首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Restricted injections either of horseradish peroxidase conjugated with wheat germ agglutinin, or of unconjugated horseradish peroxidase were made into hooded rats in order to distinguish subcortical sources of afferents to dorsal lateral geniculate nucleus from those to the adjacent visually responsive thalamic reticular nucleus, which modulates geniculate activity. Five “nonvisual” brainstem regions project to the dorsal lateral geniculate nucleus: mesencephalic reticular formation, dorsal raphe nucleus, periaqueductal gray matter, dorsal tegmental nucleus, and locus coeruleus. Projections are generally bilateral, but ipsilateral projections dominate. Of these regions, three also project ipsilaterally to the thalamic reticular nucleus: mesencephalic reticular formation, periaqueductal gray matter, and dorsal tegmental nucleus. Similar discrete injections of horseradish peroxidase into ventral lateral geniculate nucleus allowed a comparison of afferents to dorsal and ventral lateral geniculate nuclei. In addition to the five nonvisual brainstem regions which project to the dorsal division, the ventral lateral geniculate nucleus receives afferents from the perirubral reticular formation and the central gray matter at the thalamic level. The dorsal and ventral lateral geniculate nuclei receive substantially different afferents from subcortical visual centres. The dorsal division receives projections from superior colliculus, pretectum, and parabigeminal nucleus whereas the ventral division receives afferents from superior colliculus, additional pretectal nuclei, lateral terminal nucleus of the accessory optic system, and the contralateral ventral lateral geniculate nucleus.  相似文献   

2.
We have correlated the tectal connections and cytoarchitecture of regions in the rabbit's midbrain and caudal thalamus. The inferior colliculus projects ipsilaterally to the central gray, superior colliculus, and via the brachium of the inferior colliculus to its interstitial nucleus and the parabrachial region of the midbrain tegmentum. From the brachium, fibers fan out to the principal and internal divisions of the medial geniculate. A smaller contralateral pathway sweeps into the contralateral inferior colliculus and in its brachium to the interstitial nucleus, the parabrachial region, and the internal and principal divisions of the medial geniculate. The superior collicular projection is mainly ipsilateral. Medially, fibers terminate in the central gray and pretectal area. Laterally, fibers ascend in the superior brachium to parabrachial region, suprageniculate pretectal nucleus, posterior complex, caudodorsal internal division of the medial geniculate, and to a discrete part of the ventral nucleus of later geniculate. A component of the commissure of Gudden originates in the rostral superior colliculus and terminates in the contralateral ventral lateral geniculate, posterior complex, pretectal area and midbrain tegmentum. Interconnections between the colliculi and overlap of their projections in the parabrachial region, the central gray, and the internal division of the medial geniculate are described.  相似文献   

3.
The intergeniculate leaflet (IGL), a major constituent of the circadian visual system, is one of 12 retinorecipient nuclei forming a “subcortical visual shell” overlying the diencephalic–mesencephalic border. The present investigation evaluated IGL connections with nuclei of the subcortical visual shell and determined the extent of interconnectivity between these nuclei. Male hamsters received stereotaxic, iontophoretic injections of the retrograde tracer, cholera toxin β fragment, or the anterograde tracer, Phaseolus vulgaris-leucoagglutin, into nuclei of the pretectum (medial, commissural, posterior, olivary, anterior, nucleus of the optic tract, posterior limitans), into the superior colliculus, or into the visual thalamic nuclei (lateral posterior, dorsal lateral geniculate, intergeniculate leaflet, ventral lateral geniculate). Retrogradely labeled cell bodies identified nuclei with afferents projecting to the site of injection, whereas the presence of anterogradely labeled fibers with terminals revealed brain nuclei targeted by neurons at the site of injection. The IGL projects bilaterally to all nuclei of the visual shell except the lateral posterior and dorsal lateral geniculate nuclei. The IGL also has afferents from the same set of nuclei, except the nucleus of the optic tract. The extensive bilateral efferent projections distinguish IGL from the ventral lateral geniculate nucleus. The superior colliculus, commissural pretectal, olivary pretectal, and posterior pretectal nuclei also project bilaterally to the majority of subcortical visual nuclei. The IGL has a well-established role in circadian rhythm regulation, but there is as yet no known function for it in the larger context of the subcortical visual system, much of which is involved in oculomotor control. J. Comp. Neurol. 396:288–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.  相似文献   

5.
Afferent projections to the thalamic lateral dorsal nucleus were examined in the rat by the use of retrograde axonal transport techniques. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the lateral dorsal nucleus, and the location and morphology of cells of origin of afferent projections were identified by retrograde labeling. For all cases examined, subcortical retrogradely labeled neurons were most prominent in the pretectal complex, the intermediate layers of the superior colliculus, and the ventral lateral geniculate nucleus. Labeled cells were also seen in the thalamic reticular nucleus and the zona incerta. Within the cerebral cortex, labeled cells were prominent in the retrosplenial areas (areas 29b, 29c, and 29d) and the presubiculum. Labeled cells were also seen in areas 17 and 18 of occipital cortex. Peroxidase injections in the dorsal lateral part of the lateral dorsal nucleus result in labeled neurons in all of the ipsilateral pretectal nuclei, but especially those that receive direct retinal afferents. Labeled cells were also seen in the ventral lateral geniculate nucleus and the rostral tip of laminae IV-VI of the superior colliculus. In contrast, peroxidase injections in ventral medial portions of the lateral dorsal nucleus result in fewer labeled pretectal cells, and these labeled cells are found exclusively in the pretectal nuclei that do not receive retinal afferents. Other labeled cells following injections in the rostral and medial portions of the lateral dorsal nucleus are seen contralaterally in the medial pretectal region and nucleus of the posterior commissure, and bilaterally in the rostral tips of laminae IV and V of the superior colliculus. Camera lucida drawings of HRP labeled cells reveal that projecting cells in each pretectal nucleus have a characteristic soma size and dendritic branching pattern. These results are discussed with regard to the type of sensory information that may reach the lateral dorsal nucleus and then be relayed on to the medial limbic cortex.  相似文献   

6.
A rare type of ganglion cell in mammalian retina is directly photosensitive. These novel retinal photoreceptors express the photopigment melanopsin. They send axons directly to the suprachiasmatic nucleus (SCN), intergeniculate leaflet (IGL), and olivary pretectal nucleus (OPN), thereby contributing to photic synchronization of circadian rhythms and the pupillary light reflex. Here, we sought to characterize more fully the projections of these cells to the brain. By targeting tau-lacZ to the melanopsin gene locus in mice, ganglion cells that would normally express melanopsin were induced to express, instead, the marker enzyme beta-galactosidase. Their axons were visualized by X-gal histochemistry or anti-beta-galactosidase immunofluorescence. Established targets were confirmed, including the SCN, IGL, OPN, ventral division of the lateral geniculate nucleus (LGv), and preoptic area, but the overall projections were more widespread than previously recognized. Targets included the lateral nucleus, peri-supraoptic nucleus, and subparaventricular zone of the hypothalamus, medial amygdala, margin of the lateral habenula, posterior limitans nucleus, superior colliculus, and periaqueductal gray. There were also weak projections to the margins of the dorsal lateral geniculate nucleus. Co-staining with the cholera toxin B subunit to label all retinal afferents showed that melanopsin ganglion cells provide most of the retinal input to the SCN, IGL, and lateral habenula and much of that to the OPN, but that other ganglion cells do contribute at least some retinal input to these targets. Staining patterns after monocular enucleation revealed that the projections of these cells are overwhelmingly crossed except for the projection to the SCN, which is bilaterally symmetrical.  相似文献   

7.
The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.  相似文献   

8.
Retinal projections in the house musk shrew (Suncus murinus) were determined by the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Unilateral injection of WGA-HRP into the vitreous body resulted in the terminal labeling of the optic projections in the suprachiasmatic nucleus (SCH), the ventral (CGLv) and dorsal (CGLd) lateral geniculate nuclei, the intergeniculate leaflet (IGL), the pretectum, the superficial layers of the superior colliculus (CS), and the dorsal terminal nucleus (DTN) of the accessory optic system (AOS). Labeling of the SCH was bilateral, with ipsilateral predominance, and covered the whole dorsoventral extent of the nucleus. Immunohistochemical studies revealed that VIP-like immunoreactive neurons and fibers were present in almost all parts of the SCH. No hypothalamic regions other than the SCH received the optic fibers. The ipsilateral projections to the CGLv, CGLd, and IGL were sparse, and a considerable number of uncrossed retinal fibers were found in the pretectal olivary nucleus. No retinal projections to the lateral posterior thalamic nucleus (LP) were found. Ipsilateral optic fibers projected sparsely to the medial part of the CS. The AOS consisted of a small DTN with a very few crossed retinal projections but no lateral and medial terminal nuclei. In addition, the AOS had no inferior fascicle.  相似文献   

9.
The differential projections of the three main cellular strata of the superior colliculus have been examined in the cat by the autoradiographic method. The stratum griseum superficiale projects caudally to the parabigeminal nucleus and rostrally to several known visual centers: the nucleus of the optic tract and the olivary pretectal nucleus in the pretectum; the deepest C laminae of the dorsal lateral geniculate nucleus; the large-celled part of the ventral lateral geniculate nucleus; the posteromedial, large-celled part of the lateral posterior nucleus of the thalamus. Several of these projections are topographically organized. The stratum griseum profundum gives rise to most of the descending projections of the superior colliculus. Ipsilateral projections pass to both the dorsolateral and lateral divisions of the pontine nuclei, the cuneiform nucleus, and the raphe nuclei, and to extensive parts of the brainstem reticular formation: the tegmental reticular nucleus, and the paralemniscal, lateral, magnocellular, and gigantocellular tegmental fields. Contralateral projections descending in the predorsal bundle pass to the medial parts of the tegmental reticular nucleus and of some of the tegmental fields, the dorsal part of the medial accessory nucleus of the inferior olivary complex, and to the ventral horn of the cervical spinal cord. Ascending projections of the stratum griseum profundum terminate in several nuclei of the pretectum, the magnocellular nucleus of the medial geniculate complex and several intralaminar nuclei of the thalamus, and in the fields of Forel and zona incerta in the subthalamus. The strata grisea profundum and intermediale each have projections to homotopic areas of the contralateral superior colliculus, to the pretectum, and to the central lateral and suprageniculate nuclei of the thalamus. However, the stratum griseum intermediale has few or no descending projections.  相似文献   

10.
The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and the major source of thalamic afferents to the hippocampus and parahippocampal structures. Nucleus reuniens has recently been shown to exert powerful excitatory actions on CA1 of the hippocampus. Few reports on any species have examined afferent projections to nucleus reuniens. By using the retrograde anatomical tracer Fluorogold, we examined patterns of afferent projections to RE in the rat. We showed that RE receives a diverse and widely distributed set of afferents projections. The main sources of input to nucleus reuniens were from the orbitomedial, insular, ectorhinal, perirhinal, and retrosplenial cortices; CA1/subiculum of hippocampus; claustrum, tania tecta, lateral septum, substantia innominata, and medial and lateral preoptic nuclei of the basal forebrain; medial nucleus of amygdala; paraventricular and lateral geniculate nuclei of the thalamus; zona incerta; anterior, ventromedial, lateral, posterior, supramammillary, and dorsal premammillary nuclei of the hypothalamus; and ventral tegmental area, periaqueductal gray, medial and posterior pretectal nuclei, superior colliculus, precommissural/commissural nuclei, nucleus of the posterior commissure, parabrachial nucleus, laterodorsal and pedunculopontine tegmental nuclei, nucleus incertus, and dorsal and median raphe nuclei of the brainstem. The present findings of widespread projections to RE, mainly from limbic/limbic-associated structures, suggest that nucleus reuniens represents a critical relay in the transfer of limbic information (emotional/cognitive) from RE to its major targets, namely, to the hippocampus and orbitomedial prefrontal cortex. RE appears to be a major link in the two-way exchange of information between the hippocampus and the medial prefrontal cortex.  相似文献   

11.
The efferent connections of the ventral medulla oblongata have been analyzed in the rat using the anterograde autoradiographic method and the HRP technique. Fibers originating from the nucleus interfascicularis hypoglossi (B1 serotonergic cell group) and nucleus reticularis gigantocellularis, pars a (B3 serotonergic cell group) innervate the intermediolateral cell column, ventral horn and intermediate gray matter of the spinal cord. Some fibers innervate the hypoglossal, dorsal motor vagal, and medial solitary nuclei. Ascending fibers project through the medullary and pontine reticular formation, providing inputs to the Kölliker-Fuse, lateral parabrachial, laterodorsal tegmental, subcoeruleus and locus coeruleus nuclei. In the midbrain, the fibers ascend in the central tegmental field and then divide into several fiber bundles. Some course medially to innervate the central gray matter. Others diverge laterally to innervate the external nucleus of the inferior colliculus and cuneiform nucleus as well as the deep layers of the contralateral superior colliculus. Still others course dorsally through the ventral pretectal region to reach the thalamus (laterodorsal, paraventri-cular, paracentral, and centrolateral thalamic nuclei). The remaining fibers innervate the hypothalamus (dorsal hypothalamic area, paraventricular nucleus, perifornical area, supraoptic nucleus, retrochiasmatic area, and median eminence). Some of these continue through the lateral preoptic region, shift medially as they course through the area of the nucleus of the diagonal band, septofimbrial nucleus, and medial septum, and arch around the genu of the corpus callosum to innervate the hippocampal formation.  相似文献   

12.
Efferent tectal pathways have been determined for the opossum, Didelphis virginiana, by employing the Nauta-Gygax technique ('54) on animals with tectal lesions of varying sizes. The superior colliculus projected tectothalamic fascicles to the suprageniculate nucleus, the central nucleus of the medial geniculate body, the lateral posterior thalamus, the pretectal nucleus, the ventral lateral geniculate nucleus, the fields of Forel and zona incerta, the parafascicular complex, the paracentral thalamic nucleus and in some cases to restricted areas of the anterior thalamus. Degenerating fibers from superior collicular lesions showed profuse distribution to the deeper layers of the superior colliculus on both sides and to the midbrain tegmentum, but only minimally to the red nucleus and substantia nigra. Fibers of tectal origin did not distribute to the motor nuclei of the oculomotor or trochlear nerves. At pontine levels, efferent fascicles from the superior colliculus were present as an ipsilateral tectopontine and tectobulbar tract and as a crossed predorsal bundle. The tectopontine tract ended mostly within the lateral and ventral basal pontine nuclei, whereas the ipsilateral tectobulbar tract distributed to certain specific areas of the reticular formation throughout the pons and medulla, minimally to the most medial portion of the motor nucleus of the facial nerve and to the nucleus of the inferior olive. The predorsal tract contributed fascicles to certain nuclei of the pontine raphe, extensively to the medial reticular formation of the pons, to the central and ventral motor tegmental nuclei of the reticular formation within the pons and medulla, to the paraabducens region, minimally to cells within restricted portions of the motor nucleus of the facial nerve, to certail specific regions of the caudal medulla and to the cervical cord as far caudally as the fourth segment. The tectospinal fascicles were few but some ended related to the spinal accessory nucleus and the ventral medial nucleus of the ventral horn. Lesions of the inferior colliculus resulted in degenerating fibers which distributed rostrally to the rostral nucleus of the lateral lemniscus and parabrachial region, to the suprageniculate nucleus, the parabigeminal nucleus and to the central nucleus of the medial geniculate body. The inferior colliculus also contributed fibers to the ipsilateral tectopontine and tectobulbar tracts. The latter bundle was traced as far caudally as the medulla and may arise from cells of the superior colliculus which are situated dorsal to the nucleus of the inferior colliculus.  相似文献   

13.
The connections of the precomissural nucleus (PRC) have been examined with anterograde and retrograde axonal tracing methods in the rat. Experiments with cholera toxin B subunit (CTb) indicate that the PRC shares a number of common afferent sources with the dorsolateral periaqueductal gray (PAG). Thus, we have shown that the nucleus receives substantial inputs from the prefrontal cortex, specific domains of the rostral part of the lateral septal nucleus, rostral zona incerta, perifornical region, anterior hypothalamic nucleus, ventromedial hypothalamic nucleus, dorsal premammillary nucleus, medial regions of the intermediate and deep layers of the superior colliculus, and cuneiform nucleus. Moreover, the PRC also receives inputs from several PAG regions and from neural sites involved in the control of attentive or motivational state, including the laterodorsal tegemental nucleus and the ventral tegmental area. The efferent projections of the PRC were analyzed by using the Phaseolus vulgaris-leucoagglutinin (PHA-L) method. Notably, the PRC presents a projection pattern that resembles in many ways the pattern described previously for the rostral dorsolateral PAG in addition to projections to a number of targets that also are innervated by neighboring pretectal nuclei, including the rostrodorsomedial part of the lateral dorsal thalamic nucleus, the ventral part of the lateral geniculate complex, the medial pretectal nucleus, the nucleus of the posterior commissure, and the ventrolateral part of the subcuneiform reticular nucleus. Overall, the results suggest that the PRC might be viewed as a rostral component of the PAG, and the possible functional significance of the nucleus is discussed in terms of its connections.  相似文献   

14.
Brainstem neurons that project to the optic tectum of the eastern garter snake were identified by retrograde transport of horseradish peroxidase. The distribution and morphology of tectal afferent axons from the thalamus, pretectum, nucleus isthmi, and midbrain reticular formation were then studied by anterograde transport of horseradish peroxidase. Diencephalic projections to the tectum arise from the ventral lateral geniculate complex ipsilaterally and the ventrolateral nucleus, suprapeduncular nucleus, and nucleus of the ventral supraoptic decussation bilaterally. Three pretectal groups (the lentiform thalamic nucleus, the lentiform mesencephalic-pretectal complex and the geniculate pretectal nucleus) give rise to heavy, bilateral tectal projections. Small neurons in nucleus isthmi and large reticular neurons in nucleus lateralis profundus mesencephali also give rise to bilateral projections. Caudal to the tectum, projections arise bilaterally from the pontine and medullary tegmentum, nuclei of the lateral lemniscus, the posterior colliculus, and the sensory trigeminal nucleus. A small contralateral projection arises from the medial vestibular complex. Tectal afferents from the thalamus, pretectum, nucleus isthmi, and midbrain reticular formation had characteristic morphologies and laminar distributions within the tectum. However, these afferents fall into two groups based on their spatial organization. Afferents from the thalamus and nucleus isthmi arise from small neurons with spatially restricted, highly branched dendritic trees. Their axons terminate in single, highly branched and bouton-rich arbors about 100 micron in diameter. By contrast, afferents from the midbrain reticular formation and the pretectum arise from large neurons with long, radiate, and sparsely branched dendritic trees. Their axons course parallel to the tectal surface and emit numerous collateral branches that are distributed widely through the mediolateral and rostrocaudal extent of either the central or superficial gray layers. Each collateral bears several small, spatially disjunct clusters of boutons.  相似文献   

15.
Retinal projections to the brain stem structures in the rabbit were examined autoradiographically using transneuronal tracing technique. Three or four weeks after intraocular injections of tritiated proline and tritiated fucose, significant amounts of silver grains indicating transneuronal labeling of axon terminals were present bilaterally in the visual cortical areas, the dorsal portions of the medial geniculate nucleus, and the suprageniculate nucleus, and contralaterally in the thalamic reticular nucleus, the lateroposterior-pulvinar nuclear complex, the parabigeminal nucleus, the pontine tegmental reticular nucleus of Bechterew, the dorsolateral, lateral, and paramedian pontine nuclei, the pontine reticular formation, and the dorsal cap and beta nucleus of the inferior olive. The label in the pontine regions was probably due to the afferent fibers from the pretectal nuclei and the superior colliculus, and the label in the inferior olive was considered to depend on the uncrossed afferent fibers from the pretectal nuclei and the nuclei of the accessory optic tract.  相似文献   

16.
C E Ribak  A Peters 《Brain research》1975,92(3):341-368
The projections from the lateral geniculate body of the rat were followed using the technique of autoradiography after injections of [3H] proline into the dorsal and/or ventral nuclei of this diencephalic structure. Autoradiographs were prepared from either frozen or paraffin coronal sections through the rat brain. The dorsal nucleus of the lateral geniculate projected via the optic radiation to area 17 of the cerebral cortex. There was also a slight extension of label into the zones of transition between areas 17, 18 and 18a. The distribution of silver grains in the various layers of the cerebral cortex was analyzed quantitatively and showed a major peak of labeling in layer IV with minor peaks in outer layer I and the upper half and lowest part of layer VI. The significance of these peaks is discussed in respect to the distribution of geniculocortical terminals in other mammalian species. The ventral nucleus of the lateral geniculate body had 5 major projections to brain stem structures both ipsilateral and contralateral to the injected nucleus. There were two dorsomedial projections: (1) a projection to the superior colliculus which terminated mainly in the medial third of the stratum opticum, and (2) a large projection via the superior thalamic radiation which terminated in the ipsilateral pretectal area; a continuation of this projection passed through the posterior commissure to attain the contralateral pretectal area. The three ventromedial projections involved: (1) a geniculopontine tract which coursed through the basis pedunculi and the lateral lemniscus to terminate in the dorsomedial and dorsolateral parts of the pons after giving terminals to the lateral terminal nucleus of the accessory optic tract, (2) a projection via Meynert's commissure to the suprachiasmatic nuclei of both sides of the brain stem as well as to the contralateral ventral lateral geniculate nucleus and lateral terminal nucleus of the accessory optic tract, and (3) a medial projection to the ipsilateral zona incerta. The results obtained in these experiments are contrasted with other data on the rat's central visual connections to illustrate the importance of these connections in many subcortical visual functions.  相似文献   

17.
Autoradiography was used to investigate the optic system of the Chinese pangolin, Manis pentadactyla. The pattern of retinal projections in the Chinese pangolin is similar to that described in other mammals. Each retina projects bilaterally to the suprachiasmatic nucleus, dorsal and ventral lateral geniculate nuclei, pretectal area, and superior colliculus (SC). Only contralateral projections are found to the medial, lateral, and dorsal accessory optic nuclei. The large lateral nucleus receives a dense projection from the retina and forms a compact mass on the dorsolateral area of the cerebral peduncle. The lamination of the SC could not be clearly demonstrated in the brain of the Chinese pangolin.  相似文献   

18.
Visual projections to the pontine nuclei in the rabbit were examined by means of both orthograde and retrograde tracing of WGA-HRP. The tecto-pontine projection was examined following microinjections of WGA-HRP in the right superior colliculus. The projection to the pontine nuclei is strictly ipsilateral and terminates at middle and caudal levels of the pons. The projection is absent in rostral pontine nuclei. The strongest projection is to the dorsal border of the dorsolateral pontine nuclei and is the only projection seen when the primary injection site is confined to superficial laminae. When the primary injection site also includes intermediate and deep laminae, patches of labelled terminals are also seen within dorsolateral, lateral, peduncular, paramedian, and ventral pontine nuclei as well as in the contralateral nucleus reticularis tegmenti pontis. The striate corticopontine projection was also examined with orthograde tracing of WGA-HRP. The striate corticopontine projection is ipsilateral. Most labelled terminals were seen in dorsolateral and lateral pontine nuclei throughout the rostral half of pons with some additional terminal labelling in paramedian and peduncular nuclei. Labelled terminals were also seen in ventral pontine nuclei throughout the middle and caudal levels of the pons. In a retrograde tracing study, visual projections to the pontine nuclei were examined following microinjections of WGA-HRP into the pontine nuclei. Labelled cells were seen ipsilaterally in superficial and deep laminae of the superior colliculus and in layer V of striate and surrounding occipital cortex. The pontine nuclei also receive ipsilateral projections from the ventral lateral geniculate, the nucleus of the optic tract, anterior and posterior pretectal nuclei, and the dorsal and medial terminal nuclei of the accessory optic system. These pathways are potential sources of visual input to the cerebellum.  相似文献   

19.
The ventral lateral geniculate nucleus is a small extrageniculate visual structure that has a complex cytoarchitecture and diverse connections. In addition to small-celled medial and lateral divisions, we cytoarchitectonically defined a small-celled dorsal division. A large-celled intermediate division intercalated between the three small-celled divisions, which we divided into medial and lateral intermediate subdivisions. In WGA-HRP injection experiments, the different cytoarchitectonic divisions were shown to have connections with different nuclei. The medial division was reciprocally connected to the pretectum and projected to the superficial layers of the superior colliculus and the intralaminar nuclei. The medial intermediate division received projections from the intermediate layer of the superior colliculus and the lateral and interpositus posterior cerebellar nuclei, and projected to the intermediate layer of the superior colliculus, the periaqueductal gray of midbrain, and the intralaminar nuclei. The lateral intermediate divisions received projections from the pretectum, the intermediate layer of the superior colliculus, and the lateral and interpositus posterior cerebellar nuclei, and projected to the pretectum, superficial layers of the superior colliculus, and the pulvinar. The lateral division received projections from superficial layers of the superior colliculus and had reciprocal connections with the pretectum. The dorsal division received projections from the pretectum and had reciprocal connections with the periaqueductal gray of midbrain. The different cytoarchitectonic divisions of the ventral lateral geniculate nucleus are thus suggested to play different functional roles related to vision, eye and head movements, attention, and defensive reactions.  相似文献   

20.
The ascending cholinergic projections of the pedunculopontine and dorsolateral tegmental nuclei, referred to collectively as the pontomesencephalotegmental (PMT) cholinergic complex, were investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) pharmacohistochemistry. Propidium iodide, true blue, or Evans blue was infused into the anterior, reticular, mediodorsal, central medial, and posterior nuclear areas of the thalamus; the habenula; lateral geniculate; superior colliculus; pretectal/parafascicular area; subthalamic nucleus; caudate-putamen complex; globus pallidus; entopeduncular nucleus; substantia nigra; medial septal nucleus/vertical limb of the diagonal band area; magnocellular preoptic/ventral pallidal area; and lateral hypothalamus. In some animals, separate injections of propidium iodide and true blue were made into two different regions in the same rat brain, usually a dorsal and a ventral target, in order to assess collateralization patterns. Retrogradely transported fluorescent labels and ChAT and/or AChE were analyzed microscopically on the same brain section. All of the above-delimited targets were found to receive cholinergic input from the PMT cholinergic complex, but some regions were preferentially innervated by either the pedunculopontine or dorsolateral tegmental nucleus. The former subdivision of the PMT cholinergic complex projected selectively to extrapyramidal structures and the superior colliculus, whereas the dorsolateral tegmental nucleus was observed to provide cholinergic input preferentially to anterior thalamic regions and rostral portions of the basal forebrain. The PMT cholinergic neurons showed a tendency to collateralize extensively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号