced phosphorylation of ERK1/2 and SAPK/JNK by inhibiting TNF-alpha-induced membrane localization of Ras and RhoA. Farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) reversed the simvastatin effects on TNF-alpha-induced activation of Ras/Rho/MAPK pathways. FPP and GGPP also restored the simvastatin effects on TNF-alpha-induced suppression of Runx2 and ALP activity. In addition, simvastatin decreased the expression levels of TNF type-1 and -2 receptor mRNAs. Collectively, simvastatin supports BMP-induced osteoblast differentiation through antagonizing TNF-alpha-to-Ras/Rho/MAPK pathway and augmenting BMP-Smad signaling, suggesting a potential usage of statins to ameliorate inflammatory bone damage.  相似文献   

5.
Lee BJ  Lee HS  Kim CD  Jung SW  Seo YS  Kim YS  Jeen YT  Chun HJ  Um SH  Lee SW  Choi JH  Ryu HS 《Gut and liver》2012,6(2):262-269

Background/Aims

Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands can modulate cellular differentiation, proliferation, and apoptosis through various pathways. It has been shown that HMG-CoA reductase inhibitors and PPARγ agonists separately inhibit pancreatic stellate cell (PaSC) activation. We studied the effects of a combination of both types of drugs on activated PaSCs via platelet-derived growth factor (PDGF), which has not previously been reported. The present study was performed to elucidate the underlying mechanisms of these effects by focusing on the impact of the signaling associated with cell-cycle progression.

Methods

Primary cultures of rat PaSCs were exposed to simvastatin and troglitazone. Proliferation was quantified using the BrdU method, and cell-cycle analysis was performed using a fluorescent activated cell sorter. The protein expression levels of smooth muscle actin (SMA), extracellular signal-regulated kinase (ERK), and a cell cycle machinery protein (p27Kip1) were investigated using Western blot analysis.

Results

Simvastatin reversed the effects of PDGF on cell proliferation in a dose-dependent manner. The combination of a low concentration of simvastatin (1 mM) and troglitazone (10 mM) synergistically reversed the effects of PDGF on cell proliferation but had no effect on cell viability. The expression of a-SMA was markedly attenuated by combining the two drugs, which blocked the cell cycle beyond the G0/G1 phase by reducing the levels of phosphorylated ERK and reversed the expression of p27Kip1 interrupted by PDGF.

Conclusions

Simvastatin and troglitazone synergistically inhibited cell proliferation in activated PaSCs by blocking the cell cycle beyond the G0/G1 phase. This inhibition was due to the synergistic modulation of the ERK pathway and the cell cycle machinery protein p27Kip1.  相似文献   

6.
The mechanism by which 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) induce apoptosis in vascular smooth muscle cells (VSMCs) is unknown. In this work, we demonstrate that treatment of VSMCs with simvastatin and atorvastatin inhibited Bcl-2 expression in a time and dose-dependent manner, while Bax expression was not modified. This effect was reversed by mevalonate (100 micromol/l), farnesylpyrophosphate (5 micromol/l) or geranylgeranylpyrophosphate (5 micromol/l), suggesting the involvement of protein prenylation. The treatment of VSMCs with lipophilic statins was associated with decreased prenylation of p-21 Rho A and mevalonate, farnesyl pyrophosphate (F-PP) and geranylgeranyl pyrophosphate (G-PP) reversed prenylation to basal levels. In addition, overexpression of constitutively active Q63L Rho A prevented, at least in part, apoptosis induced by statins and downregulation of Bcl-2. We also investigated the participation of caspases (proteases) in the apoptosis induced by statins. The treatment of VSMCs with lipophilic statins induced activation of the caspase 9, the first caspase of the mitochondrial pathway. Coincubation of VSMCs with the caspase inhibitor ZVAD-fmk (100 micromol/l) significantly inhibited lipophilic statin-induced apoptosis. These findings indicate that the downregulation of Bcl-2 by Rho GTPases mediates statin-induced apoptosis and suggest a new potential mechanism of action for these drugs on the regulation of cell number in the atherosclerotic lesions.  相似文献   

7.
Waldenstrom macroglobulinaemia (WM) is an incurable lymphoplasmacytic lymphoma with secretion of serum monoclonal immunoglobulin M (IgM). We previously showed that patients receiving cholesterol-lowering statins, had the lowest IgM value in a large cohort of patients with WM. Simvastatin, a 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor, induced inhibition of proliferation, cytotoxic effect and apoptosis in IgM secreting cell lines as well as in primary CD19+ WM cells. Interestingly, those effects were reversed by addition of mevalonate and geranylgeranylpyrophosphate, demonstrating that simvastatin inhibited cell growth, survival and IgM secretion on BCWM.1 WM cells by inhibition of geranylgeranylated proteins. Furthermore, simvastatin overcame tumour cell growth induced by co-culture of WM cells with bone-marrow stromal cells. Simvastatin also decreased IgM secretion by BCWM.1 cells at an early time-point that had not affected cell survival. Simvastatin-induced cytotoxicity was preceded by a decrease in Akt (protein kinase B, PKB) and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathways at 18 h. In addition, simvastatin induced an increase in stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) MAPK followed by caspase-8, -9, -3 and poly(ADP-ribose) polymerase (PARP) cleavages at 18 h, leading to apoptosis. Furthermore, simvastatin enhanced the cytotoxicity induced by bortezomib, fludarabine and dexamethasone. Our studies therefore support our earlier observation of statin-mediated anti-WM activity and provide the framework for future clinical trials testing simvastatin in WM.  相似文献   

8.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are often prescribed in association with antihypertensive agents, including calcium antagonists. Simvastatin is an HMG-CoA reductase inhibitor that is metabolized by the cytochrome P450 (CYP) 3A4. The calcium antagonist amlodipine is also metabolized by CYP3A4. The purpose of this study was to investigate drug interactions between amlodipine and simvastatin. Eight patients with hypercholesterolemia and hypertension were enrolled. They were given 4 weeks of oral simvastatin (5 mg/day), followed by 4 weeks of oral amlodipine (5 mg/day) co-administered with simvastatin (5 mg/day). Combined treatment with simvastatin and amlodipine increased the peak concentration (C(max)) of HMG-CoA reductase inhibitors from 9.6 +/- 3.7 ng/ml to 13.7 +/- 4.7 ng/ml (p < 0.05) and the area under the concentration-time curve (AUC) from 34.3 +/- 16.5 ng h/ml to 43.9 +/- 16.6 ng h/ml (p < 0.05) without affecting the cholesterol-lowering effect of simvastatin. This study is the first to determine prospectively the pharmacokinetic and pharmacodynamic interaction between amlodipine and simvastatin.  相似文献   

9.
Statins are widely used in the treatment of dyslipidemia and associated cardiovascular abnormalities including atherosclerosis, hypertension and coronary heart disease. Needless to mention, statins have cholesterol-lowering effects by means of inhibiting 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis. Besides cholesterol-lowering effects, statins possess pleiotropic anti-inflammatory, anti-oxidant, anti-platelet and anti-fibrotic properties, which may additionally play imperative roles in statins-mediated cardiovascular protection. However, the precise mechanisms involved in the cardiovascular defensive potential of statins have not completely been elucidated. Intriguingly, a considerable number of studies demonstrated the potential modulatory role of statins on endothelial nitric oxide synthase (eNOS), a key enzyme involved in the regulation of cardiovascular function by generating endothelium-derived relaxing factor (often represented 'nitric oxide'). Worthy of note is that vascular generation of nitric oxide has beneficial anti-inflammatory, anti-platelet and vasodilatory actions. The upregulation of eNOS by statins is mediated through inhibition of synthesis of isoprenoids and subsequent prevention of isoprenylation of small GTPase Rho, whereas statin-induced activation of eNOS is mediated through activation of phosphotidylinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) signals. Additionally, statins enhance eNOS activation by abrogating caveolin-1 expression in vascular endothelium. In light of this view-point, we suggest in this review that eNOS upregulation and activation, in part, could play a fundamental role in the cardiovascular defensive potential of statins. The eNOS modulatory role of statins may have an imperative influence on the functional regulation of cardiovascular system and may offer new perspectives for the better use of statins in ameliorating cardiovascular disorders.  相似文献   

10.
CONTEXT: Metabolic syndrome (MS) is characterized by low-grade inflammation and confers an increased risk for cardiovascular disease. Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) reduce cardiovascular events in MS patients. There is a paucity of data examining the effect of statins on inflammation in MS. OBJECTIVE: We aimed to test the effect of simvastatin (40 mg/d) compared with placebo on biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and monocytic cytokines TNF, IL-6, and IL-1] in MS subjects. DESIGN AND PATIENTS: We conducted a randomized, double-blind, placebo-controlled study at the University of California, Davis, Medical Center. PARTICIPANTS: Participants were subjects with MS. INTERVENTION: Simvastatin (40 mg/d) or placebo was administered for 8 wk. METHODS AND RESULTS: The hsCRP levels were assayed using a high-sensitivity immunoassay. Monocyte cytokines were assayed by ELISA after activation with lipopolysaccharide. Simvastatin therapy significantly decreased hsCRP levels in MS subjects compared with placebo (P < 0.0005) and resulted in a significant reduction in plasma and lipopolysaccharide-activated monocytic release of IL-6 and TNF (P < 0.025). Simvastatin therapy significantly decreased nuclear factor-kappaB and increased Akt activity in MS subjects compared with placebo. To gain mechanistic insights, human monocytes were pretreated with lovastatin with and without mevalonate or a phosphatidyl-3-kinase inhibitor or Rho kinase inhibitor. Lovastatin significantly decreased Rho kinase and nuclear factor-kappaB activity, significantly increased Akt activity, and resulted in decreased monocyte IL-6 levels; these effects were reversed with mevalonate and geranylgeranyl pyrophosphate, indicating direct effects of statins on protein prenylation. CONCLUSIONS: Thus, we show a direct antiinflammatory effect of simvastatin therapy in MS. These findings could partly explain the benefit of statin therapy in these patients.  相似文献   

11.
BACKGROUND/AIMS: 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors called statins, have besides their cholesterol-lowering function, therapeutic value in conditions such as neo-angiogenesis and atherosclerosis. We investigated the effect of two statins on the proliferation rate and protein steady state levels of hepatic stellate cells (HSC). METHODS: Cellular DNA synthesis under the influence of statins and/or platelet derived growth factor (PDGF) and mevalonate was evaluated by measuring BrdU incorporation. Synthesis of collagens type I, III, IV and fibronectin was quantified by ELISA. Additionally, we examined the influence of simvastatin on isoprenylation of Ras and RhoA proteins. RESULTS: Lovastatin and simvastatin induced a dose-dependent inhibition of the proliferation rate of HSC. Subsequent addition of PDGF and/or mevalonate, after long-term exposure of simvastatin to HSC, did not reverse simvastatins' antiproliferative effect. Lovastatin and simvastatin reduced the protein steady state level of collagens type I (-40%), III (-45%) and IV (-27%). Membrane bound Ras steady state levels decreased under the influence of simvastatin. Membrane bound RhoA remained unaltered, whereas, cytosolic RhoA protein level was strongly reduced. CONCLUSIONS: Our data showed that lovastatin and simvastatin inhibited HSC proliferation and collagen steady state levels by mechanisms independent of their lipid reducing activities.  相似文献   

12.
Inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, such as simvastatin, lower circulating cholesterol levels and prevent myocardial infarction. Several studies have shown an unexpected effect of HMG-CoA reductase inhibitors on inflammation. Here, we confirm that simvastatin is anti-inflammatory by using a classic model of inflammation: carrageenan-induced foot pad edema. Simvastatin administered orally to mice 1 hour before carrageenan injection significantly reduced the extent of edema. Simvastatin was comparable to indomethacin in this model. To determine whether the anti-inflammatory activity of simvastatin might affect atherogenesis, simvastatin was tested in mice deficient in apoE. Mice were dosed daily for 6 weeks with simvastatin (100 mg/kg body wt). Simvastatin did not alter plasma lipids. Atherosclerosis was quantified through the measurement of aortic cholesterol content. Aortas from control mice (n=20) contained 56+/-4 nmol total cholesterol/mg wet wt tissue, 38+/-2 nmol free cholesterol/mg, and 17+/-2 nmol cholesteryl ester/mg. Simvastatin (n=22) significantly (P<0.02) decreased these 3 parameters by 23%, 19%, and 34%, respectively. Histology of the atherosclerotic lesions showed that simvastatin did not dramatically alter lesion morphology. These data support the hypothesis that simvastatin has antiatherosclerotic activity beyond its plasma cholesterol-lowering activity.  相似文献   

13.
Activation of endothelial cells is an incipient process in atherogenesis and leads to induction of the cellular adhesion molecules ICAM-1 and VCAM-1. Their expression can be induced by cytokines as well as other inflammatory mediators. The effects of HMG-CoA reductase inhibitors (statins) include mediation of anti-inflammatory properties. The aim of this study was the comparison of cerivastatin and simvastatin-mediated effects on inflammation-induced ICAM-1 and VCAM-1 expression in human umbilical venous endothelial cells (HUVEC). In HUVEC, TNF-alpha induced ICAM-1 and VCAM-1 mRNA and surface expression. Co-incubation with cerivastatin, but not simvastatin reduced TNF-alpha-induced up-regulation of ICAM-1 surface expression whereas both statins reduced VCAM-1 surface expression; all reductions in surface expression correlated with an increase in the soluble forms of ICAM-1 and VCAM-1 in cell culture supernatants. Mevalonate and nonsteroidal isoprenoids significantly reversed protein expression and shedding. Both statins caused an aggravation of TNF-alpha-induced ICAM-1 and VCAM-1 mRNA expression which was dependent on RNA synthesis. The statin-mediated increase in ICAM-1 and VCAM-1 mRNA expression correlated with the degradation of IkappaBa. Nuclear translocation of p65 was not significantly affected by statin-treatment of cytokine-treated cells. We conclude that cerivastatin and simvastatin reduce TNF-alpha-induced up-regulation of ICAM-1 and VCAM-1 surface expression via increased protein shedding mediated by HMG-CoA reductase inhibition and subsequent isoprenoid depletion.  相似文献   

14.
In proximal tubular epithelial cells (PTECs), depolymerization of actin by cofilin plays a crucial role in maintaining polarity and function. Cofilin is inactivated when phosphorylated by p-Lin-11/Isl-1/Mec-3 kinase (LIMK) to give p-cofilin. LIMK is phosphorylated by phosphorylated p21-activated kinase (PAK), a downstream signal of phosphoinositide 3-kinase (PI3K), or by Rho kinase (ROCK), and is dephosphorylated by slingshot (SSH). However, in PTECs the signaling pathways regulating phosphorylation and dephosphorylation of cofilin, and the influence of high glucose (HG) on these pathways remain to be elucidated. Here, we show that HG in cultured porcine PTECs (LLC-PK1) increases p-cofilin and p-LIMK1 beyond 6h and that the simultaneous presence of phlorizin reverses the increase. HG did not influence the levels of PI3K-p85, downstream signals to SSH1 and p-PAK1, and mRNA of cofilin, LIMK1 and SSH1. On the other hand, wortmannin and LY294002 markedly increased p-cofilin and p-LIMK1 without influencing on the level of SSH1 protein. HG-activated RhoA and ROCK2 beyond 3h, and phlorizin attenuated this activation. GF109203X inhibited HG-induced increase in membranous RhoA and ROCK2, and phorbol ester increased these proteins. Y27632 (a ROCK inhibitor) reversed HG-induced increases of p-cofilin and p-LIMK1. We conclude that HG increases p-cofilin by phosphorylating LIMK1 through activation of Rho/Rho kinase, probably due to diacylglycerol-sensitive PKC activation resulting from increased glucose influx. HG did not alter PI3K or its downstream signals, even though PI3K has a physiological role in maintaining the cofilin level by activating SSH1.  相似文献   

15.
16.
Simvastatin is one of the most commonly prescribed CoA reductase inhibitors. The safety profile of this drug has been widely discussed in the medical and consumer advocacy communities. Like other statins, simvastatin can cause a serious and potentially life-threatening complication: rhabdomyolysis. We describe a case of simvastatin-induced rhabdomyolysis complicated by acute renal failure requiring urgent hemodialysis. The relative safety of simvastatin compared to other HMG-CoA reductase inhibitors and the conditions that can potentiate its toxicity are discussed. The clinical features of rhabdomyolysis, and subsequent acute renal failure, and their treatment modalities are presented.  相似文献   

17.
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease (CVD). In addition to their cholesterol-lowering activities, statins exert pleiotropic antiinflammatory effects, which might contribute to their beneficial effects not only on CVD but also on lipid-unrelated immune and inflammatory diseases, such as rheumatoid arthritis, asthma, stroke, and transplant rejection. However, the molecular mechanisms involved in these antiinflammatory properties of statins are unresolved. Here we show that the peroxisome proliferator-activated receptor (PPAR) alpha mediates antiinflammatory effects of simvastatin in vivo in models of acute inflammation. The inhibitory effects of statins on lipopolysaccharide-induced inflammatory response genes were abolished in PPARalpha-deficient macrophages and neutrophils. Moreover, simvastatin inhibited PPARalpha phosphorylation by lipopolysaccharide-activated protein kinase C (PKC) alpha. A constitutive active form of PKCalpha inhibited nuclear factor kappaB transrepression by PPARalpha whereas simvastatin enhanced transrepression activity of wild-type PPARalpha, but not of PPARalpha mutated in its PKC phosphorylation sites. These data indicate that the acute antiinflammatory effect of simvastatin occurs via PPARalpha by a mechanism involving inhibition of PKCalpha inactivation of PPARalpha transrepression activity.  相似文献   

18.
目的 体外观察辛伐他汀对人肝癌细胞HepG2增殖、细胞周期及细胞周期蛋白依赖激酶抑制因子p21蛋白表达的影响.方法 采用四甲基偶氮唑盐(MTT)法观察辛伐他汀对HepG2细胞增殖的影响,用流式细胞仪检测辛伐他汀对细胞周期的作用,用免疫细胞化学法观察辛伐他汀对细胞周期蛋白依赖激酶抑制因子p2l蛋白表达的影响.对数据进行析因设计与单因素方差分析.结果 体外辛伐他汀可抑制HepG2细胞的增殖(F浓度=1264,P<0.001 ;F时间=17.466,P<0.001;F浓度*时间=35.053,P<0.001).辛伐他汀处理组G0/G1期细胞增多,但细胞凋亡不明显;体外辛伐他汀可增强HepG2细胞周期蛋白依赖激酶抑制因子p21蛋白的表达(F=512.133,P<0.001).结论 体外辛伐他汀对HepG2细胞增殖有抑制作用,该作用可能与其使细胞生长阻滞于G0/G1期及增强细胞周期蛋白依赖激酶抑制因子p21蛋白表达有关.  相似文献   

19.
Background: Diabetic patients are at high risk to develop atherosclerotic cardiovascular disease and have a higher restenotic rate after percutaneous coronary intervention (PCI). Statins improve cardiovascular outcome and reduce restenosis after PCI by inhibiting proliferation and migration of vascular smooth muscle cells (VSMCs). But the effect of statins on diabetes without dyslipidemia was still not fully understood. Our previous study has demonstrated that simvastatin inhibits VSMC proliferation in high glucose status without dyslipidemia, inducing a G0/G1 phase cell cycle growth arrest by acting on multiple steps upstream of pRb, including inhibition of CDK2/4 expression and upregulation of p53, p21, p16, and p27. Method: Following our previous study, we investigated the mechanism of simvastatin inhibition of VSMC migration in a diabetes‐like model (A7r5 cells under high glucose conditions without dyslipidemia). Results: Under high glucose conditions, simvastatin dose‐dependently inhibited VSMC migration, decreased PI3K/Akt pathway activity, reduced c‐Raf and Ras expression, increased RhoB but not RhoA, Rac1, and Cdc2 expression, dose‐dependently inhibited MMP‐2, but not MMP‐9, activity, and dose‐dependently inhibited NF‐κB activity. Conclusion: The inhibition of VSMC migration under high glucose conditions was via two different pathways. The first pathway is mevalonate‐related but not RhoA protein‐related and involves suppression of Ras and PI3K/Akt signals. The second pathway is not mevalonate‐related and involves increasing RhoB expression directly.  相似文献   

20.
Clinical studies have shown that treatment with 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors can stabilize atherosclerotic plaques and slow their progression. One determinant of plaque stability and size is the composition of the vascular extracellular matrix. The aim of this study was to evaluate the effects of different HMG-CoA reductase inhibitors on the expression of major components of the vascular extracellular matrix in smooth muscle cells. Cultured human vascular smooth muscle cells were incubated for 24–72 h with the HMG-CoA reductase inhibitors lovastatin (1–50 μmol/L), simvastatin (0.05–20 μmol/L), and pravastatin ( 1–100 μmol/L). RNA expression of the extracellular matrix proteins thrombospondin-1, fibronectin, collagen type I, and biglycan as well as expression of the cytokine TGF-β1 was determined by Northern blotting. Extracellular matrix protein secretion was visualized by immunofluorescence. In addition, cell proliferation and viability were measured using BrDU-ELISAs, MTT-tests, and direct cell counting. Expression of thrombospondin-1 was significantly decreased after 24 h incubations with lovastatin in concentrations as low as 1 μmol/L. Coincubation with the cholesterol precursor mevalonate completely reversed this effect. The downregulation of thrombospondin-1 expression occured in the same concentration range that also inhibited cell proliferation. In contrast, lovatatin did not affect expression of fibronectin, whereas collagen type I and biglycan expression decreased only after long incubations with high, toxic lovastatin concentrations. Simvastatin, but not the very hydrophilic compound pravastatin, had a similar effect on extracellular matrix expression as lovastatin. In summary, lovastatin and simvastatin predominantly decrease the expression of the glycoprotein thrombospondin-1, which is functionally associated with smooth muscle cell migration and proliferation. In contrast, expression of plaque-stabilizing extracellular proteins such as collagen type I and biglycan are much less affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号