首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Zonisamide (ZNS) is an anticonvulsant drug known to affect various neuronal channels and transmitter systems. ZNS has also been reported to inhibit carbonic anhydrase activity and may thus influence neuronal activity via changes of pH. Therefore, we analyzed effects of ZNS in vitro using epileptic model systems which are sensitive to carbonic anhydrase inhibition and pH changes. Intracellular recordings from CA3 neurons (hippocampal slice, adult guinea pigs) were carried out under bicarbonate-buffered conditions. Epileptiform activity was induced by either 4-aminopyridine or theophylline. In parallel experiments, intracellular pH (pHi) was determined in the CA1 and CA3 subfields of 2′,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescin-acetoxymethyl ether (BCECF-AM) loaded slices. The ammonium prepulse method was used to test for effects of ZNS on pHi regulation. ZNS (50 μM) reversibly reduced the frequency of 4-AP induced epileptiform bursting and the number of action potentials per bursts but had no effect on input resistance and membrane potential. Theophylline-induced epileptiform bursting, although sensitive to hypercapnic acidosis, was not affected by ZNS. There was also no effect on steady-state pHi and pHi regulation of BCECF-AM loaded hippocampal tissue. Clinically relevant concentrations of ZNS strongly inhibit 4-AP induced epileptiform activity of hippocampal CA3 neurons in vitro, but this effect was unlikely based on carbonic anhydrase inhibition or changes of neuronal pHi.  相似文献   

2.
Svichar N  Chesler M 《Glia》2003,41(4):415-419
A number of studies have provided physiological evidence for extracellular carbonic anhydrase (CA) in brain. Association of extracellular CA with glia has been limited to functional studies of gliotic slices and retinal Muller cells. While astrocytes contain intracellular CA, there has been no direct evidence for surface CA on these cells. In fact, some morphological studies suggest that the extracellular CA in brain parenchyma resides on neurons, not glia. There has been no functional demonstration of extracellular CA activity on CNS neurons, however. Here we capitalized on the H(+) dependence of inward lactate transport to reveal functional extracellular CA activity on cultured astrocytes and acutely isolated hippocampal pyramidal neurons. Exposure to 20 mM L-lactate produced a rapid acidification of astrocytes that was reversibly blocked by 10 microM benzolamide. The lactate-induced acidification (LIA) was also blocked by a dextran-conjugated CA inhibitor. In CO(2)/HCO(3) (-)-free, HEPES-buffered media, the LIA was largely unaffected. Acutely dissociated hippocampal pyramidal neurons underwent a similar LIA that was reversibly blocked by benzolamide. Surface CA is likely to facilitate lactate transport by enabling rapid replenishment (i.e., buffering) of surface H(+) required for inward lactate-H(+) cotransport. These results demonstrate functional surface CA for the first time on individual mammalian astrocytes and neurons and suggest that this enzyme may play a role in the utilization of monocarboxylate substrates such as lactate and pyruvate by the brain.  相似文献   

3.
The effect of the sulfonamide derivative sulthiame (Ospolot®) on voltage-operated sodium channels was investigated in acutely isolated neurons from the guinea pig hippocampus using the whole-cell patch-clamp technique. Sulthiame in a concentration of 10 μg/ml reduced the inactivating sodium currents without affecting potassium currents. The effect was not dependent on voltage. At therapeutic concentration of 1 to 10 μg/ml sodium currents were reduced by 13 to 25% of control. Reductions of this size (induced by the specific sodium channel blocker tetrodotoxin or by 10 μg/ml sulthiame itself) impaired repetitive generation of action potentials and reduced the maximum discharge frequency by 20 to 40%. In summary, the anticonvulsant drug sulthiame exerts blocking effects on sodium channels which can be assumed to be anticonvulsant and to be different from the effects induced by blockade of carbonic anhydrase.  相似文献   

4.
Dopamine (DA) application to guinea pig hippocampal CA1 neurons in vitro causes hyperpolarization of the resting potential, increase in conductance, and increase in amplitude and duration of the afterhyperpolarization (AHP). Since these changes could influence repetitive firing, we performed experiments to determine whether DA-induced effects would suppress epileptogenesis in the hippocampus. Epileptiform bursts were induced by adding penicillin (3.4 mM) to the perfusion medium. Focal application of DA (40-160 microns) onto CA1 cells (n = 15) produced a hyperpolarization averaging 4.5 mV beginning in 5-20 s and lasting up to 3 min. DA also caused an increase in the amplitude and duration of slow AHPs. The frequency of spontaneous epileptiform events however was not affected. CA3 neurons (n = 6) responded to DA application with an initial 1-3 mV depolarization beginning within 5-30 s and lasting 1-2 min. In 3 cases a small hyperpolarization lasting several minutes subsequently developed. AHP duration increased 70% and amplitude increased 35% (n = 4). Along with these membrane changes the frequency of epileptiform bursting in CA3 cells slowed for 1-3 min. We added DA (10-80 microM) to the perfusion medium to see whether a significant decrease in epileptiform burst frequency might occur in the follower CA1 region if greater numbers of pacemaker CA2 and CA3 cells were exposed to DA. Spontaneous CA1 bursting was reversibly slowed, the interburst interval became variable and increased from a mean of 4 to a mean of 5-7 s (n = 6). These results suggest that DA may play a role in decreasing the incidence or frequency of epileptogenic discharges in vivo.  相似文献   

5.
Svichar N  Esquenazi S  Waheed A  Sly WS  Chesler M 《Glia》2006,53(3):241-247
Buffering of the brain extracellular fluid is catalyzed by carbonic anhydrase (CA) activity. Whereas the extracellular isoform CA XIV has been localized exclusively to neurons in the brain, and to glial cells in the retina, there has been uncertainty regarding the form or forms of CA on the surface of brain astrocytes. We addressed this issue using physiological methods on cultured and acutely dissociated rat astrocytes. Prior work showed that the intracellular lactate-induced acidification (LIA) of astrocytes is diminished by benzolamide, a poorly permeant, nonspecific CA inhibitor. We demonstrate that pretreatment of astrocytes with phosphatidylinositol-specific phospholipase C (PI-PLC) results in a similar inhibition of the mean LIA (by 66 +/- 3%), suggesting that the glycosylphosphatidylinositol-anchored CA IV was responsible. Pretreatment of astrocytes with CA IV inhibitory antisera also markedly reduced the mean LIA in both cultured cortical (by 46 +/- 4%) and acutely dissociated hippocampal astrocytes (by 54 +/- 8%). Pre-immune sera had no effect. The inhibition produced by PIPLC or CA IV antisera was not significantly less than that by benzolamide, suggesting that the majority of detectable surface CA activity was attributable to CA IV. Thus, our data collectively document the presence of CAIV on the surface of brain astrocytes, and suggest that this is the predominant CA isoform on these cells.  相似文献   

6.
Regulation of intracellular pH in vertebrate central neurons   总被引:2,自引:0,他引:2  
The regulation of intracellular pH (pHi) was investigated in reticulospinal neurons of the lamprey using ion-selective microelectrodes. Steady-state pHi in 23 mM HCO-3-buffered Ringer was 7.44 +/- 0.03 with a membrane potential of 54 +/- 4 mV (mean +/- S.E.M., n = 6). In nominally HCO-3-free solutions, pHi recovery from acid loading was blocked by 10(-3)M amiloride. Recovery was stimulated by transition to HCO-3-containing solutions. Results suggest that pHi regulation in lamprey reticulospinal neurons is mediated by a Na+-H+ exchanger. The presence of a distinct, HCO-3-dependent pHi regulatory mechanism is postulated.  相似文献   

7.
Intracellular pH transients of mammalian astrocytes   总被引:2,自引:0,他引:2  
Intracellular pH (pHi) is an important physiologic variable that both reflects and influences cell function. Glial cells are known to alter their functional state in response to a variety of stimuli and accordingly may be expected to display corresponding shifts in pHi. We used fine-tipped, double-barreled, pH-sensitive microelectrodes to continuously monitor pHi in glial cells in vivo from rat frontal cortex. Cells were identified as glia by a high membrane potential and lack of injury discharge or synaptic potentials. Continuous, stable recordings of pHi from astrocytes were obtained for up to 80 min but typically lasted for approximately 10 min. Resting pHi was 7.04 +/- 0.02 with a membrane potential of 73 +/- 0.9 mV (mean +/- SEM; n = 51). With cortical stimulation, glia depolarized and became more alkaline by 0.05-0.40 pH (n = 50). During spreading depression (SD), glia shifted more alkaline by 0.11-0.78 pH (n = 26). After stimulation or SD, glia repolarized and pHi became more acidic than at resting levels. Superfusion of the cortical surface with 0.5-2 mM Ba2+ caused glia to hyperpolarize during stimulation and completely abolished the intracellular alkaline response. The predominant pH response of the interstitial space during stimulation or SD was a slow acidification. With superfusion of Ba2+ an early stimulus-evoked interstitial alkaline shift was revealed. The mechanism of the intracellular alkaline shift is likely to involve active extrusion of acid. However, internal consumption of protons cannot be excluded. The sensitivity of the response to Ba2+ suggests that it is triggered by membrane depolarization. These results suggest that glial pHi is normally modulated by the level of local neuronal activity.  相似文献   

8.
Sulthiame is a carbonic anhydrase inhibitor that is widely used to treat partial and myoclonic seizures. In 11 healthy adults, we applied transcranial magnetic stimulation (TMS) to the primary motor cortex. Using a cross-over study design, we found that a single oral dose of sulthiame (5 mg/kg) produced a significant increase of resting motor threshold relative to placebo. No other TMS measure of corticomotor excitability was altered after a single dose of sulthiame. The selective increase in motor threshold suggests that sulthiame produces its antiepileptic effect by reducing the axonal excitability of cortical neurons.  相似文献   

9.
The effect of ethanol on the epileptiform activity induced by Mg(++)-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg(++)-free medium. Superfusion with ethanol (20-100 mM) reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg(++)-free solution or in the presence of 50 microM bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation. In addition, the observed effect of ethanol on NMDA receptor-mediated synaptic response could be relevant to the cognitive and behavioral manifestations seen in some alcoholics.  相似文献   

10.
Summary: Rationale : Administration of kainate to rodents in vivo produces temporal lobe lesions, followed several weeks later by the development of delayed spontaneous recurrent motor seizures (Cavalheiro et al. Electroencephalogr. Clin. Neurophysiol. 1982;53:581). Cell loss also occurs following kainate administration to hippocampal slices (Best et al., Eur. J. Neurosci. 1996;8:2109). The present study investigated whether kainate applied in vitro produces subsequent chronic spontaneous epileptiform electrical activity. Methods : Hippocampal slices (400 mM thick; P9 neonatal rats) were cultured (Stoppini et al., J. Neurosci. Methods 1991;37:173) for 5–7 weeks. Organotypic slices were exposed to 5 mM kainate for 24 h, 3 weeks post-cutting and extracellular electrophysiological recordings made 2–3 weeks post-kainate treatment. Results : Propidium iodide revealed cell death, particularly in CA3, in response to the kainate. Spontaneous interictal (short spontaneous bursts 96 ± 20A ms duration, n = 7) and/or "ictal" (long spontaneous bursting, ranging from 120 s to continuous, n = 10) electrical activity was detected in CA1 of all kainate-treated slices. Very little or no spontaneous discharges were detected in control slices (n = 12). Both forms of activity were completely inhibited by the Na channel blocker tetrodotoxin (0.1 mM, n = 3). Interictal activity was completely inhibited by the anticonvulsant lamotrigine (IC50= 51 mM, 28–91 mM, 95% confidence limits, n = 3). However, lamotrigine had no effect on the "ictal" activity (up to 300 mM, n = 3). Discussion : Chronic spontaneous interictal and/or "ictal" epileptiform activity was detected 2–3 weeks following kainate-induced cell loss in cultured hippocampal slices. Pharmacological characterization of the electrical discharges and the potential refractoriness of the "ictal" activity are currently under investigation.  相似文献   

11.
Cyclosporine induces epileptiform activity in an in vitro seizure model   总被引:3,自引:3,他引:0  
Wong M  Yamada KA 《Epilepsia》2000,41(3):271-276
PURPOSE: Cyclosporine (CSA) toxicity represents a common cause of seizures in transplant patients, but the specific mechanisms by which CSA induces seizures are unknown. Although CSA may promote seizure activity by various metabolic, toxic, vascular, or structural mechanisms, CSA also has been hypothesized to modulate neuronal excitability directly. The objective of this study was to determine if CSA exerts direct epileptogenic actions on neurons in an in vitro seizure model. METHODS: Combined hippocampal-entorhinal cortex slices from juvenile rats were exposed directly to artificial cerebrospinal fluid (ACSF) containing either (a) 1.0 mM magnesium sulfate (control), (b) 1.0 mM sodium sulfate (low-magnesium), or (c) 1.0 mM magnesium sulfate + CSA (1,000-10,000 ng/ml). Spontaneous and evoked extracellular field potentials were recorded simultaneously from the dentate gyrus (DG) and CA3 hippocampal regions. Evoked synaptic responses were elicited by stimulation of the entorhinal cortex/perforant pathway. RESULTS: CSA elicited spontaneous or stimulation-induced epileptiform activity in the DG or CA3 region of approximately 40% of slices, consisting of brief repetitive "interictal" discharges or prolonged stereotypical "ictal" discharges. Mean latency to epileptiform activity was approximately 100 min after onset of CSA application. The interictal discharges were inhibited by the non-NMDA antagonist, NBQX. Similar epileptiform activity was observed in low-magnesium ACSF without CSA. In control ACSF alone, epileptiform activity was not seen, except for rare spontaneous potentials in the DG. CONCLUSIONS: Direct effects of CSA on neuronal excitability and synaptic transmission may contribute to seizures seen in clinical CSA neurotoxicity.  相似文献   

12.
Veratridine is believed to cause epileptiform discharges via its effects on sodium channels. We addressed the question whether calcium currents, known to contribute to the generation of paroxysmal depolarization shifts (PDS) in most models of epilepsies, also contribute to veratridine-induced epileptiform activity. Therefore, we recorded from CA3 neurons (n=50) of veratridine-treated hippocampal slices and analyzed the effects of two calcium antagonists. Veratridine (0.5-1.0 microM) elicited spontaneous epileptiform bursts, paroxysmal depolarization shifts (PDS) lasting 100-300 ms, and depolarizations (LD) lasting up to several minutes. Most often PDS directly preceded LD which resulted in typical composite depolarizations termed veratridine-induced complexes (VC). VC persisted even in the presence of CNQX and APV (25 micromol/l, both), or in nominally calcium-free saline, revealing the non-synaptic nature of these potentials. Cobalt (1-2mM) abolished VC within minutes, but allowed LD type-like potentials to be elicited by depolarizing current pulses. Verapamil (50 microM) also diminished or abolished amplitudes of VC. All inhibitory effects of cobalt and verapamil were at least partly reversible. Due to the effects of both calcium antagonists we conclude that veratridine-induced epileptiform activity depends not only on sodium, but also on calcium currents.  相似文献   

13.
pH regulation after acid load in primary cultures of mouse astrocytes   总被引:2,自引:0,他引:2  
Intracellular pH (pHi) recovery in primary cultures of mouse astrocytes after acid-loading was studied with the ion transport inhibitors (amiloride, SITS, acetazolamide, ouabain and bumetanide), and by reducing the concentration of Na+ or Cl- in HCO3- -free HEPES-buffered (HEPES) and in HCO3-/CO2 Hanks' balanced salt solution (HBSS). The pHi of astrocytes exposed to 15 mM NH4Cl decreased abruptly and began to recover slowly after 5 min. Exposure of the cells to NH4Cl for 2 min and reincubation in HEPES HBSS decreased pHi further within 1-2 min after removal of NH4Cl; pHi then recovered toward the control value. Cultures exposed to HCO3-/CO2 HBSS (10 mM/2%) showed changes in pHi in the opposite direction. These responses are unique to astrocytes and differ from those occurring in most other cells. Recovery of pHi after NH4Cl prepulse was markedly inhibited in low-Na+ and in amiloride-containing HEPES HBSS. Ouabain also reduced pHi recovery rate; however, SITS, acetazolamide and bumetanide did not. Therefore, Na(+)-H+ exchange is the major process for pHi recovery from acidification in HCO3- -free solution. In HCO3-/CO2 HBSS pHi recovery was markedly inhibited by SITS and acetazolamide, but not by amiloride, ouabain, or bumetanide. The inhibitory effect of SITS on pHi recovery was enhanced in low-Na+ HBSS. These results indicate that both Na+ and HCO3- are directly related to pHi recovery in HCO3-/CO2 solution after acid-load. Low-Cl HEPES HBSS and low-Cl HCO3-/CO2 HBSS media did not alter pH recovery rate. Thus, pHi recovery after acid-load is not Cl- -dependent, and therefore, does not involve a Na(+)-dependent Cl- -HCO3- exchange process. It appears that mouse astrocytes possess 3 acid-regulating systems: Na(+)-H+ exchange, Na(+)-HCO3- co-transport and Na(+)-independent Cl- -HCO3- exchange.  相似文献   

14.
Effects of pentetrazol (PTZ) were studied on neuronal responses in dentate granule cells and area CA1 hippocampal pyramidal cells with intra- and extracellular recording techniques. PTZ induced spontaneous epileptiform field potential transients in areas CA3 and CA1, but not in the dentate gyrus. The concentration optimum for induction of spontaneous epileptiform activity was 2 mM. The epileptiform activity compared in many respects to that induced by GABA antagonists such as picrotoxin, bicuculline and penicillin. Paired pulse stimulus induced responses were affected by concentrations of 0.5 mM. In the concentration range 0.5-2 mM mostly disinhibitory effects were noted. Stimulus induced Ca2+ concentration changes were found to be maximally augmented at concentrations of 2-5 mM. In this range, intracellular studies revealed a block of frequency habituation and an increase in input resistance. The convulsant action of PTZ decreased at concentrations above 5 mM, probably due to a decrease of inward currents. We suggest that the action of PTZ in screening studies for anticonvulsants is mostly due to a decrease of GABAA-receptor mediated IPSPs.  相似文献   

15.
Stringer JL 《Epilepsy research》2000,40(2-3):147-153
Topiramate is a relatively new antiepileptic drug with several putative anticonvulsant mechanisms. Among them is the ability to inhibit carbonic anhydrase, a property in common with the anticonvulsant acetazolamide. This study examined the effects of topiramate and acetazolamide on the duration of epileptiform activity and on paired-pulse inhibition in the dentate gyrus in urethane anesthetized adult Sprague–Dawley rats. Neither topiramate nor acetazolamide altered excitability in the dentate gyrus, as measured with input–output curves or induction of long-term potentiation. Topiramate increased paired-pulse inhibition, whereas acetazolamide had no effect. Both drugs dose-dependently blocked the lengthening of the duration of epileptiform activity compared to vehicle controls. These results indicate that topiramate has an anticonvulsant-related effect (increase in paired-pulse inhibition), which may contribute to its antiepileptic effect, that is not dependent on its ability to inhibit carbonic anhydrase.  相似文献   

16.
gamma-Aminobutyric acid (GABA) is considered a major inhibitory neurotransmitter in the generation of presynaptic inhibition at central terminals of primary afferent fiber (PAF), while it has also been established that nitric oxide (NO) may sensitize the terminals of nocisponsive PAFs and enhance neuropeptide release, possibly via mechanisms involving the activation of a cyclic guanidine monophosphate (cGMP)-dependent PKG. The present work was undertaken to explore the modulatory effect of sodium nitroprusside (SNP), a donor of NO, on GABA-evoked current of isolated adult rat dorsal root ganglion (DRG) neurons and the intracellular mechanism involved, by means of whole-cell patch clamp recording. The results showed that 1 mM SNP reversibly inhibited the inward current evoked by 0.1 mM GABA (-1.05 +/- 0.17nA vs. -0.63 +/- 0.11nA, n = 22, p < 0.01 or 0.1 mM muscimol a specific GABA(A) receptor agonist (-1.70 +/- 0.39 nA vs. -1.01 +/- 0.24 nA, n = 6, p < 0.05), which could be cancelled by simultaneous application of 1 mM methylene blue, an inhibitor of PKG. After preapplication of SNP with increasing concentrations 0.03, 0.1, 0.3, 1, and 3 mM), SNP inhibited both 0.1 mM GABA-evoked current (IC(50) = 0.2423 mM, n = 5) and 0.1 mM muscimol-evoked current (IC(50) = 0.3255 mM, n = 3) in DRG neurons in a dose-dependent manner. Therefore, it was suggested that PKG-dependent pathway may be involved in the NO-induced inhibition of GABA(A) receptor-mediated inward current in rat DRG neurons, which may be involved in the presynaptic disinhibition of nociceptive information induced by NO under certain conditions.  相似文献   

17.
Intra- and extracellular recording techniques were used to study the epileptiform activity generated by guinea pig hippocampal slices perfused with free-magnesium artificial cerebrospinal fluid in the presence of physiologic (4 mM), reduced (2 mM) or elevated (8 mM) extracellular potassium concentrations ([K(+)](o)). Extracellular field potentials along with intracellular recordings were recorded in CA1 or CA3 region. Reduction of [K(+)](o) significantly increased the latency of epileptiform field potential (EFP) appearance as well as burst discharge duration and decreased EFP repetition rate. Depending on different background [K(+)](o), epileptiform burst discharges appeared in different patterns including varied types of paroxysmal depolarisation shifts and burst activity in CA1 and CA3 subfields. Comparison with physiological and increased [K(+)](o,) reduction of [K(+)](o) significantly increased the mean duration of bursts, mean amplitude of depolarisation, mean after-hyperpolarisation duration, and inter-spike intervals in both CA1 and CA3 areas. Three distinct patterns were distinguished on the basis of their evoked firing pattern in response to application of depolarising current pulses in the interval of epileptiform burst discharges. Neurons superfused with 2 mM [K(+)](o) presented fast adapting pattern while cells washed with 4 or 8 mM [K(+)](o) exhibited intrinsically bursting or slow adapting patterns. Comparing the groups with different background [K(+)](o), there is a more severe form of discharges in low K(+) and a subtle difference between 4 and 8 mM K(+). The data indicate the importance of background [K(+)](o) on epileptiform burst discharge pattern and characteristics.  相似文献   

18.
Fast oscillations at approximately 200 Hz, termed ripples, occur in the hippocampus and cortex of several species, including humans, and are thought to play a role in physiological (e.g., sensory information processing or memory consolidation) and pathological (e.g., seizures) processes. Blocking gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition represents one of the most often used models of epileptiform discharge. Here we found that bath application of the GABA(A) receptor antagonist picrotoxin (50 microM) to mouse hippocampus-entorhinal cortex slices induced spontaneous epileptiform activity (duration 536.6 +/- 146.1 msec, mean +/- SD; interval of occurrence 14.8 +/- 3.3 sec, n = 12) with two distinct phases of discharge; the first was characterized, in the dentate gyrus only, by high-frequency, field oscillations (ripples) at 206.3 +/- 23.4 Hz (n = 12), whereas the second component corresponded to afterdischarges in the theta range frequency. Ripples, which were also recorded in "minislices" only of the dentate gyrus, were unaffected by application of the mu-opioid receptor agonist (D-Ala2-N-Me-Phe,Gly-ol)enkephalin (10 microM; n = 6) or the N-methyl-D-aspartate (NMDA) receptor antagonist 3-(2-carboxy-piperazine-4-yl)-propyl-l-phosphonate (10 microM; n = 5). In contrast, the non-NMDA glutamatergic receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (10 microM; n = 5) completely blocked all picrotoxin-induced activities. In addition, application of the GABA(B) receptor agonist baclofen (0.01-0.5 microM; n = 6) dose dependently and reversibly abolished all picrotoxin-induced activities. We also found that application of the gap-junction decouplers carbenoxolone (0.2-0.5 mM; n = 6) or octanol (0.2-0.5 mM; n = 3) blocked the second phase while leaving ripples unchanged. These findings demonstrate that the disinhibited dentate gyrus can generate ripple activity at approximately 200 Hz that is contributed by ionotropic glutamatergic mechanisms and is not dependent on either GABA(A) receptor-mediated or gap-junction mechanisms.  相似文献   

19.
Otoom SA  Alkadhi KA 《Brain research》2000,885(2):289-294
The veratridine epileptiform model was utilized to assess the antiepileptic effect of Carbamazepine (CBZ) in rat hippocampal CA1 pyramidal neurons using conventional intracellular recording techniques. In the veratridine model, where brain slices are treated with veratridine (0.3 microM), a single intracellular stimulus evokes epileptiform bursting. Additionally, spontaneous epileptiform activity commonly appears on prolonged exposure to veratridine in this model. In this model, therapeutic (7-15 microM) and high (50 microM) concentrations of CBZ inhibited the evoked and spontaneous epileptiform bursting in a concentration- and voltage-dependent manner. At all concentrations tested, CBZ produced inhibition of epileptiform activity without affecting the membrane resting potential or input resistance. However, at 50 microM, the drug increased the firing threshold of neurons. These results confirm the suitability of this model for testing sodium channel-dependent antiepileptic agents.  相似文献   

20.
Otsuki T  Nakama H  Kanamatsu T  Tsukada Y 《Neuroreport》2005,16(18):2057-2060
To clarify changes in glutamate metabolism in the brain with chronic epileptic activities, 13C-magnetic resonance spectroscopy observation of glutamate and glutamine synthesis after oral administration of [1-13C] glucose (Glc C1) (0.75 g/kg) was performed in intractable occipital lobe epilepsy patients (n=5) and controls (n=10). 1H[13C]-spectra were obtained from two voxels of 64 ml placed on the bilateral parieto-occipital lobes of the study participants. Time courses for 13C-incorporation into 4-glutamate and 3-glutamate (Glu C4, C3) and 4-glutamine (Gln C4) were obtained and the concentrations of Glu C4, C3 and Gln C4 at the time between 120 and 150 min after Glc C1 administration was calculated. Concentration of Gln C4 was increased in the epilepsy patients [control: 0.39 mM (SD 0.14), epilepsy: 0.60 mM (SD 0.15), P<0.05], whereas those of Glu C4 and Glu C3 were not. The present study revealed increased glutamine synthesis compared with glutamate formation in a widespread cortical area with sustained epileptiform activities, possibly a result of chronic excessive glutamate release from neurons and subsequent uptake into astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号