首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MKC-231, a putative cholinergic activity, is reported to improve learning and memory impaired in AF64A-treated animals. MKC-231 enhances high-affinity choline uptake (HACU) known as the rate-limiting step of acetylcholine (ACh) synthesis. We investigated the mode of action (MOA) of HACU enhancement by MKC-231. Intracerebroventricular (i.c.v.) injections of AF64A (3 nmol/brain) resulted in significant HACU reduction in hippocampal synaptosomes. Treatment with MKC-231 increased Vmax of HACU and Bmax of [3H]-HC-3 binding 1.6 and 1.7-fold, respectively. In studies of [3H]-MKC-231 binding and Biacore analysis, MKC-231 showed noticeable affinity for cloned high-affinity choline transporters (CHT1). The present study suggests that MKC-231 directly affects trafficking of CHT1 and increases the numbers of transporter, working for HACU, at the synaptic membrane.  相似文献   

2.
MKC-231 is reported to increase high-affinity choline uptake (HACU) in vitro and improve learning impairment on a single oral administration in AF64A-treated rats. In this study, we investigated the effects of repeated administration of MKC-231 (1 and 3 mg/kg, p.o., 8 days) on learning impairment in the water-maze task in AF64A-treated rats 1, 24, 48, and 72 h after the last dose. Significant cognitive improvement was observed for 24 h, however, concentration measurement studies indicated MKC-231 was not detected in the brain by this time. We also studied the effects of 8-days repeated administration of MKC-231 on HACU 1, 24, 48, and 72 h after the last dose and observed an increase of HACU similar in time course with cognitive improvement. From these results, we discussed the possibility that MKC-231 could induce long-lasting procognitive effects by changing the choline transporter regulation system.  相似文献   

3.
Summary The effects of acute and chronic administration of MKC-231, a new choline uptake enhancer, and two other nootropic agents, linopiridine (Dup 996) and tetrahydroaminoacridine (THA) on working memory deficits and decreased hippocampal acetylcholine (ACh) content were studied in a delayed non-matching to sample task, using a T-maze, in ethylcholine aziridinium ion (AF64A)-treated mice. Treatment with AF64A (3.5 nmol, i.c.v.) produced memory deficits and decreased hippocampal ACh content. In acute behavioral experiments, MKC-231 and THA had no significant effect on AF64A-induced memory deficits at any doses tested (0.3, 1.0 and 3.0mg/kg), whereas Dup 996, at a dose of 1.0mg/kg, significantly improved memory deficits. In chronic experiments, MKC-231 improved memory deficit at all doses tested (0.3, 1.0, or 3.0mg/kg p.o., once daily for 11 days) and Dup 996 did so only at a dose of 3.0 mg/kg, whereas THA did not improve memory deficit at any doses tested. In acute neurochemical experiments, MKC-231 and THA did not reverse the AF64A-induced hippocampal ACh depletion. Dup 996, however, further decreased hippocampal ACh content compared to that in the AF64A-treated group. In chronic experiments, MKC-231 significantly reversed hippocampal ACh depletion at doses of 0.3 and 1.0mg/kg, whereas neither Dup 996 nor THA reversed hippocampal ACh depletion at any doses tested. These results indicate that MKC-231 improved the AF64A-induced working memory deficit and hippocampal ACh depletion, probably by recovering reduced high-affinity choline uptake and ACh release.  相似文献   

4.
The activities of various presynaptic cholinergic parameters were determined in hippocampal synaptosomes of rats 29 weeks after intracerebroventricular injection of ethylcholine aziridinium (AF64A) (3 nmol/2 microliters/side) or vehicle (saline). Synaptosomes were preloaded with [3H]choline ([3H]Ch), treated with diisopropyl fluorophosphate to inhibit cholinesterase activity and then were assayed for their content of [3H]Ch and [3H]acetylcholine ([3H]ACh) and for their ability to synthesize and release [3H]ACh. In synaptosomes from AF64A-treated rats compared with synaptosomes from vehicle-treated rats we observed that: (i) specific uptake of [3H]Ch was reduced to 60% of control; (ii) residing [3H]ACh levels were 43% of control while residing [3H]Ch levels were 72% of control; (iii) basal and K(+)-induced [3H]ACh release were 77% and 73% of control, respectively; (iv) high K(+)-induced synthesis of [3H]ACh was only 9% of control; (v) but, choline acetyltransferase activity remained relatively high, being 80% of control. These results suggest that AF64A-induced cholinergic hypofunction is expressed by both loss of some cholinergic neurons and impairment in the functioning of the spared neurons.  相似文献   

5.
The activities of various presynaptic cholinergic parameters were determined in hippocampal synaptosomes of rats 29 weeks after intracerebroventricular injection of ethylcholine aziridinium (AF64A) (3 nmol/2 μl/side) or vehicle (saline). Synaptosomes were preloaded with [3H]choline ([3H]Ch), treated with diisopropyl fluorophosphate to inhibit cholinesterase activity and then were assayed for their content of [3H]Ch and [3H]acetylcholine ([3H]ACh) and for their ability to synthesize and release [3H]ACh. In synaptosomes from AF64A-treated rats compared with synaptosomes from vehicle-treated rats we observed that: (i) specific uptake of [3H]ACh was reduced to 60% of control; (ii) residing [3H]ACh levels were 43% of control while residing [3H]Ch levels were 72% of control; (iii) basal and K+-induced [3H]ACh release were 77% and 73% of control, respectively; (iv) high K+-induced synthesis of [3H]ACh was only 9% of control; (v) but, choline acetyltransferase activity remained relatively high, being 80% of control. These results suggest that AF64A-induced cholinergic hypofunction is expressed by both loss of some cholinergic neurons and impairment in the functioning of the spared neurons.  相似文献   

6.
Summary The effects of nefiracetam [DM-9384; N-(2,6-dimethyl-phenyl)-2-(2-oxo-pyrrolidinyl)acetamide] and of phosphatidylcholine on a step-up active avoidance response, locomotor activities and regional brain cholinergic and monoaminergic neurotransmitters in AF64A-treated mice were investigated. Intracerebroventricular (i.c.v.) injection of AF64A (ethylcholine mustard aziridinium ion; 8 nmol/ventricle) impaired acquisition and retention of the avoidance task, and increased vertical and horizontal locomotor activities. Regional levels of acetylcholine, noradrenaline, 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were significantly decreased and homovanillic acid (HVA) levels were increased in the hippocampus but not in the septum, cerebral cortex or striatum of AF64A-treated animals. Administration of nefiracetam (3 mg/kg, p.o.) twice daily for 9 days to AF64A-treated animals ameliorated the deficit in active avoidance response in addition to attenuating the increase in locomotor activities. In parallel with these behavioural effects, nefiracetam reversed AF64A-induced alterations in the hippocampal profiles of cholinergic and monoaminergic neurotransmitters and their metabolites. In contrast, administration of phosphatidylcholine (30 mg/kg, p.o.) twice daily for 9 days had no significant effect on the deficit in active avoidance response, despite significantly reversing the decrease in acetylcholine levels in the hippocampus. These results indicate that the effects of nefiracetam on AF64A-induced behavioural deficits are probably due to its ability to facilitate both cholinergic and monoaminergic neurotransmitter systems.  相似文献   

7.
Ethylcholine aziridinium (AF64A) has been proposed as a specific cholinergic neurotoxin. In earlier studies, using AF64A, we reported that slow infusion of 1-2 nmol of this compound into each lateral ventricle of Sprague-Dawley rats resulted in small, and transient decreases in noradrenaline (NA) and serotonin (5-HT) levels in the hippocampus, while inducing a permanent and significant cholinergic hypofunction in the same brain region. The experiments described in this paper were designed to test the hypothesis that such noradrenergic and serotonergic changes after small doses of AF64A are secondary to the changes observed in cholinergic neurons. Levels of NA, and of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were measured concurrently with levels of acetylcholine (ACh), in various brain regions of rats in which the effect of AF64A was attenuated, and in respective control animals. The effect of AF64A was diminished by inhibiting the interaction of AF64A with the high affinity transport site for choline (HAChT). This was achieved using hemicholinium-3 (HC-3), which does not cross the blood-brain barrier, and A-4 (a bis 4-methylpiperidine analog of HC-3), which is centrally active following its peripheral administration. A-4 (20 or 40 mg/kg i.p.) or HC-3 (10 micrograms/ventricle) had no effect on ACh, NA, 5-HT or 5-HIAA levels in saline-treated rats. However, all treatments significantly attenuated the decrease in ACh content produced by AF64A pretreatment. Transient decreases in NA, 5-HT and 5-HIAA contents after AF64A treatment were prevented or reduced by prior treatment with A-4 or HC-3. These results indicate that changes in noradrenergic and serotonergic neurons following AF64A administration are not due to non-specific toxicity of AF64A, but may be the result of adaptation of these neurons to withdrawal of cholinergic input, which would normally inhibit the release of NA and 5-HT. These results also indicate that AF64A can be used to produce specific lesions of hippocampal cholinergic nerve terminals.  相似文献   

8.
Intracerebroventricular (i.c.v.) injection of the 1,4-dihydropyridine (DHP) calcium channel agonist, Bay K8644 (30 micrograms/kg) increased mean blood pressure and the K+-evoked release of [3H]acetylcholine ([3H]ACh) from hippocampal slices in spontaneously hypertensive rats (SHR). The Bay K8644-induced hypertension was inhibited by a pretreatment with methylatropine (80 micrograms/kg i.c.v.). In SHR, nicardipine, a DHP calcium channel antagonist, reduced mean blood pressure when i.c.v. injected (10 micrograms/kg). The nicardipine-induced hypotension was reduced by a pretreatment with hemicholinium-3 (20 micrograms, i.c.v.). Nicardipine (1 microM) did not modify, in SHR, the K+-evoked release of [3H]ACh, but inhibited the Bay K8644-induced increase in the ACh release. In normotensive rats, neither Bay K8644 nor nicardipine modify blood pressure, when centrally injected, or the stimulated release of [3H]ACh from hippocampal slices. The participation of central DHP sites in the cholinergic transmission in genetic hypertension is discussed.  相似文献   

9.
The effect of selective lesion of cholinergic inputs to the hippocampus on the function of hippocampal cholinergic receptors was examined. Hippocampal cholinergic neurons were lesioned in the rat by administration of the selective cholinergic neurotoxin AF64A (ethylcholine mustard azirtdinium). Cholinergic receptor function was examined by assessing the ability of cholinergic agonists and antagonists to modulate the evoked release of radiolabelled acetylcholine (ACh) from hippocampal slices. Nicotine enhanced release, with a bell-shaped dose-response curve. The dose-response curve and EC50 for nicotine was shifted 10-fold to the left in lesioned rats, suggesting an increased sensitivity to nicotine. However, there were no differences in either the number or affinity of nicotinic receptors as determined with binding studies. The muscarinic agonist oxotremorine inhibited the evoked release of ACh in control tissues, but had much less effect in AF64A-lesioned tissues. Binding to the M1 receptor subtype was not changed. However, the Kd for binding to the high affinity subtype of the M2 receptor was increased 10-fold, suggesting that the receptor has become less sensitive to stimulation. Loss of M2 function may allow an increase in the effect of stimulating nicotinic receptors that modulate ACh release.  相似文献   

10.
Summary. It has been reported that pretreatment with (−)-nicotine prevents glutamate- and amyloid beta protein (Aβ)-induced cytotoxicity in vitro. However, few studies on the neuroprotective effects of (−)-nicotine in vivo have been reported. We examined whether repeated administration of (−)-nicotine exhibits neuroprotective effects in AF64A-treated rats. (−)-Nicotine (0.1 and 0.2 mg/kg, s.c.) was administered once a day for 28 days. On day 14, AF64A (2.5 nmol/side) was injected bilaterally into the hippocampus. Intrahippocampal injection of AF64A showed severe impairment of learning and memory in rats in the water maze and passive avoidance tests. Repeated administration of (−)-nicotine (0.1 and 0.2 mg/kg, s.c.) did not reverse the impairment of memory induced by AF64A in the water maze test. Interestingly, the (−)-nicotine (0.1 and 0.2 mg/kg, s.c.)-treated group showed weak impairment of learning and memory after AF64A treatment compared to the (AF64A + saline)-treated group in the passive avoidance test. These results suggested that (−)-nicotine may have neuroprotective effects against the neurotoxicity induced by AF64A. Received March 1, 2001; accepted April 30, 2001  相似文献   

11.
The cholinergic vesicular uptake blocker, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (AH5183), had several effects on presynaptic cholinergic function that depended on the duration of treatment and dose. The synthesis, storage and release of newly synthesized [3H]ACh were monitored because the vesicular uptake of this pool of transmitter may be preferentially affected by the drug. Initially, high concentrations of AH5183 (over 10 microM) increased the spontaneous release but decreased the K+ depolarization-induced release of newly synthesized transmitter. [3H]Choline efflux was not altered by the drug. High affinity choline uptake was slightly (10-20%) inhibited by AH5183 in an apparently competitive but time-dependent manner. In contrast to its initial effects on [3H]ACh release, AH5183 (50nM-100 microM) very potently inhibited both the spontaneous and K+-induced release of [3H]ACh but not of [3H]choline after a 60 min preincubation. [3H]ACh levels in cytoplasmic (S3) and crude membrane (P3) fractions were not affected by a 2-min incubation with 10 microM AH5183. After a 60-min preincubation with this drug dose, however, the P3 and S3 levels of newly synthesized transmitter were decreased and increased, respectively. Subsequent fractionation of synaptosomes by sucrose-density gradient centrifugation revealed that these reductions in P3 [3H]ACh-levels were referable to reductions in two subfractions D and H that have been reported to contain low density vesicles and denser vesicles associated with plasma membranes, respectively.  相似文献   

12.
To assess the role of the aziridinium moiety for the cholinotoxicity of ethylcholine aziridinium ion (AF64A) we compared in vitro and in vivo effects of AF64A with those of various precursors as well as decomposition products of AF64A. In vitro, AF64A was the most effective irreversible inhibitor of high-affinity choline transport (HAChT) in hippocampal synaptosomes. The uncyclized precursor acetylethylcholine mustard and the acetylated form of AF64A were about 3 times less potent. Their potency, however, was reduced considerably when hydrolysis of the choline esters was prevented by physostigmine. Destruction of the aziridinium ring either by high pH (alcohol formation) or by thiosulfate (formation of Bunte salt) resulted in a loss of biological activity. This was also the case for the in vivo cholinotoxicity, as assessed by the decline in hippocampal concentration of acetylcholine (ACh) 7 days after intracerebroventricular (i.c.v.) infusion. The most pronounced reduction in ACh content was achieved after i.c.v. infusion of AF64A, whereas the precursor and the acetylated analog of AF64A induced a significant, but smaller reduction in the ACh content. These data indicate that the aziridinium ring of AF64A is essential for both the inhibition of HAChT in vitro and the cholinotoxicity in vivo. However, cyclization of the precursor compound as well as hydrolysis of acetylated AF64A also occur in tissue, leading to a partial activity of these compounds.  相似文献   

13.
The effect of lesioning hippocampal cholinergic neurons with the neurotoxin AF64A on the ability of cholinergic agonists to modulate stimulation-induced release of 3H-norepinephrine (NE) from rat hippocampal slices was studied. Rats received intracerebroventricular injections of either AF64A (ethylcholine mustard aziridinium, 2 nmol) or vehicle (sham operated). Six weeks after treatment, release of 3H-NE evoked by electrical stimulation (2 Hz, 2 min) in the presence or absence of cholinergic agonists and/or antagonists was measured. Activation of M2 receptors with oxotremorine (in the presence of the M1 antagonist pirenzepine) caused a small inhibition of NE release, which was abolished in hippocampi from AF64A-treated rats. The Kd for high-affinity binding of the selective M2 ligand [3H] AF-DX 384 was increased 10-fold in lesioned tissues. The M1 selective agonist McN-A-343 produced a significant enhancement of NE release, which was unchanged by AF64A lesion. Binding studies with [3H] pirenzepine showed no change in the affinity or number of M1 receptors. Nicotine also caused a significant enhancement of evoked NE release, but this effect was markedly reduced in tissues from AF64A-treated rats. AF64A treatment caused a twofold decrease in the number of [3H] nicotine binding sites. This study suggests that long-term lesion of hippocampal cholinergic neurons with AF64A alters the function of postsynaptic muscarinic M2 and nicotinic cholinergic receptors that modulate the release of NE in the hippocampus.  相似文献   

14.
The consequences of reduced cholinergic function on noradrenergic and dopaminergic neurons has been studied in various rat brain areas for a period of up to 28 days following bilateral intracerebroventricular infusion of various doses of ethylcholine aziridinium ion (AF64A; 1-5 nmol/ventricle). This treatment resulted in a dose-dependent, persistent decrease in acetylcholine (ACh) content ranging from 50.3 +/- 6.0% to 76.9 +/- 3.8% when compared to vehicle-injected rats. Concomitantly, there was a transient, dose-dependent decrease (up to 46.7 +/- 6.4%) in norepinephrine (NE) levels in hippocampus, cortex and hypothalamus. Whereas the noradrenergic system recovered fully within 28 days after 1-3 nmol AF64A/ventricle, the decrease in NE levels persisted after 5 nmol/ventricle. In striatum, a small decrease in ACh levels 4 days after AF64A infusion was accompanied by a transient, dose-dependent decrease in the levels of dopamine (DA) and its metabolites dihydroxyphenylacetic acid and homovanillic acid, suggesting a decrease in DA synthesis and release. Dopaminergic function was fully restored within 14 days after all doses of AF64A used. These data suggest that reduction of cholinergic function might have a considerable impact on noradrenergic and dopaminergic neurons, causing an increase in NE release as well as depression of dopaminergic function.  相似文献   

15.
In vivo studies have shown that high blood concentrations of pituitary-adrenocortical hormones can activate the hippocampal cholinergic terminals. Incubation of hippocampal synaptosomal preparations with methylprednisolone, or with ACTH at concentrations comparable to stress-induced high concentrations in plasma, did not have any significant effects on the cholinergic parameters measured under unactivated conditions. In the presence of either high K+ or of ACh, choline uptake was decreased. This decrease was not affected by methylprednisolone. However, methylprednisolone did enhance ACh release both after a previous increase (induced by K+) or a decrease (induced by ACh) of ACh release. In contrast, ACTH had no direct effects on either unactivated or K+-stimulated synaptosomes. Thus, a differential effect was exerted by methylprednisolone on the two presynaptic regulatory mechanisms: choline uptake (no change) and ACh release (increase). We suggest that the activation, observed in vivo, resulted mainly from indirect action of the hormones on the hippocampal cholinergic terminals, in view of the fact that the direct effect in vitro was partial.  相似文献   

16.
In vivo microdialysis was employed to explore the effects of different selective non-peptides NK(1),NK(2) and NK(3) receptor antagonists on the corticotropin releasing factor (CRF)-induced release of acetylcholine (ACh) in the hippocampus of rats and guinea-pigs. In both species, the intracerebroventricular (i.c.v.) administration of CRF produced a time- and dose-dependent increase in hippocampal ACh release that was totally suppressed by an intraperitoneally (i.p.) pretreatment with the selective non-peptide CRF(1) receptor antagonist antalarmin (30 mg/kg). Pretreatment with the selective NK(2) receptor antagonist SR48968 (1mg/kg, i.p.) significantly reduced the increase of ACh induced by CRF. In contrast, its low-affinity enantiomer SR48965 (1mg/kg, i.p.) or the NK(1) receptor antagonist, GR205171 (1mg/kg, i.p.) did not exert any antagonist effect. Moreover, administration of the selective NK(3) receptor antagonist SR142801 (1mg/kg, i.p.) did not significantly reduce the CRF-induced hippocampal ACh release in guinea-pigs (the only species studied). The selective activity of SR48968 versus GR205171 or SR142801 indicates that NK(2) receptors play a major role in the control of CRF-induced hippocampal ACh release. Moreover, in freely moving rats, two sessions of stroking of the neck and back of the rat for 30 min, at 90 min intervals, known to be a stressful stimulus, produced a marked and reproducible increase in hippocampal ACh release. This effect was prevented by the administration of the two selective non-peptide CRF1 and NK(2) receptor antagonists antalarmin (30 mg/kg, i.p.) and SR48968 (1mg/kg, i.p.), respectively. This suggests that stress-induced activation of the hippocampal ACh system may be under the control of both endogenously released CRF and NKA, and opens the possibility of the existence of a functional interplay between the pathways containing these peptides as we observed in our experiments on anaesthetized animals.  相似文献   

17.
The importance of depolarization induced hydrolysis of cytoplasmic acetylcholine (ACh) in providing choline for the veratridine-and high K+-induced release of acetylcholine was studied in mouse forebrain minces. Results indicated that a loss of hydrolyzable cytoplasmic ACh prior to depolarization reduced the amount of ACh released by veratridine but not the amount released by high K+. The reduction in the veratridine-induced release of ACh did not occur during the first 5 min of incubation. Loss of vesicular ACh prior to depolarization reduced both the veratridine- and K+-induced release of ACh during the first 5 min of incubation. Blockade of extra-cellular choline transport by hemicholinium (HC-3) did not affect the veratridine-induced release of ACh during a 10 min incubation period unless the cytoplasmic pool of ACh had first been depleted and was unavailable as a source of choline. In contrast, HC-3 reduced the K+-induced release of ACh from brain tissue with normal stores of cytoplasmic ACh. These results indicate that both depolarizing agents primarily stimulate the release of preformed ACh from a vesicular fraction during the first 5 min of mince incubation. Thereafter, they both stimulate the release of newly synthesized ACh, however, they differ in one important respect. The principal source of choline for the veratridine-induced release of newly synthesized ACh appears to be the cytoplasmic pool of ACh, whereas the major source of choline for the K+-induced release of newly synthesized ACh appears to be extracellular choline.  相似文献   

18.
19.
Acetylcholine (ACh) release was studied in awake, freely moving animals using in vivo microdialysis in the hippocampus of young (3-month-old) and aged (24-month-old) female Sprague-Dawley rats. Two groups of aged rats were selected on basis of their spatial learning performance in the Morris water maze: non-impaired aged rats which performed as well as the young control animals, and impaired aged rats which learnt the task very poorly. Baseline ACh overflow (in the presence of 5 microM neostigmine) was 1.9 +/- 0.3 +/- pmol/15 min in the young animals and 1.6 +/- 0.4 pmol/15 min in both the impaired and the non-impaired aged rats; these levels did not differ from each other. Depolarization by KCl (100 mM) or muscarinic receptor blockade by atropine (3 microM) added to the perfusion fluid produced dramatic, 4-6-fold, increases in ACh overflow that was similar in magnitude in both the young and the aged impaired and non-impaired rats. Behavioral activation by either handling or electrical stimulation of the lateral habenula produced 2-3-fold increases in extracellular ACh-levels in the hippocampus similarly in all three groups. The results indicate that hippocampal ACh release is maintained in aged rats that exhibit severe spatial learning and memory impairments and that the septo-hippocampal cholinergic system retains its capacity to increase its ACh release in response to both K(+)-induced depolarization and behavioral activation in the aged rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Ethylcholine aziridinium ion (AF64) was synthesized from acetylethylcholine mustard hydrochloride and 5 nmol was infused into the third ventricle of rats. Seven days after AF64 treatment, sodium dependent high-affinity choline (HACU) uptake was decreased by 54% in the hypothalamus. The density of hypothalamic (-)-[3H]nicotine binding sites and [alpha-125I]bungarotoxin sites in AF64-treated animals did not differ significantly from controls. A second experiment was performed to elucidate the effect of AF64 treatment on HACU and determine the effect of AF64 on entrained circadian rhythms. Animals were infused with artificial CSF or 5 nmol AF64. Locomotor activity and body temperature were recorded for 3 weeks before and 3 weeks after treatment. Ten of 14 AF64-treated animals showed a decrease in the ratio of dark cycle:light cycle locomotor activity. The decrease in dark-cycle activity was correlated with a disruption of a predominant circadian rhythm. The circadian rhythm (CR) of core body temperature was disrupted only transiently, but the CR of locomotor activity remained disrupted for the duration of the experiment in several AF64-treated animals. HACU was decreased by 48% in animals with disrupted rhythms in comparison with controls but was not significantly decreased in AF64-treated animals with normal dark-cycle activity and circadian activity. These data suggest that the AF64-treated animal may be a good model for studying the role of acetylcholine in maintaining the integrity of certain circadian rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号