首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulated cell death pathways have important functions in host defense and tissue homeostasis. Studies in genetic mouse models provided evidence that cell death could cause inflammation in different tissues. Inhibition of RIPK3-MLKL-dependent necroptosis by FADD and caspase-8 was identified as a key mechanism preventing inflammation in epithelial barriers. Moreover, the interplay between IKK/NF-κB and RIPK1 signaling was recognized as a critical determinant of tissue homeostasis and inflammation. NEMO was shown to regulate RIPK1 kinase activity-mediated apoptosis by NF-κB-dependent and –independent functions, which are critical for averting chronic tissue injury and inflammation in the intestine and the liver. In addition, RIPK1 was shown to exhibit kinase activity-independent functions that are essential for preventing cell death, maintaining tissue architecture and inhibiting inflammation. In the intestine, RIPK1 acts as a scaffold to prevent epithelial cell apoptosis and preserve tissue integrity. In the skin, RIPK1 functions via its RHIM to counteract ZBP1/DAI-dependent activation of RIPK3-MLKL-dependent necroptosis and inflammation. Collectively, these studies provided evidence that the regulation of cell death signaling plays an important role in the maintenance of tissue homeostasis, and suggested that cell death could be causally involved in the pathogenesis of inflammatory diseases.  相似文献   

2.
It has long been known that apoptosis is vital to the generation and maintenance of proper adaptive immune function. An example is the essential requirement for apoptotic signaling during the generation of self-tolerant lymphocytes: the apoptotic death of B and T cells with overt autoreactivity is essential to central tolerance. More recently, the contributions of additional processes including cellular autophagy and programmed necrosis have been implicated in controlling both innate and adaptive immune functions. Evidence has been provided to demonstrate that the death of cells following ligation of death receptors (DRs), a subfamily of cell surface molecules related to tumor necrosis factor receptor 1, is not exclusively the domain of caspase-dependent apoptosis. In cells lacking the capacity to activate caspase-8 following DR ligation, cell death instead occurs via programmed necrosis, or as it has been recently termed, 'necroptosis'. This death process depends on RIP1 and RIP3, serine/threonine kinases that are recruited by DRs, and likely by other cellular signals including DNA damage and antigen receptor ligation. The generation of RIP1/RIP3 containing 'necrosomes' activates downstream necroptotic signaling that ultimately targets cellular energetic metabolism. Also related to cellular metabolic regulation, cellular autophagy has also been found to play unique and important roles in immunity. In this review, we describe the roles of necroptosis and autophagy in innate and adaptive immunity and speculate on the intriguing interplay between these two cellular processes.  相似文献   

3.
Fulminant hepatic failure (FHF) is a life-threatening clinical syndrome results in massive inflammation and hepatocyte death. Necroptosis is a regulated form of necrotic cell death that is emerging as a crucial control point for inflammatory diseases. The kinases receptor interacting protein (RIP) 1 and RIP3 are known as key modulators of necroptosis. In this study, we investigated the impact of necroptosis in the pathogenesis of FHF and molecular mechanisms, particularly its linkage to damage-associated molecular pattern (DAMP)-mediated pattern recognition receptor (PRR) signaling pathways. Male C57BL/6 mice were given an intraperitoneal injection of necrostatin-1 (Nec-1, RIP1 inhibitor; 1.8 mg/kg; dissolved in 2% dimethyl sulfoxide in phosphate-buffered saline) 1 h before receiving d-galactosamine (GalN; 800 mg/kg)/lipopolysaccharide (LPS; 40 μg/kg). Hepatic RIP1, RIP3 protein expression, their phosphorylation, and RIP1/RIP3 complex formation upregulated in the GalN/LPS group were attenuated by Nec-1. Nec-1 markedly reduced the increases in mortality and serum alanine aminotransferase activity induced by GalN/LPS. Increased serum high mobility group box 1 (HMGB1) and interleukin (IL)-33 release, HMGB1-toll-like receptor 4 and HMGB1-receptor for advanced glycation end products (RAGE) interaction, and nuclear protein expressions of NF-κB and early growth response protein-1 (egr-1) were attenuated by Nec-1. Our finding suggests that necroptosis is responsible for GalN/LPS-induced liver injury through DAMP-activated PRR signaling.  相似文献   

4.
核因子κB及其与其它信号通路的交互作用   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

5.
Chen H  Xiao L  Zhang H  Liu N  Liu T  Liu L  Hu X  Yan D  Yang K  Yin B  Wang J  Li Q  Li Z 《Journal of leukocyte biology》2011,89(6):917-926
Actin cytoskeleton has been shown to play a regulating role in several signaling pathways, and disruption of actin filament has been reported to increase sTNF-α-induced cell death. However, whether actin is involved in tmTNF-α-mediated cytotoxicity remains unclear. Here, we demonstrated that pretreatment of HL-60 with CytD or LatA to depolymerize actin significantly suppressed tmTNF-α-mediated apoptosis. Interestingly, tmTNF-α increased the actin immunoprecipitated by anti-TNFR2 but not anti-TNFR1 antibody, and disruption of the actin filament totally blocked this effect. In addition, TNFR1 knockdown by siRNA did not affect tmTNF-α-mediated cytotoxicity and the inhibitory effect of CytD, suggesting that the involvement of actin in the tmTNF-α-induced apoptosis is linked to the TNFR2 pathway. Our results revealed further that tmTNF-α signaled the inhibition of IκB degradation and NF-κB activity by recruiting RIP1 to and uncoupling TRAF2 from the TNFR2 complex. Nevertheless, CytD totally reversed the tmTNF-α signaling and activated NF-κB by recruiting TRAF2 to and dissociating RIP1 from the TNFR2 complex. Furthermore, tmTNF-α led to activation of caspase-8 by dissociation of cFLIP from TNFR2 and inhibition of the cFLIP expression. Activated caspase-8 cleft RIP1 to suppress NF-κB activity and also mediated tmTNF-α-induced apoptosis. However, CytD blocked the tmTNF-α-induced uncoupling of cFLIP from TNFR2 and prevented caspase-8 activation and the resulting cleavage of RIP1, converting the signaling for tmTNF-α-mediated apoptosis into one for activating NF-κB to survive. These results suggest that the actin cytoskeleton functions in transmitting signals via TNFR2 to mediate tmTNF-α-induced apoptosis.  相似文献   

6.
7.
8.
Since its discovery, nuclear factor-κB (NF-κB) has been recognized as a critical regulator of immune responses. While early studies focused on studying the role of NF-κB in the development and function of immune cells, more recently the function of the inhibitor of NF-κB kinase (IKK)/NF-κB pathway in non-immune cells has gained increased attention. Studies in genetic mouse models were instrumental in dissecting the cell-specific functions of NF-κB and provided experimental evidence that NF-κB signaling in epithelial cells is important for the maintenance of immune homeostasis in barrier tissues such as the skin and the intestine. Increased activation of IKK/NF-κB triggered cytokine expression by the epithelial cells, resulting in exacerbated tissue inflammatory responses. NF-κB inhibition in keratinocytes triggered severe tumor necrosis factor-dependent skin inflammation and epidermal hyperplasia, while inhibition of IKK/NF-κB signaling in intestinal epithelial cells disturbed the intestinal barrier and triggered severe chronic colon inflammation. Therefore, epithelial NF-κB signaling performs critical 'peace keeping' functions in barrier tissues at the interface with the environment by regulating cell survival, barrier integrity, and the immunological and anti-microbial responses of epithelial cells. Improved understanding of epithelial NF-κB functions may hold the key for elucidating the etiology and pathophysiology of chronic inflammatory diseases in epithelial tissues.  相似文献   

9.
Activation of innate and adaptive immune responses is tightly regulated, as insufficient activation could result in defective clearance of pathogens, while excessive activation might lead to lethal systemic inflammation or autoimmunity. A20 functions as a negative regulator of innate and adaptive immunity by inhibiting NF-κB activation. A20 mediates its inhibitory function in a complex with other proteins including RNF11 and Itch, both E3 ubiquitin ligases and TAX1BP1, an adaptor protein. Since NF-κB has been strongly implicated in various neuronal functions, we predict that its inhibitor, the A20 complex, is also present in the nervous system. In efforts to better understand the role of A20 complex and NF-κB signaling pathway, we determined regional distribution of A20 mRNA as well as protein expression levels and distribution of RNF11, TAX1BP1 and Itch, in different brain regions. The distribution of TRAF6 was also investigated since TRAF6, also an E3 ligase, has an important role in NF-κB signaling pathway. Our investigations, for the first time, describe and demonstrate that the essential components of the A20 ubiquitin-editing complex are present and mainly expressed in neurons. The A20 complex components are also differentially expressed throughout the human brain. This study provides useful information about region specific expression of the A20 complex components that will be invaluable while determining the role of NF-κB signaling pathway in neuronal development and degeneration.  相似文献   

10.
The nuclear factor-κB (NF-κB) pathway is one of the most important cellular signal transduction pathways involved in both physiologic processes and disease conditions. It plays important roles in the control of immune function, inflammation, stress response, differentiation, apoptosis, and cell survival. Moreover, NF-κB is critically involved in the processes of development and progression of cancers. More importantly, recent studies have shown that NF-κB signaling also plays critical roles in the epithelial-mesenchymal transition (EMT) and cancer stem cells. Therefore, targeting of NF-κB signaling pathway could be a potent strategy for the prevention and/or treatment of human cancers and inflammatory diseases.  相似文献   

11.
近期研究发现受体相互作用蛋白(receptor—interacting protein,RIP)是细胞生存和死亡的重要交叉点,在细胞的凋亡与存活、程序性坏死等过程中发挥着关键性的作用。RIP1为RIP家族中的第一个成员,是一种重要的细胞信号转导调控分子。RIP1的结构与生物学功能及在细胞程序性死亡中的作用具有重要意义。  相似文献   

12.
13.
14.
Previous studies from our group and others have shown that the Akt kinase can contribute to induction of NF-κB by antigen receptor signaling. However, the direct targets of Akt in this pathway are not known. Here we show that Akt-mediated NF-κB activation is mediated at least in part through direct phosphorylation of the adaptor protein Carma1, which we previously demonstrated could interact with Akt in a TCR ligation-dependent manner. The putative Akt phosphorylation sites in Carma1 are distinct from known PKC consensus sites. Mutation of S551, S637 and S645 in Carma1 to non-phosphorylatable residues decreased phosphorylation of GST-Carma1-linker construct by Akt in vitro. In addition, Carma1 S637A/S645A mutants were significantly impaired in their ability to restore TCR-mediated NF-κB activation and IL-2 expression in Carma1-deficient T cells. Thus, our data reveal Carma1 as a novel target for Akt phosphorylation and suggest that Akt-mediated phosphorylation of Carma1 is an additional regulatory mechanism tuning the NF-κB response downstream of antigen receptor and co-stimulatory signaling.  相似文献   

15.
Ghrelin has a protective effect on diabetic encephalopathy. To expound the protective mechanism, we investigated the effects of ghrelin on high glucose-induced cell apoptosis and intracellular signaling in cultured PC12, which is a suitable model for studying neuronal cell death. High glucose-induced PC12 apoptosis was significantly inhibited by co-treatment of ghrelin. Sustaining inflammatory response is one of the molecular mechanisms of diabetic encephalopathy and TLR4 signaling has close relationship with inflammatory response. But there is no report about the biologic role of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling in controlling high glucose-induced PC12 apoptosis by ghrelin. In this study, we found that TLR4/NF-κB pathway was activated by high glucose stimulation in PC12 and significantly alleviated by the co-treatment of ghrelin. From these findings, we made the conclusion that ghrelin could attenuate the symptoms of diabetic encephalopathy, which alleviates inflammatory reaction of diabetic encephalopathy by regulating TLR4/NF-κB pathway.  相似文献   

16.
The nuclear factor-κB (NF-κB) pathway is a critical regulator of innate and adaptive immunity. Noncanonical K63-linked polyubiquitination plays a key regulatory role in NF-κB signaling pathways by functioning as a scaffold to recruit kinase complexes containing ubiquitin-binding domains. Ubiquitination is balanced by deubiquitinases that cleave polyubiquitin chains and oppose the function of E3 ubiquitin ligases. Deubiquitinases therefore play an important role in the termination of NF-κB signaling and the resolution of inflammation. In this review, we focus on NF-κB regulation by deubiquitinases with an emphasis on A20 and CYLD. Deubiquitinases and the ubiquitin/proteasome components that regulate NF-κB may serve as novel therapeutic targets for inflammatory diseases and cancer.  相似文献   

17.
Regulation of NF-κB induction by TCR/CD28   总被引:1,自引:0,他引:1  
  相似文献   

18.
The nuclear factor kappa B (NF-κB) plays vital role in the immune system by regulating innate and adaptive immunity, development and survival of lymphocytes, and lymphoid organogenesis. All known NF-κB activators converge on the IkappaB kinase (IKK) complex to activate the canonical and non-canonical NF-κB pathways. The IKK complex contains two catalytic subunits (IKKα and IKKβ) and a regulatory subunit NEMO/IKKγ that regulates the canonical NF-κB pathway, whereas IKKα regulates the non-canonical pathway. The process of IKKα activation and its role in the regulation of canonical NF-κB activation remain elusive. The canonical pathway is rapidly activated and produces a potent inflammatory response to bacterial and viral infections as well as different types of stress; however, uncontrolled NF-κB activation can lead to autoimmune diseases and cancers. Therefore, to keep the inflammatory response in check, elaborate negative regulatory mechanisms operate to terminate NF-κB activation at multiple levels by de novo synthesis of NF-κB inhibitory proteins, and orchestration of protein ubiquitination and deubiquitination. The NF-κB target genes, IκBα and A20, play critical roles in termination of the active canonical NF-κB pathway. In this review, we discuss our recent findings describing a novel function for IKKα in nucleating the ubiquitin-editing enzyme A20 complex, a major negative regulator of canonical NF-κB signaling. Consistently with an inhibitory function of IKKα, it is targeted by the human T-cell leukemia virus 1 (HTLV-1) oncoprotein, Tax, to prevent assembly of the A20 complex to maintain persistent NF-κB activation that promotes transformation and survival of virus-transformed cells.  相似文献   

19.
The role of the alternative NF-κB pathway is mainly attributed to the lymphoid organ formation and blood cancer. However, its involvement in lymphocyte differentiation is not clearly defined. Recently, we have shown that uncontrolled activation of alternative NF-κB in mice lacking the NF-κB inhibitory protein p100 (p100?/? mice) hinders plasmablast proliferation and diminishes T cell independent responses. Here we show that hyperactivation of this pathway leads to a cell-intrinsic T cell defects. p100-deficient T helper cells displayed both an activation and a proliferation defect in vitro. In addition, memory T cell formation was impaired in vivo. Moreover, p100?/? T cells failed to polarize into T helper 17 cells. This phenotype was dependent on increased RelB activation and suboptimal RORγt expression. Thus, our results demonstrate that RelB acts as a negative regulator of T cell activation and Th17 development. Targeting this pathway therefore could be beneficial in Th17-mediated pathologies.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are known to be important in osteoblasts' response to mechanical stimuli. BMPs/Smad signaling pathway has been demonstrated to play a regulatory role in the mechanical signal transduction in osteoblasts. However, little is currently known about the Smad independent pathway in osteoblasts differentiation in mechanical loading. In this study, MC3T3-E1 cells were subjected to mechanical stretch of 2000?micro-stain (με) at 0.5?Hz, in order to investigate the involvement of p38MAPK and NF-κB signaling pathways in mechanical response in osteoblasts. We found BMP-2/BMP-4 were up-regulated by mechanical stretch via the earlier activation of p38MAPK and NF-κB signaling pathways, which enhanced osteogenic gene expressions including alkaline phosphatase (ALP), collagen type I (Col I) and osteocalcin (OCN), and the expressions of these osteogenic genes were remarkably decreased with Noggin (an inhibitor for BMPs signals) pretreatment. Furthermore, BMP-2/BMP-4 expressions were suppressed by PDTC, an inhibitor of NF-κB pathway and SB203580, an inhibitor of p38MAPK pathway, respectively, leading to the declined levels of ALP, Col I and OCN. Interestingly, blocking in p38MAPK pathway can also cause the inactivation of NF-κB pathway in mechanical stretch. Collectively, the results indicate during mechanical stretch p38MAPK and NF-κB signaling pathways are activated first, and then up-regulate BMP-2/BMP-4 to enhance osteogenic gene expressions. Moreover, p38MAPK and NF-κB signals have cross-talk in regulation of BMP-2/BMP-4 in mechanical response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号