首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the block 2 region of MSP-1 were measured in a cohort of 280 children before the beginning of the major malaria transmission season. The cohort was then actively monitored for malaria, clinically and parasitologically, over a period of 17 months. Evidence is presented for an association between antibody responses to block 2 and a significantly reduced risk of subsequent clinical malaria. Furthermore, statistical survival analysis provides new information on the duration of the effect over time. The results support a conclusion that the block 2 region of MSP-1 is a target of protective immunity against P. falciparum and, thus, a promising new candidate for the development of a malaria vaccine.  相似文献   

3.
The C-terminal conserved region of Plasmodium falciparum merozoite surface protein 3 (MSP3) is the trigger antigen of a protective immune response mediated by cytophilic antibodies. In an open, randomized, two-adjuvant (Montanide ISA 720, aluminum hydroxide) phase I clinical trial we evaluated the safety and immunogenicity of increasing doses of a long synthetic peptide construct spanning the conserved region of MSP3 targeted by biologically active antibodies (MSP3-LSP). Thirty-five healthy volunteers were randomized to receive three subcutaneous injections on days 0, 30, and 120. Of the 100 injections given, 10 caused severe local reactions, 62 caused transient mild to moderate local reactions, and 28 caused no reaction. On the basis of preestablished exclusion criteria, use of the Montanide formulation led to withdrawal of five volunteers after the second injection. This led to a reduction in the subsequent vaccine doses in four of the groups. No vaccine-related serious adverse events occurred throughout the trial. After the third injection, volunteers displayed a marked specific anti-MSP3-LSP antibody response (23/30 individuals, compared with 29/34 individuals for plasma from an area where malaria is endemic), an anti-native MSP3 antibody response (19/30 individuals), a T-cell-antigen-specific proliferative response (26/30 individuals), and gamma interferon production (25/30 individuals). In conclusion, the MSP3-LSP vaccine was immunogenic with both adjuvants, although it was unacceptably reactogenic when it was combined with Montanide. The potential usefulness of the candidate vaccine is supported by the induction of a strong cytophilic response (i.e., the type of anti-MSP3 antibodies involved in antibody-dependent, monocyte-mediated protective mechanisms in areas where malaria is endemic).  相似文献   

4.
The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria.  相似文献   

5.
We performed a longitudinal clinical and parasitological follow-up study in OoDo, a village in southeast Asia in which malaria is hyperendemic, in order to assess the association between protection against malaria attacks and antibodies to three currently evaluated vaccine candidates, merozoite surface protein 1 (MSP1), MSP3, and the 220-kDa glutamate-rich protein (GLURP) from Plasmodium falciparum. Our results showed that the levels of cytophilic immunoglobulin G3 (IgG3) antibodies against conserved regions of MSP3 and GLURP were significantly correlated with protection against clinical P. falciparum malaria. In contrast, the levels of noncytophilic IgG4 antibodies against GLURP increased with the number of malaria attacks. Furthermore, we observed a complementary effect of the MSP3- and GLURP-specific IgG3 antibodies in relation to malaria protection. In the individuals that did not respond to one of the antigens, a strong response to the other antigen was consistently detected and was associated with protection, suggesting that induction of antibodies against both MSP3 and GLURP could be important for the development of protective immunity. The complementarity of the responses to the two main targets of antibody-dependent cellular inhibition identified to date provides the first rational basis for combining these two antigens in a hybrid vaccine formulation.  相似文献   

6.
Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein administered alone.  相似文献   

7.
The saliva-binding region (SBR) of the cell surface antigen I/II (AgI/II) and the glucan-binding region (GLU) of the glucosyltransferase enzyme of Streptococcus mutans have been implicated in the initial adherence of S. mutans to saliva-coated tooth surfaces and the subsequent sucrose-dependent accumulation of S. mutans, respectively. Here, we describe the construction and characterization of a genetic chimeric protein consisting of the two virulence determinants SBR and GLU (SBR-GLU). The effectiveness of this construct in inducing mucosal and systemic immune responses to each virulence determinant following intranasal immunization was compared to that of each antigen alone or an equal mixture of SBR and GLU (SBR+GLU) in a mouse model. Furthermore, the ability of antibodies induced to SBR-GLU to protect against S. mutans infection was also investigated. Immunization of mice with the chimeric protein SBR-GLU resulted in significantly enhanced (P < 0.001) levels of serum immunoglobulin G (IgG) anti-SBR antibody activity compared to those in the SBR and SBR+GLU groups. The SBR-GLU-immunized mice also demonstrated a significant (P < 0.05) increase in salivary and vaginal IgA antibody responses to SBR and GLU. Analysis of the serum IgG subclass responses to SBR in mice immunized with SBR alone indicated a mixed IgG1 and IgG2a response. A preferential IgG1 response compared to an IgG2a anti-GLU response was induced in mice immunized with GLU alone. Similarly, a preferential IgG1 response was also induced to SBR when GLU was present in either a mixed or conjugated form. Finally, a significant reduction (P < 0.05) in S. mutans colonization was observed only in mice immunized with the SBR-GLU chimeric protein. Taken together, our results indicate that the chimeric protein SBR-GLU significantly enhanced mucosal immune responses to SBR and GLU and systemic immune responses to SBR. The ability of SBR-GLU to induce responses effective in protection against colonization of S. mutans suggests its potential as a vaccine antigen for dental caries.  相似文献   

8.
9.
Immunization with merozoite surface protein 4/5 (MSP4/5), the murine malaria homologue of Plasmodium falciparum MSP4 and MSP5, has been shown to protect mice against challenge by parasites expressing the homologous form of the protein. The gene encoding MSP4/5 was sequenced from a number of Plasmodium yoelii isolates in order to assess the level of polymorphism in the protein. The gene was found to be highly conserved among the 13 P. yoelii isolates sequenced, even though many of the same isolates showed pronounced variability in their MSP1(19) sequences. Nonsynonymous mutations were detected only for the isolates Plasmodium yoelii nigeriensis N67 and Plasmodium yoelii killicki 193L and 194ZZ. Immunization and challenge of BALB/c mice showed that the heterologous MSP4/5 proteins were able to confer a level of protection against lethal Plasmodium yoelii yoelii YM challenge infection similar to that induced by immunization with the homologous MSP4/5 protein. To explore the limits of heterologous protection, mice were immunized with recombinant MSP4/5 protein from Plasmodium berghei ANKA and Plasmodium chabaudi adami DS and challenged with P. y. yoelii YM. Interestingly, significant protection was afforded by P. berghei ANKA MSP4/5, which shows 81% sequence identity with P. y. yoelii YM MSP4/5, but it was abolished upon reduction and alkylation. Significant protection was not observed for mice immunized with recombinant P. c. adami DS MSP4/5, which shows 55.7% sequence identity with P. y. yoelii YM MSP4/5. This study demonstrates the robustness of MSP4/5 in conferring protection against variant forms of the protein in a murine challenge system, in contrast to the situation found for other asexual-stage proteins, such as MSP1(19) and AMA1.  相似文献   

10.
Han ET  Wang Y  Lim CS  Cho JH  Chai JY 《Parasitology research》2011,109(6):1571-1576
The Plasmodium vivax merozoite surface protein 1 (Pvmsp-1) locus codes for a major asexual blood-stage antigen currently proposed as a malaria vaccine candidate antigen. However, extensive polymorphism of this protein has been observed in isolates from different geographical areas. Here, we investigate the extent and the frequency of allelic diversity at the Pvmsp-1 locus in field isolates collected in the Republic of Korea during the past decade. Among the 45 Korean isolates, six Pvmsp-1 gene types (SKOR-I to SKOR-VI) were identified as unique combinations of type sequences in each variable block. Of these six different Pvmsp-1 gene types, two major Pvmsp-1 allelic types were found in 72% (SKOR-I) and 28% (SKOR-II) of field isolates collected in 1996 to 2000, and four different allelic types (SKOR-III to SKOR-VI) emerged in 70% (10–25%) of isolates collected in 2007 to 2009. These results suggest that allelic diversity of Pvmsp-1 increased in several variable regions, including the N- and C-terminals, after reemergence of P. vivax parasites in the Republic of Korea.  相似文献   

11.
12.
Human antibodies to the block 2 region of Plasmodium falciparum merozoite surface protein 1 (MSP1) are associated with a reduced prospective risk of clinical malaria. Block 2 is highly polymorphic, but all known alleles can be grouped into three major types. Two of these types (the K1-like and MAD20-like types) contain type-specific sequences (found in all alleles of a particular type) that flank polymorphic tripeptide repeats. These repeats contain both type-specific and subtype-specific sequences. To evaluate the antibody recognition of these parts of block 2, a new panel of six recombinant proteins was used (fused type-specific flanking sequences and two representative repeat sequences for each of the K1-like and MAD20-like types separately). Extensive testing of these antigens and full-length block 2 antigens showed that human serum immunoglobulin G antibodies induced by infection can recognize (i) type-specific epitopes in the repeats, (ii) subtype-specific epitopes in the repeats, or (iii) type-specific epitopes in flanking sequences. A large prospective study in The Gambia showed that antibodies to the repeats are strongly associated with protection from clinical malaria. The results are important for design of a vaccine to induce protective antibodies, and they address hypotheses about repeat sequences in malaria antigens.  相似文献   

13.
The immunogenicity and protective efficacy of baculovirus recombinant polypeptide based on the Plasmodium falciparum merozoite surface protein 1 (MSP-1) has been evaluated in Aotus lemurinus griseimembra monkeys. The MSP-1-based polypeptide, BVp42, corresponds to the 42-kDa C-terminal processing fragment of the precursor molecule. Immunization of Aotus monkeys with BVp42 in complete Freund's adjuvant resulted in high antibody titers against the immunogen as well as parasite MSP-1. Fine specificity studies indicated that major epitopes recognized by these antibodies localize to conserved determinants of the 19-kDa C-terminal fragment derived from cleavage of the 42-kDa processing fragment. Effective priming of MSP-1-specific T cells was also demonstrated in lymphocyte proliferation assays. All three Aotus monkeys immunized with BVp42 in complete Freund's adjuvant showed evidence of protection of protection against blood-stage challenge with P. falciparum. Two animals were completely protected, with only one parasite being detected in thick blood films on a single days after injection. The third animal had a modified course of infection, controlling its parasite infection to levels below detection by thick blood smears for an extended period in comparison with adjuvant control animals. All vaccinated, protected Aotus monkeys produced antibodies which inhibited in vitro parasite growth, indicating that this assay may be a useful correlate of protective immunity and that immunity induced by BVp42 immunization is mediated, at least in part, by a direct effect of antibodies against the MSP-1 C-terminal region. The high level of protection obtained in these studies supports further development of BVp42 as a candidate malaria vaccine.  相似文献   

14.
Four variants of merozoite surface protein 2 (MSP-2) of Plasmodium falciparum were used in serology to examine whether changes in repeat units affect its recognition by antibodies during infection with parasites of known MSP-2 types. The results indicate that variation in MSP-2 repeats may represent a mechanism for parasite immune evasion.  相似文献   

15.
Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rond?nia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite.  相似文献   

16.
Malaria is a major concern for international health authorities. Millions of people contract it every year in the world due to a parasite of the Plasmodium genus. Due to the complexity of the parasite biology and genetics, there is currently no vaccine against the disease. However, due to the great resistance both to the medicines and to the insecticides used to combat the disease, it has become essential to obtain a vaccine as the necessary tool to prevent transmission and eliminate the disease. The bibliometric data indicate that interest in vaccines has been growing steadily since the 1980s. But nowadays, a powerful tool is used: the Plasmodium genome. This allows us to improve the fight against the disease. Knowing the sequences of the genes that favor the appearance of drug resistance, or those that encode for proteins with greater antigenic response, is a tool that can become fundamental. This article reviews the state of the art on vaccines and genetics, in the fight against malaria, and analyzes the fixed photo that the worldwide research on the disease poses.  相似文献   

17.
18.
Previously, we described the isolation of the Plasmodium yoelii sequence-related molecules P. yoelii MSP-7 (merozoite surface protein 7) and P. yoelii MSRP-2 (MSP-7-related protein 2) by their ability to interact with the amino-terminal end of P. yoelii MSP-1 in a yeast two-hybrid system. One of these molecules was the homologue of Plasmodium falciparum MSP-7, which was biochemically isolated as part of the shed MSP-1 complex. In the present study, with antibodies directed against recombinant proteins, immunoprecipitation analyses of the rodent system demonstrated that both P. yoelii MSP-7 and P. yoelii MSRP-2 could be isolated from parasite lysates and from parasite culture supernatants. Immunofluorescence studies colocalized P. yoelii MSP-7 and P. yoelii MSRP-2 with the amino-terminal portion of MSP-1 and with each other on the surface of schizonts. Immunization with P. yoelii MSRP-2 but not P. yoelii MSP-7 protected mice against a lethal infection with P. yoelii strain 17XL. These results establish that both P. yoelii MSP-7 and P. yoelii MSRP-2 are expressed on the surface of merozoites and released from the parasite and that P. yoelii MSRP-2 may be the target of a protective immune response.  相似文献   

19.
Use of synthetic peptides as vaccine components is hampered by their susceptibility to enzymatic degradation and rapid clearance from biological fluids. Introduction of non-natural structural modifications can render peptides more resistant to enzymatic degradation, encouraging attempts to profile such non-natural ligands as components of synthetic sub-unit vaccines. We have compared the antigenic and immunogenic properties of a series of non-natural peptide analogues derived from a promiscuous T cell epitope of the major Plasmodium falciparum malaria vaccine candidate merozoite surface protein 1 (MSP-1). A series of HLA class II restricted MSP-1(38-58)-specific TCC established from three volunteers were characterized for their minimal epitope and fine specificity. T cell stimulatory activities of a series of pseudo-peptide analogues with single reduced peptide bond Psi-[CH2-NH] modifications were compared with those of single d-amino acid replacement analogues. Compared to reduced peptide bond analogues the single d-amino acid replacement analogues turned out to be less suitable for stimulation of TCC. In particular, the reduced peptide analogue carrying a Psi-[CH2-NH] backbone modification between positions V52 and L53 of MSP-1(38-58) demonstrated properties that would make it a more suitable vaccine component than the unmodified parent peptide. First, the pseudo-peptide stimulated a number of TCC restricted by a range of HLA class II alleles. Second, trypsin treatment in combination with T cell stimulation assays provided evidence for increased resistance to proteolytic digestion. Third, the parasite-binding anti-MSP-1 mAb 7.27 recognized best this particular pseudo-peptide in competition ELISA experiments and its immunogenicity in out-bred Aotus monkeys was superior to that of the parent peptide eliciting antibodies cross-reactive with native MSP-1.  相似文献   

20.
Vaccination of mice with yeast-secreted Plasmodium yoelii-derived 19-kilodalton merozoite surface protein 1 (yMSP1(19)) has been shown to afford protection from challenge with a lethal strain of P. yoelii. Sterile immunity can be achieved when MSP1(19) is emulsified in Freund adjuvant but not when it is adsorbed to aluminum hydroxide gel (alum). Because complete Freund adjuvant is not an acceptable adjuvant for use in humans, alternative adjuvants must be identified for formulating MSP1(19) as a vaccine for use in humans. To determine whether oligodeoxynucleotides with CpG motifs (ODN), reported to be a powerful new class of adjuvants, could enhance the immunogenicity of yMSP1(19), C57BL/6 mice were vaccinated either with yMSP1(19) formulated with Freund adjuvant, with alum, or with ODN plus alum and challenged intravenously with P. yoelii 17XL asexual blood-stage parasites. Adsorption of immunogen and adjuvant to alum was optimized by adjusting buffer (phosphate versus acetate) and pH. We found that the adjuvant combination of ODN plus alum with yMSP1(19), injected intraperitoneally (i.p.), increased immunoglobulin G (IgG) yMSP1(19)-specific antibody production 12-fold over Freund adjuvant given i.p., 3-fold over Freund adjuvant given subcutaneously (s.c.), 300-fold over alum given i.p., and 48-fold over alum given s.c. The predominant antibody isotype in the group receiving alum-ODN-yMSP1(19) was IgG1. Increased antibody levels correlated to protection from a challenge with P. yoelii 17XL. Supernatant cytokine levels of gamma interferon in yMSP1(19)-stimulated splenocytes were dramatically elevated in the alum-ODN-yMSP1(19) group. Interleukin-10 (IL-10) levels were also elevated; however, no IL-5 was detected. The cytokine profile, as well as the predominant IgG1 antibody isotype, suggests the protective immune response was a mixed Th1/Th2 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号