首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary This experiment investigated the effects of intensity of exercise on excess postexercise oxygen consumption (EPOC) in eight trained men and eight women. Three exercise intensities were employed 40%, 50%, and 70% of the predetermined maximal oxygen consumption (VO2max). All ventilation measured was undertaken with a standard, calibrated, open circuit spirometry system. No differences in the 40%, 50% and 70% VO2max trials were observed among resting levels of oxygen consumption (V02) for either the men or the women. The men had significantly higher resting VO2 values being 0.31 (SEM 0.01) 1·min–1 than did the women, 0.26 (SEM 0.01) 1·min–1 (P < 0.05). The results indicated that there were highly significant EPOC for both the men and the women during the 3-h postexercise period when compared with resting levels and that these were dependent upon the exercise intensity employed. The duration of EPOC differed between the men and the women but increased with exercise intensity: for the men 40% – 31.2 min; 50% – 42.1 min; and 70% – 47.6 min and for the women, 40% – 26.9 min; 50% – 35.6 min; and 70% – 39.1 min. The highest EPOC, in terms of both time and energy utilised was at 70% VO2max. The regression equation for the men, where y=O2 in litres, and x=exercise intensity as a percentage of maximum was y=0.380x + 1.9 (r 2=0.968) and for the women is y=0.374x–0.857 (r 2=0.825). These findings would indicate that the men and the women had to exercise at the same percentage of their VO2max to achieve the maximal benefits in terms of energy expenditure and hence body mass loss. However, it was shown that a significant EPOC can be achieved at moderate to low exercise intensities but without the same body mass loss and energy expenditure.  相似文献   

2.
Summary To study the effects of exercise intensity and duration on excess postexercise oxygen consumption (EPOC), 8 men [age= 27.6 (SD 3.8) years, VO2max = 46.1 (SD 8.5) ml min–1 kg–1] performed four randomly assigned cycle-ergometer tests (20 min at 60% VO2max, 40 min at 60% VO2max, 20 min at 70% VO2max, and 40 min at 70% VO2max). O2 uptake, heart rate and rectal temperature were measured before, during, and for 1 h following the exercise tests. Blood for plasma lactate measurements was obtained via cannulae before, and at selected times, during and following exercise. VO2 rapidly declined to preexercise levels following each of the four testing sessions, and there were no differences in EPOC between the sessions. Blood lactate and rectal temperature increased (P<0.05) with exercise, but had returned to preexercise levels by 40 min of recovery. The results indicate that VO2 returned to resting levels within 40 min after the end of exercise, regardless of the intensity (60% and 70% VO2max or duration (20 min and 40 min) of the exercise, in men with a moderate aerobic fitness level.  相似文献   

3.
Summary A characteristic notch in the heart rate (f c) on-response at the beginning of square-wave exercise is described in 7 very fit marathon runners and 12 sedentary young men, during cycle tests at 30% and 60% of maximal oxygen consumption (VO2max). The (f c) notch revealed af c overshoot with respect to the (f c) values predicted from exponential beat-by-beat fitted models. While at 30% of (VO2max). all subjects showed af c over-shoot, at 60% of (VO2max). it occurred in the marathon runners but not in the sedentary subjects. The mean time of occurrence of thef c overshoot from the onset of the exercise was 16.7 (SD 4.7) s and 12.2 (SD 3.2) s at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 23.8 (SD 8.8) s at 60% of (VO2max). in the runners. The amplitude of the overshoot, with respect to rest, was 41 (SD 12) beats·min–1and 31 (SD 4) beats·min–1 at 30% of (VO2max). in the runners and the sedentary subjects respectively, and 46 (SD 19) beats·min–1 at 60% of (VO2max). in the runners. The existence and the amplitude of thef c overshoot may have been related to central command and muscle heart reflex mechanisms and thus may have been indicators of changes in the balance between sympathetic and parasympathetic activity occurring in fit and unfit subjects.  相似文献   

4.
Summary The purpose of the present investigation was to examine the effects of hyperglycoemia induced by supramaximal exercise on blood glucose homeostasis during submaximal exercise following immediately after. Six men were subjected to three experimental situations; in two of these situations, 3 min of high-intensity exercise (corresponding to 112, SD 1%VO2 max) was immediately followed by either a 60-min period of submaximal exercise (68, SD 2%VO2 max) or a 60-min resting period. In the third situation, subjects performed a 63-min period of submaximal exercise only. There were no significant differences between the heurt rates, oxygen uptakes, and respiratory exchange ratios during the two submaximal exercise bouts (> 15 min) whether or not preceded by supramaximal exercise. The supramaximal exercise was associated within 10 min of the start increases (P<0.05) in blood glucose, insulin, and lactate concentrations. This hyperglycemia was more pronounced when subjects continued to exercise submaximally than when they rested (at 7.5 min;P<0.05). There was a more rapid return to normal exercise blood glucose and insulin values during submaximal exercise compared with rest. The data show that the hyperinsulinemia following supramaximal exercise is corrected in between 10–30 min during submaximal exercise following immediately, suggesting that this exercise combination does not lead to premature hypoglycemia.  相似文献   

5.
Sex differences in performance-matched marathon runners   总被引:1,自引:0,他引:1  
Summary Six male and six female runners were chosen on the basis of age (20–30 years) and their performance over the marathon distance (mean time = 199.4, SEM 2.3 min for men and 201.8, SEM 1.8 min for women). The purpose was to find possible sex differences in maximal aerobic power (VO2max), anaerobic threshold, running economy, degree and utilization of VO2max (when running a marathon) and amount of training. The results showed that performance-matched male and female marathon runners had approximately the same VO2max (about 60 ml·kg–1·min–1). For both sexes the anaerobic threshold was reached at an exercise intensity of about 83% of VO2max, or 88%–90% of maximal heart rate. The females' running economy was poorer, i.e. their oxygen uptake during running at a standard submaximal speed was higher (P<0.05). The heart rate, respiratory exchange ratio and blood lactate concentration also confirmed that a given running speed resulted in higher physiological. strain for the females. The percentage utilization of VO2max at the average marathon running speed was somewhat higher for the females, but the difference was not significant. For both sexes the oxygen uptake at average speed was 93%–94% of the oxygen uptake corresponding to the anaerobic threshold. Answers to a questionnaire showed that the females' training programme over the last 2 months prior to running the actual marathon comprised almost twice as many kilometres of running per week compared to the males (60 and 33 km, respectively). The better state of training of the females was also confirmed by a 10% higher VO2max, in relation to lean body mass than that of the male runners. Apart from the well-known variation in height and differences in the percentage of fat, the difference between performance-matched male and female marathon runners seemed primarily to be found in running economy and amount of training.  相似文献   

6.
Sex differences in running economy (gross oxygen cost of running, CR), maximal oxygen uptake (VO2max), anaerobic threshold (Than), percentage utilization of aerobic power (% VO2max), and Than during running were investigated. There were six men and six women aged 20–30 years with a performance time of 2 h 40 min over the marathon distance. The VO2max, Than, and CR were measured during controlled running on a treadmill at 1° and 3° gradient. From each subject's recorded time of running in the marathon, the average speed (v M) was calculated and maintained during the treadmill running for 11 min. The VO2 max was inversely related to body mass (m b), there were no sex differences, and the mean values of the reduced exponent were 0.65 for women and 0.81 for men. These results indicate that for running the unit ml·kg–0.75·min–1 is convenient when comparing individuals with different m b. The VO2max was about 10% (23 ml·kg–0.75·min–1) higher in the men than in the women. The women had on the average 10–12 ml·kg–0.75·min–1 lower VO2 than the men when running at comparable velocities. Disregarding sex, the mean value of CR was 0.211 (SEM 0.005) ml·kg–1·m–1 (resting included), and was independent of treadmill speed. No sex differences in Than expressed as % VO2max or percentage maximal heart rate were found, but Than expressed as VO2 in ml·kg–0.75·min–1 was significantly higher in the men compared to the women. The percentage utilization of f emax and concentration of blood lactate at v M was higher for the female runners. The women ran 2 days more each week than the men over the first 4 months during the half year preceding the marathon race. It was concluded that the higher VO2max and Than in the men was compensated for by more running, superior CR, and a higher exercise intensity during the race in the performance-matched female marathon runners.  相似文献   

7.
Summary The purpose of this study was to evaluate the effects of graded treadmill exercise on plasma preproenkephalin peptide F immunoreactivity and concomitant catecholamine responses at sea level (elevation, 50 m). Few data exist regarding the sea-level responses of plasma peptide F immunoreactivity to exercise. Thirty-five healthy men performed a graded exercise test on a motor-driven treadmill at the relative exercise intensities of 25, 50, 75, and 100% of maximum oxygen consumption (VO2max). Significant (P<0.05) increases above rest were observed for plasma peptide F immunoreactivity and norepinephrine at 75 and 100% of the VO2max and at 5 min into recovery. Significant increases in plasma epinephrine were observed at 75 and 100% of VO2max. Whole blood lactate significantly increased above resting values at 50, 75, and 100% of the VO2max and at 5 min into recovery. These data demonstrate that exercise stress increases plasma peptide F immunoreactivity levels at sea level. While the exercise response patterns of peptide F immunoreactivity are similar to catecholamines and blood lactate responses, no bivariate relationships were observed. These data show that sea-level response patterns to graded exercise are similar to those previously observed at moderate altitude (elevation, 2200 m).Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC regulation 70-25 on Use of Volunteers in Research. The views, opinion, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless to designated by other official documentation.  相似文献   

8.
Energy cost and energy sources in karate   总被引:1,自引:0,他引:1  
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

9.
Summary To determine why black distance runners currently out-perform white distance runners in South Africa, we measured maximum oxygen consumption (V O 2max), maximum workload during a V O 2max test (L max), ventilation threshold (V Thr), running economy, inspiratory ventilation (V I), tidal volume (V T), breathing frequency (f) and respiratory exchange ratio (RER) in sub-elite black and white runners matched for best standard 42.2 km marathon times. During maximal treadmill testing, the black runners achieved a significantly lower (P<0.05) L max (17 km h–1, 2% grade, vs 17 km h–1, 4% grade) and V I max (6.21 vs 6.821 kg–2/3 min–1), which was the result of a lower V T (101 vs 119 ml kg–2/3 breath–1) as f max was the same in both groups. The lower V T in the black runners was probably due to their smaller body size. The V Thr occurred at a higher percentage V O 2max in black than in white runners (82.7%, SD 7.7% vs 75.6%, SD 6.2% respectively) but there were no differences in the V O 2max. However, during a 42.2-km marathon run on a treadmill, the black athletes ran at the higher percentage V O 2max (76%, SD 7.9% vs 68%, SD 5.3%), RER (0.96, SD 0.07 vs 0.91, SD 0.04) and f (56 breaths min–1, SD 11 vs 47 breaths min–1, SD 10), and at lower V T (78 ml kg–2/3 breath–1, SD 15 vs 85 ml kg–2/3 breath–1, SD 19). The combination of higher f and lower V T resulted in an identical V I. Blood lactate levels were lower in black than in white runners (1.3 mmol l–1, SD 0.6 vs 1.59 mmol l–1, SD 0.2 respectively). It appeared that the only physiological difference that may account for the superior performance of the black runners was their ability to run at a higher percentage V O 2max max during competition than white runners.  相似文献   

10.
Summary The purpose of this study was to determine whether running economy. (RE) could be predicted accurately using recoveryVO2 values. Twelve runners (VO2max=61.9, SD 4.9 ml·kg–1·min–1) completed three treadmill RE sessions over a 2-week period. During each session, subjects performed three 6-min runs at 69%, 78%, and 87%VO2max. RE was calculated from a single 2-min gas collection during the last 2 min of running. Immediately following each run, recoveryVO2 data obtained during randomly assigned 15-s, 20-s, or 25-s gas collections were used to predict exerciseVO2. Correlations and mean absolute percentage variation (%VAR) between actual and predictedVO2 at each relative intensity and recovery period are reported. Although the relationship between actual and predictedVO2 was significant and more pronounced at higher exercise intensities, the overall magnitude of the association was low to moderate (r range= 0.50–0.81). The range of % VAR between actual and predicted aerobic demands also obscured marked underprediction (–6.5% to –12.5%) and overprediction (+ 10.1% to + 17.4%) of actualVO2 in some subjects. These data suggest that 15-, 20-, and 25-s recoveryVO2 values do not correlate strongly with steady-stateVO2, nor do they adequately account for variation in individual economy profiles.  相似文献   

11.
The aim of this study was to assess the effects of increasing specific (paddling erogmeter) and non-specific (cycle ergometer) exercise on parameters relating to the ventilatory threshold (Thvent) and work efficiency in 11 young female flat-water kayakists. When these trained subjects were tested using non-specific workloads, their oxygen uptake (VO2) values at Thvent, as a percentage ofVO2max (%VO2max), were close to those of untrained subjects [74.2 (5.6) %VO2max, mean (SD)]. However, when we tested the same subjects using specific exercise, we recorded values typical of highly trained athletes [84.8 (4.7) %VO2max). For the non-specific exercise on the cycle erogmeter, we recorded work efficiency values close to those of untrained subjects [22.3 (2.5) %]; however, for the specific exercise on the paddling ergometer, we recorded much lower values [13.4 (3.0) %] both at the level of Thvent. The work efficiency at two warm-up submaximal exercise loads on the paddling ergometer was non-significantly lower than values at Thvent [12.3 (2.8) % and 12.9 (2.9) % respectively]. Significant correlations were found between maximal-performanceVO2 (ml · kg–1 · min–1) and performance at Thvent during paddling and race performance (0.623, 0.630 and 0.648 respectively, allP<0.05). Because the results of both specific and non-specific submaximal exercise tests are different, we suggest caution in the interpretation of physiological variables that may be sensitive to training status. The evaluation of Thvent and work efficiency as supplementary parameters during laboratory studies enables the determination of the effectiveness of the training process and the specific adaptation of the subjects.  相似文献   

12.
The present study was undertaken to examine the validity of using the OMNI scale of perceived exertion to regulate intensity during extended exercise periods. Forty-eight subjects (24 male, 24 female) were recruited and each subject completed a maximal graded exercise test (GXT) and two 20-min submaximal exercises. During the GXT, ratings of perceived exertion (RPE) as well as oxygen uptake (V˙O2) and heart rate (HR) equivalent to 50 and 70% of maximum V˙O2 (V˙O2max) were estimated. During each submaximal exercise, subjects were instructed to produce and maintain a workload equivalent to the RPE estimated at 50 or 70% V˙O2max, and V˙O2 and HR were measured every 5 min throughout the exercise. Of the 48 subjects, 12 (6 male and 6 female) performed both the estimation and production trials on a treadmill (TM/TM), 12 (6 male and 6 female) performed both the estimation and production trials on a cycle ergometer (C/C), 12 (6 male and 6 female) performed the estimation trial on a treadmill and the production trial on a cycle ergometer (TM/C), and 12 (6 male and 6 female) performed the estimation trial on a cycle ergometer and the production trial on a treadmill (C/TM). No differences in V˙O2 between the estimation and any 5 min of the production trial were observed at either intensity in TM/TM and C/C. No differences in HR between the estimation and any 5 min of the production trial were also observed at 50% V˙O2max in TM/TM and at both 50 and 70% V˙O2max in C/C. However, HR was higher at 20th min of the production trial at 70% V˙O2max in TM/TM. Both the V˙O2 and HR were generally lower in TM/C and higher in C/TM. However, these differences diminished when values were normalized using V˙O2max of the same mode that other groups had attained. These data suggest that under both intra- and intermodal conditions, using the OMNI perceived exertion scale is effective not only in establishing the target intensity at the onset of exercise, but also in maintaining the intensity throughout a 20-min exercise session. Electronic Publication  相似文献   

13.
Summary The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into continuous (CT, exercise at 50% maximal work) or interval (IT, 30 s work, 30 s rest at 100% maximal work) training groups that cycled 30 min day–1, 3 days week–1, for 8 weeks. Following training, aerobic power (VO2max), exercising work rates, and peak power output were all higher (9–16%) after IT than after CT (5–7%). Vastus lateralis muscle citrate synthase activity increased 25% after CT but not after IT. A consistent increase in adenylate kinase activity (25%) was observed only after IT. During continuous cycling testing the CT group had reduced blood lactate (1ab) levels and respiratory quotient at both the same absolute and relative (70% VO2max) work rates after training, while the IT group displayed similar changes only at the same absolute work rates. By contrast, both groups responded similarly during intermittent cycling testing with lower 1ab concentrations seen only at absolute work rates. These results show that, of the two types of training programs currently employed, IT produces higher increases in VO2max and in maximal exercise capacity. Nevertheless, CT is more effective at increasing muscle oxidative capacity and delaying the accumulation of 1ab during continuous exercise.  相似文献   

14.
Thirty-three college men participated in a 9-week endurance training program. An equal number of subjects served as controls. Pre- and post-test metabolic measurements were made during 10 min of submaximal exercise (1080 kpm/min at 60 rpm) and 15 min of recovery. Measurements included oxygen consumption, CO2 production, ventilatory equivalent (V E/VO2 ratio) and respiratory exchange ratio (R). A three factor design variance analysis was used to analyze the effects of training on min-by-min exercise and recoveryV E/VO2 ratio andR. For the experimental group training resulted in a significant improvement in ventilatory efficiency during exercise, as well as a significant decrease inR. During recovery,V E/VO2 andR decreased significantly for both groups although the magnitude of change was greater for the group that trained. Apparently, there was a significant habituation effect due to test procedures for the control group. The results are discussed in terms of lactate production and substrate utilization during exercise.  相似文献   

15.
The purpose of the study was to evaluate the effects of circuit training (CT) and treadmill exercise performed at matched rates of oxygen consumption and exercise duration on elevated post-exercise oxygen consumption (EPOC) in untrained women, while controlling for the menstrual cycle. Eight, untrained females (31.3±9.1 years; 2.04±0.26 l min–1 estimated VO2max; BMI=24.6±3.9 kg/m2) volunteered to participate in the study. Testing was performed during the early follicular phase for each subject to minimize hormonal variability between tests. Subjects performed two exercise sessions approximately 28 days apart. Resting, supine energy expenditure was measured for 30 min preceding exercise and for 1 h after completion of exercise. Respiratory gas exchange data were collected continuously during rest and exercise periods via indirect calorimetry. CT consisted of three sets of eight common resistance exercises. Pre-exercise and exercise oxygen consumption was not different between testing days (P>0.05). Thus, exercise conditions were appropriately matched. Analysis of EPOC data revealed that CT resulted in a significantly higher (p<0.05) oxygen uptake during the first 30 min of recovery (0.27±0.01 l min–1 vs 0.23±0.01 l min–1); though, at 60 min, treatment differences were not present. Mean VO2 remained significantly higher (0.231±0.01 l min–1) than pre-exercise measures (0.193±0.01 l min–1) throughout the 60-min EPOC period (p<0.05). Heart rate, RPE, VE and RER were all significantly greater during CT (p<0.05). When exercise VO2 and exercise duration were matched, CT was associated with a greater metabolic disturbance and cost during the early phases of EPOC.  相似文献   

16.
Aim: Recent findings have challenged the belief that the cardiac output (CO) and oxygen consumption (VO2) relationship is linear from rest to maximal exercise. The purpose of this study was to determine the CO and stroke volume (SV) response to a range of exercise intensities, 40–100% of VO2max, during cycling. Methods: Ten well‐trained cyclists performed a series of discontinuous exercise bouts to determine the CO and SV vs. VO2 responses. Results: The rate of increase in CO, relative to VO2, during exercise from 40 to 70% of VO2max was 4.4 ± 1.4 L L?1. During exercise at 70–100% of VO2max, the rate of increase in CO was reduced to 2.1 ± 0.9 L L?1 (P = 0.01). Stroke volume during exercise at 80–100% of VO2max was reduced by 7% when compared to exercise at 50–70% of VO2max (134 ± 5 vs. 143 ± 5 mL per beat, P = 0.02). Whole body arterial‐venous O2 difference increased significantly as intensity increased. Conclusion: The observation that the rate of increase in CO is reduced as exercise intensity increases suggests that cardiovascular performance displays signs of compromised function before maximal VO2 is reached.  相似文献   

17.
This study was undertaken to analyze changes in selected cardiovascular and neuromuscular variables in a group of elite kayakers across a 12-week periodized cycle of combined strength and endurance training. Eleven world-class level paddlers underwent a battery of tests and were assessed four times during the training cycle (T0, T1, T2, and T3). On each occasion subjects completed an incremental test to exhaustion on the kayak-ergometer to determine maximal oxygen uptake (VO2max), second ventilatory threshold (VT2), peak blood lactate, paddling speed at VO2max (PSmax) and at VT2 (PSVT2), stroke rate at VO2max and at VT2, heart rate at VO2max and at VT2. One-repetition maximum (1RM) and mean velocity with 45% 1RM load (V 45%) were assessed in the bench press (BP) and prone bench pull (PBP) exercises. Anthropometric measurements (skinfold thicknesses and muscle girths) were also obtained. Training volume and exercise intensity were quantified for each of three training phases (P1, P2, and P3). Significant improvements in VO2max (9.5%), VO2 at VT2 (9.4%), PSmax (6.2%), PSVT2 (4.4%), 1RM in BP (4.2%) and PBP (5.3%), V 45% in BP (14.4%) and PBP (10.0%) were observed from T0 to T3. A 12-week periodized strength and endurance program with special emphasis on prioritizing the sequential development of specific physical fitness components in each training phase (i.e. muscle hypertrophy and VT2 in P1, and maximal strength and aerobic power in P2) seems effective for improving both cardiovascular and neuromuscular markers of highly trained top-level athletes.  相似文献   

18.
Before the influence of divergent factors on gross efficiency (GE) [the ratio of mechanical power output (PO) to metabolic power input (PI)] can be assessed, the variation in GE between days, i.e. the test–retest reliability, and the within day variation needs to be known. Physically active males (n = 18) performed a maximal incremental exercise test to obtain VO2max and PO at VO2max (PVO2max), and three experimental testing days, consisting of seven submaximal exercise bouts evenly distributed over the 24 h of the day. Each submaximal exercise bout consisted of six min cycling at 45, 55 and 65% PVO2max, during which VO2 and RER were measured. GE was determined from the final 3 min of each exercise intensity with: GE = (PO/PI) × 100%. PI was calculated by multiplying VO2 with the oxygen equivalent. GE measured during the individually highest exercise intensity with RER <1.0 did not differ significantly between days (F = 2.70, p = 0.08), which resulted in lower and upper boundaries of the 95% limits of agreement of 19.6 and 20.8%, respectively, around a mean GE of 20.2%. Although there were minor within day variations in GE, differences in GE over the day were not significant (F = 0.16, p = 0.99). The measurement of GE during cycling at intensities approximating VT is apparently very robust, a change in GE of ~0.6% can be reliably detected. Lastly, GE does not display a circadian rhythm so long as the criteria of a steady-state VO2 and RER <1.0 are applied.  相似文献   

19.
Summary The effects of growth and pubertal development on bio-energetic characteristics were studied in boys aged 6–15 years (n = 144; transverse study). Maximal oxygen consumption (VO2max, direct method), mechanical power at (VO2max ( ), maximal anaerobic power (Pmax; force-velocity test), mean power in 30-s sprint (P 30s; Wingate test) were evaluated and the ratios between Pmax,P 30s and were calculated. Sexual maturation was determined using salivary testosterone as an objective indicator. Normalized for body massVO2max remained constant from 6 to 15 years (49 ml· min–1 · kg–1, SD 6), whilst Pmax andP 30s increased from 6–8 to 14–15 years, from 6.2 W · kg–1, SD 1.1 to 10.8 W · kg–1, SD 1.4 and from 4.7 W · kg–1, SD 1.0 to 7.6 W · kg–1, SD 1.0, respectively, (P < 0.001). The ratio Pmax: was 1.7 SD 3.0 at 6–8 years and reached 2.8 SD 0.5 at 14–15 years and the ratioP 30s: changed similarly from 1.3 SD 0.3 to 1.9 SD 0.3. In contrast, the ratio Pmax:P 30s remained unchanged (1.4 SD 0.2). Significant relationships (P < 0.001) were observed between Pmax (W · kg–1),P 30s (W · kg–1), blood lactate concentrations after the Wingate test, and age, height, mass and salivary testosterone concentration. This indicates that growth and maturation have together an important role in the development of anaerobic metabolism.  相似文献   

20.
Summary The present experiment evaluated a new approach to establish exercise intensity during hydraulic rowing ergometry. In contrast to the traditional approach where exercise intensity is augmented by systematically increasing workload, the new procedure increments the intensity of exercise while maintaining a constant percentage of maximum force output. Ten college females exercised on a hydraulic rower that allowed for control of rowing speed and resistance. The new method to establish work intensity was to row at a cadence of 30 c·min–1 at a force output equal to 50% of maximum rowing force at each setting determined dynamically prior to testing. Two protocols were used for the maximum tests on the hydraulic rower. Row 1 was a 17-min, six-stage, incremental continuous row test performed at increasingly difficult settings from easy (setting 1; 603 N) to difficult (setting 6; 893 N). Row 2 was identical to row 1 until 15 min when resistance was reduced to setting 2 (658 N) for allout effort during the last 2 min. During this time, cadence declined from 30 c·min–1 to 19.4 c·min–1 at dial setting 6 and increased to 35.4 c·min–1 at dial setting 2. Both rowing protocols were compared to maximal physiological responses during treadmill running (TM). Compared to TM, both rowing protocols elicited. significantly lower maximum oxygen uptake (VO2max;P<0.05; row 1=29.0% and row 2=12.9%) and maximum heart rate (HRmax;P<0.05; row 1=12.9% and row 2=6.7%). Maximum ventilation (V Emax) during row 1 was also lower by 30.4% than TM (P<0.05). In addition, row 1 was significantly lower (P<0.05) than row 2 forVO2max (2.23 vs 2.60 l·min–1), HRmax (165.5 vs 177.3 beats·min–1), andV Emax (62.7 vs 86.3 1·min–1). These results demonstrate thatVO2max, HRmax, andV Emax are depressed when rowing exercise is performed at a high intensity relative to maximum strength. We conclude that the new approach to establish exercise intensity relative to maximum force production is more effective for eliciting near maximum values ofVO2, HR, andV E than the conventional method that increases the workload by set increments without consideration of maximal strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号