首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The p38 transduction pathway in prostatic neoplasia   总被引:3,自引:0,他引:3  
It has been proposed that, among other cellular responses, TNF-alpha induces not only cell death, but also cell proliferation by activation of p38. It has also been reported that IL-1-alpha favours cell proliferation by p38 activation. The aim of the present study was to evaluate upstream (alpha-PAK, MEK-6) and downstream (Elk-1 and ATF-2) components of the p38 transduction pathway in normal prostate, benign prostatic hyperplasia (BPH), and prostate carcinoma (PC). Immunohistochemical and western blot analyses were performed in 20 samples of normal prostate, 47 samples of BPH, and 27 samples of PC. In all normal prostates, immunoreactivity for p-Elk-1 and p-ATF-2 was observed in epithelial cell nuclei, but no expression of alpha-PAK or MEK-6. In BPH, there was expression of alpha-PAK (cytoplasm) and MEK-6 (cytoplasm), while the proportions of lesions that were immunoreactive for p-Elk-1 (nucleus and cytoplasm) and p-ATF-2 (nucleus) decreased. In PC, the percentages of cells that were immunoreactive for alpha-PAK (cytoplasm) or MEK-6 (cytoplasm) rose slightly in comparison with BPH, while the percentages of cells that were immunoreactive for p-Elk-1 (nucleus and cytoplasm) or p-ATF-2 (nucleus and cytoplasm) were much higher than in BPH. It is concluded that overexpression of alpha-PAK, MEK-6, p38, p-Elk-1, and p-ATF-2 in BPH, and more intensely in PC, enhances cell proliferation. In BPH, such proliferation is triggered by IL-1 and in part counteracted by the TNF-alpha/AP-1 pathway, which promotes apoptosis. In PC, proliferation is triggered by IL-1 and TNF-alpha (the TNF-alpha/AP-1 pathway is diverted towards p38 activation). Since in a study of the same patients immunoexpression of IL-1alpha and IL-1RI was previously observed to be increased in PC, inhibition of p38 is a possible target for PC treatment, as this inhibition would both decrease IL-1-induced cell proliferation and increase TNF-alpha-induced cell death.  相似文献   

2.
BACKGROUND: The chemokine CCL27 attracts skin-homing T cells. CCL27 production by keratinocytes is dependent on nuclear factor kappaB (NF-kappaB) activity and enhanced in lesions of patients with atopic dermatitis, psoriasis vulgaris, or allergic contact dermatitis. IL-17 is released from activated memory T cells and modulates skin inflammation. OBJECTIVE: We examined the in vitro effects of IL-17 on TNF-alpha-induced CCL27 production in human keratinocytes. METHODS: Keratinocytes were incubated with TNF-alpha, IL-17, or both. CCL27 secretion and mRNA levels were analyzed by means of ELISA and RT-PCR, respectively. COX-2 promoter and NF-kappaB activities were analyzed by using luciferase assays. COX-2 protein levels were analyzed by means of Western blotting. RESULTS: IL-17 suppressed TNF-alpha-induced CCL27 secretion and mRNA expression and NF-kappaB activity in keratinocytes. The COX-2 inhibitor NS398 counteracted the effects of IL-17, and prostaglandin E(2) prevented counteraction by NS398. IL-17 alone or synergistically with TNF-alpha increased prostaglandin E(2) release from keratinocytes, and the increase was suppressed by NS398. IL-17 alone or synergistically with TNF-alpha increased COX-2 mRNA and protein levels, promoter activity, and mRNA stability. The stimulatory effects of IL-17 on COX-2 expression were suppressed by inhibitors of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase. IL-17 alone or synergistically with TNF-alpha induced dual phosphorylation of p38 MAPK and ERK. CONCLUSION: IL-17 might suppress TNF-alpha-induced CCL27 production by inhibiting NF-kappaB through induction of COX-2. The induction of COX-2 might be mediated by activation of p38 MAPK and ERK. T cell-derived IL-17 might alleviate T-cell skin infiltration through inhibition of CCL27 production.  相似文献   

3.
TNF-alpha induces some proinflammatory cytokines including IL-1beta, IL-6, IL-8, and itself by activation of NF-kappaB or MAPKs (p38, JNK, ERK). These cytokines play important roles in various inflammatory skin diseases, such as psoriasis. Recently it was also reported that expression of cyclin E is up-regulated by ERK pathway after TNF-alpha treatment. However, it was unknown whether curcumin, showing inhibitory effects on NF-kappaB and MAPKs, attenuates the expression of TNF-alpha-induced IL-1beta, IL-6, IL-8, and TNF-alpha as well as cyclin E expression in HaCaT cells. In this study, we investigated the inhibitory effect of curcumin on expression of proinflammatory cytokines and cyclin E in TNF-alpha-treated HaCaT cells. We found that curcumin inhibited the expression of TNF-alpha-induced IL-1beta, IL-6, and TNF-alpha, but not IL-8, in TNF-alpha-treated HaCaT cells as well as the TNF-alpha-induced cyclin E expression. In addition, curcumin inhibited the activation of MAPKs (JNK, p38 MAPK, and ERK) and NF-kappaB in TNF-alpha-treated HaCaT cells. Taken together, curcumin exerts anti-inflammatory and growth inhibitory effects in TNF-alpha-treated HaCaT cells through inhibition of NF-kappaB and MAPK pathways.  相似文献   

4.
5.
Coupled bone turnover is directed by the expression of receptor-activated NF-kappaB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1beta treatment and subsequently reduced approximately 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1beta or TNF-alpha treatment. IL-1beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.  相似文献   

6.
In the present study, we demonstrate that upregulation of interleukin-1beta(IL-1beta)-mediated and tumor necrosis factor-alpha (TNF-alpha)-mediated IL-8 expression in human malignant melanoma cells is modulated by the activation of nuclear factor-kappaB (NF-kappaB). Addition of capsaicin (8-methyl-N-vanillyl-6-nonenamide), a known inhibitor of NF-kappaB, resulted in the inhibition of constitutive as well as IL-1beta-induced and TNF-alpha-induced IL-8 expression in melanoma cells. The inhibition of IL-8 expression was dependent on the concentration of capsaicin and duration of treatment. Further, electrophoretic mobility shift assay (EMSA) of nuclear extracts from melanoma cells showed a constitutive activation of NF-kappaB and activated protein 1 (AP-1), which was upregulated following treatment with IL-1beta. Treatment of melanoma cells with capsaicin inhibited activation of constitutive and IL-1beta-induced NF-kappaB, but not AP-1, leading to inhibition of IL-8 expression. Further, downregulation of IL-8 expression in capsaicin-treated melanoma cells resulted in inhibition of in vitro cell proliferation. These results demonstrate that constitutive and induced NF-kappaB activation regulates IL-8 expression in melanoma cells. Downregulation of constitutive and induced NF-kappaB activation in malignant melanoma cells leads to inhibition of IL-8 production and in vitro cell proliferation.  相似文献   

7.
Intercellular adhesion molecule-1 (ICAM-1) has been shown to play crucial roles in mast cell interaction with other inflammatory cells and recruitment into the inflamed tissue. In the present study, human mast cell line-1 (HMC-1) was stimulated with different cytokines including stem cell factor (SCF), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-13, IL-18, and IL-25. Cell-surface expression of ICAM-1 was assessed by flow cytometry. To elucidate the intracellular signal transduction regulating the ICAM-1 expression, phosphorylated extracellular signal-regulated kinase (ERK), phosphorylated p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-kappaB translocation were assessed by enzyme-linked immunosorbent assay. Results showed that SCF, TNF-alpha, and IL-13 but not IL-18 and IL-25 could up-regulate the surface expression of ICAM-1 on HMC-1 cells. A synergistic effect of SCF and TNF-alpha on ICAM-1 expression was demonstrated. This synergistic effect was shown to be dose-dependently enhanced by SCF but not TNF-alpha. Results indicated that SCF activated ERK, and TNF-alpha activated the p38 MAPK and NF-kappaB pathway. Selective inhibitor of ERK, PD098059, and c-kit inhibitors, STI571 and PP1, suppressed the combined SCF and TNF-alpha-induced ICAM-1 expression. BAY117082 but not SB203580, which are the inhibitors of NF-kappaB and p38 MAPK, respectively, suppressed the TNF-alpha-induced ICAM-1 expression. Therefore, SCF and TNF-alpha acted through ERK and the NF-kappaB pathway to regulate the ICAM-1 expression and elicited the synergistic effect. In conclusion, our results provide insight for cross-talk between different signaling pathways that can help in understanding the fine control of adhesion molecule expression under the concerted effects of cytokines.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Intestinal epithelial cells play an important role in the mucosal immune reaction in inflammatory bowel diseases via the production and expression of chemokines and adhesion molecules, such as interleukin-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1), which are involved in the neutrophil infiltration and tissue damage in the inflamed colon. Notably, glucosamine, a naturally-occurring amino monosaccharide, has been shown to exhibit an anti-inflammatory action by inhibiting neutrophil functions. In the present study, to evaluate the anti-inflammatory action of glucosamine on intestinal epithelial cells, we examined the effects of glucosamine on the activation of a human colonic epithelial cell line HT-29. The results revealed that glucosamine suppressed the IL-8 production and ICAM-1 expression by TNF-alpha-activated HT-29 cells. Furthermore, glucosamine inhibited the TNF-alpha-induced phosphorylation of p38MAPK and NF-kappaB p65, and the nuclear translocation of NF-kappaB in the cells. Thus, glucosamine demonstrates inhibitory actions on the inflammatory and signaling molecules (IL-8, ICAM-1, p38MAPK and NF-kappaB) in intestinal epithelial cells. However, glucosamine did not essentially affect the binding of TNF-alpha to its receptor on HT-29 cells. Together, these observations suggest that glucosamine may have the potential to exhibit an anti-inflammatory action on intestinal epithelial cells, by possibly interfering with the activation signaling downstream of the ligand/receptor binding.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号