首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vascular endothelial growth factor (VEGF) binding induces phosphorylation of VEGF receptor (VEGFR)2 in tyrosine, which is followed by disruption of VE-cadherin-mediated cell-cell contacts of endothelial cells (ECs), thereby stimulating EC proliferation and migration to promote angiogenesis. Tyrosine phosphorylation events are controlled by the balance of activation of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Little is known about the role of endogenous PTPs in VEGF signaling in ECs. In this study, we found that PTP1B expression and activity are markedly increased in mice hindlimb ischemia model of angiogenesis. In ECs, overexpression of PTP1B, but not catalytically inactive mutant PTP1B-C/S, inhibits VEGF-induced phosphorylation of VEGFR2 and extracellular signal-regulated kinase 1/2, as well as EC proliferation, whereas knockdown of PTP1B by small interfering RNA enhances these responses, suggesting that PTP1B negatively regulates VEGFR2 signaling in ECs. VEGF-induced p38 mitogen-activated protein kinase phosphorylation and EC migration are not affected by PTP1B overexpression or knockdown. In vivo dephosphorylation and cotransfection assays reveal that PTP1B binds to VEGFR2 cytoplasmic domain in vivo and directly dephosphorylates activated VEGFR2 immunoprecipitates from human umbilical vein endothelial cells. Overexpression of PTP1B stabilizes VE-cadherin-mediated cell-cell adhesions by reducing VE-cadherin tyrosine phosphorylation, whereas PTP1B small interfering RNA causes opposite effects with increasing endothelial permeability, as measured by transendothelial electric resistance. In summary, PTP1B negatively regulates VEGFR2 receptor activation via binding to the VEGFR2, as well as stabilizes cell-cell adhesions through reducing tyrosine phosphorylation of VE-cadherin. Induction of PTP1B by hindlimb ischemia may represent an important counterregulatory mechanism that blunts overactivation of VEGFR2 during angiogenesis in vivo.  相似文献   

2.
Endothelial cell (EC) proliferation and migration are important for reendothelialization and angiogenesis. We have demonstrated that reactive oxygen species (ROS) derived from the small GTPase Rac1-dependent NAD(P)H oxidase are involved in vascular endothelial growth factor (VEGF)-mediated endothelial responses mainly through the VEGF type2 receptor (VEGFR2). Little is known about the underlying molecular mechanisms. IQGAP1 is a scaffolding protein that controls cellular motility and morphogenesis by interacting directly with cytoskeletal, cell adhesion, and small G proteins, including Rac1. In this study, we show that IQGAP1 is robustly expressed in ECs and binds to the VEGFR2. A pulldown assay using purified proteins demonstrates that IQGAP1 directly interacts with active VEGFR2. In cultured ECs, VEGF stimulation rapidly promotes recruitment of Rac1 to IQGAP1, which inducibly binds to VEGFR2 and which, in turn, is associated with tyrosine phosphorylation of IQGAP1. Endogenous IQGAP1 knockdown by siRNA shows that IQGAP1 is involved in VEGF-stimulated ROS production, Akt phosphorylation, endothelial migration, and proliferation. Wound assays reveal that IQGAP1 and phosphorylated VEGFR2 accumulate and colocalize at the leading edge in actively migrating ECs. Moreover, we found that IQGAP1 expression is dramatically increased in the VEGFR2-positive regenerating EC layer in balloon-injured rat carotid artery. These results suggest that IQGAP1 functions as a VEGFR2-associated scaffold protein to organize ROS-dependent VEGF signaling, thereby promoting EC migration and proliferation, which may contribute to repair and maintenance of the functional integrity of established blood vessels.  相似文献   

3.
Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell proliferation and migration, primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). Reactive oxygen species (ROS) derived from NAD(P)H oxidase are critically important in many aspects of vascular cell regulation, and both the small GTPase Rac1 and gp91(phox) are critical components of the endothelial NAD(P)H oxidase complex. A role of NAD(P)H oxidase in VEGF-induced angiogenesis, however, has not been defined. In the present study, electron spin resonance spectroscopy is utilized to demonstrate that VEGF stimulates O2*- production, which is inhibited by the NAD(P)H oxidase inhibitor, diphenylene iodonium, as well as by overexpression of dominant-negative Rac1 (N17Rac1) and transfection of gp91(phox) antisense oligonucleotides in human umbilical vein endothelial cells (ECs). Antioxidants, including N-acetylcysteine (NAC), various NAD(P)H oxidase inhibitors, and N17Rac1 significantly attenuate not only VEGF-induced KDR tyrosine phosphorylation but also proliferation and migration of ECs. Importantly, these effects of VEGF are dramatically inhibited in cells transfected with gp91(phox) antisense oligonucleotides. By contrast, ROS are not involved in mediating these effects of sphingosine 1-phosphate (S1P) on ECs. Sponge implant assays demonstrate that VEGF-, but not S1P-, induced angiogenesis is significantly reduced in wild-type mice treated with NAC and in gp91(phox-/-) mice, suggesting that ROS derived from gp91(phox)-containing NAD(P)H oxidase play an important role in angiogenesis in vivo. These studies indicate that VEGF-induced endothelial cell signaling and angiogenesis is tightly controlled by the reduction/oxidation environment at the level of VEGF receptor and provide novel insights into the NAD(P)H oxidase as a potential therapeutic target for angiogenesis-dependent diseases.  相似文献   

4.
Nitric oxide (NO) is a powerful angiogenic mediator acting downstream of vascular endothelial growth factor (VEGF). Both the endothelial NO synthase (eNOS) and the VEGFR-2 receptor colocalize in caveolae. Because the structural protein of these signaling platforms, caveolin, also represses eNOS activity, changes in its abundance are likely to influence the angiogenic process in various ways. In this study, we used mice deficient for the caveolin-1 gene (Cav-/-) to examine the impact of caveolae suppression in a model of adaptive angiogenesis obtained after femoral artery resection. Evaluation of the ischemic tissue perfusion and histochemical analyses revealed that contrary to Cav+/+ mice, Cav-/- mice failed to recover a functional vasculature and actually lost part of the ligated limbs, thereby recapitulating the effects of the NOS inhibitor L-NAME administered to operated Cav+/+ mice. We also isolated endothelial cells (ECs) from Cav-/- aorta and showed that on VEGF stimulation, NO production and endothelial tube formation were dramatically abrogated when compared with Cav+/+ ECs. The Ser1177 eNOS phosphorylation and Thr495 dephosphorylation but also the ERK phosphorylation were similarly altered in VEGF-treated Cav-/- ECs. Interestingly, caveolin transfection in Cav-/- ECs redirected the VEGFR-2 in caveolar membranes and restored the VEGF-induced ERK and eNOS activation. However, when high levels of recombinant caveolin were reached, VEGF exposure failed to activate ERK and eNOS. These results emphasize the critical role of caveolae in ensuring the coupling between VEGFR-2 stimulation and downstream mediators of angiogenesis. This study also provides new insights to understand the paradoxical roles of caveolin (eg, repressing basal enzyme activity but facilitating activation on agonist stimulation) in cardiovascular pathophysiology.  相似文献   

5.
Dias S  Shmelkov SV  Lam G  Rafii S 《Blood》2002,99(7):2532-2540
Similar to endothelial cells (ECs), vascular endothelial growth factor (VEGF) induces Bcl-2 expression on VEGF receptor-positive (VEGFR(+)) primary leukemias and cell lines, promoting survival. We investigated the molecular pathways activated by VEGF on such leukemias, by performing a gene expression analysis of VEGF-treated and untreated HL-60 leukemic cells. One gene to increase after VEGF stimulation was heat shock protein 90 (Hsp90). This was subsequently confirmed at the protein level, on primary leukemias and leukemic cell lines. VEGF increased the expression of Hsp90 by interacting with KDR and activating the mitogen-activated protein kinase cascade. In turn, Hsp90 modulated Bcl-2 expression, as shown by a complete blockage of VEGF-induced Bcl-2 expression and binding to Hsp90 by the Hsp90-specific inhibitor geldanamycin (GA). GA also blocked the VEGF-induced Hsp90 binding to APAF-1 on leukemic cells, a mechanism shown to inhibit apoptosis. Notably, VEGF blocked the proapoptotic effects of GA, correlating with its effects at the molecular level. Earlier, we showed that in some leukemias, a VEGF/KDR autocrine loop is essential for cell survival, whereas here we identified the molecular correlates for such an effect. We also demonstrate that the generation of a VEGF/VEGFR autocrine loop on VEGFR(+) cells such as ECs, also protected them from apoptosis. Infection of ECs with adenovirus-expressing VEGF resulted in elevated Hsp90 levels, increased Bcl-2 expression, and resistance to serum-free or GA-induced apoptosis. In summary, we demonstrate that Hsp90 mediates antiapoptotic and survival-promoting effects of VEGF, which may contribute to the survival advantage of VEGFR(+) cells such as subsets of leukemias.  相似文献   

6.
Redox signaling in angiogenesis: role of NADPH oxidase   总被引:12,自引:0,他引:12  
Angiogenesis, a process of new blood vessel formation, is a key process involved in normal development and wound repair as well as in the various pathophysiologies such as ischemic heart and limb diseases and atherosclerosis. Reactive oxygen species (ROS) such as superoxide and H(2)O(2) function as signaling molecules in many aspects of growth factor-mediated responses including angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic growth factor and stimulates proliferation, migration, and tube formation of endothelial cells (ECs) primarily through the VEGF receptor type2 (VEGR2, KDR/Flk1). VEGF binding initiates autophosphorylation of VEGFR2, which results in activation of downstream signaling enzymes including ERK1/2, Akt, and eNOS in ECs, thereby stimulating angiogenesis. The major source of ROS in EC is a NADPH oxidase which consists of Nox1, Nox2 (gp91phox), Nox4, p22phox, p47phox, p67phox and the small G protein Rac1. The endothelial NADPH oxidase is activated by angiogenic factors including VEGF and angiopoietin-1. ROS derived from this enzyme stimulate diverse redox signaling pathways leading to angiogenesis-related gene induction as well as EC migration and proliferation, which may contribute to postnatal angiogenesis in vivo. The aim of this review is to provide an overview of the recent progress on the emerging area of the role of ROS derived from NADPH oxidase and redox signaling in angiogenesis. Understanding these mechanisms may provide insight into the NADPH oxidase and redox signaling components as potential therapeutic targets for treatment of angiogenesis-dependent cardiovascular diseases and for promoting angiogenesis in ischemic limb and heart diseases.  相似文献   

7.
Lupu C  Zhu H  Popescu NI  Wren JD  Lupu F 《Blood》2011,118(16):4463-4471
Thrombosis and cardiovascular disease (CVD) represent major causes of morbidity and mortality. Low androgen correlates with higher incidence of CVD/thrombosis. Tissue Factor Pathway Inhibitor (TFPI) is the major inhibitor of tissue factor-factor VIIa (TF-FVIIa)-dependent FXa generation. Because endothelial cell (EC) dysfunction leading to vascular disease correlates with low EC-associated TFPI, we sought to identify mechanisms that regulate the natural expression of TFPI. Data mining of NCBI's GEO microarrays revealed strong coexpression between TFPI and the uncharacterized protein encoded by C6ORF105, which is predicted to be multispan, palmitoylated and androgen-responsive. We demonstrate that this protein regulates both the native and androgen-enhanced TFPI expression and activity in cultured ECs, and we named it androgen-dependent TFPI-regulating protein (ADTRP). We confirm ADTRP expression and colocalization with TFPI and caveolin-1 in ECs. ADTRP-shRNA reduces, while over-expression of ADTRP enhances, TFPI mRNA and activity and the colocalization of TF-FVIIa-FXa-TFPI with caveolin-1. Imaging and Triton X-114-extraction confirm TFPI and ADTRP association with lipid rafts/caveolae. Dihydrotestosterone up-regulates TFPI and ADTRP expression, and increases FXa inhibition by TFPI in an ADTRP- and caveolin-1-dependent manner. We conclude that the ADTRP-dependent up-regulation of TFPI expression and activity by androgen represents a novel mechanism of increasing the anticoagulant protection of the endothelium.  相似文献   

8.
Vascular endothelial growth factor (VEGF) is a major growth factor for developing endothelial cells (ECs). Embryonic lethality due to haploinsufficiency of VEGF in the mouse highlighted the strict dose dependency of VEGF on embryonic vascular development. Here we investigated the dose-dependent effects of VEGF on the differentiation of ES cell-derived fetal liver kinase 1 (Flk-1)/VEGF receptor 2(+) (VEGFR2(+)) mesodermal cells into ECs on type IV collagen under a chemically defined serum-free condition. These cells could grow even in the absence of VEGF, but differentiated mostly into mural cells positive for alpha-smooth muscle actin. VEGF supported in a dose-dependent manner the differentiation into ECs defined by the expression of VE-cadherin, platelet-endothelial cell adhesion molecule 1 (PECAM-1)/ CD31, CD34, and TIE2/TEK. VEGF requirement was greater at late than at early phase of culture during EC development, whereas response of VEGFR2(+) cells to VEGF-E, which is a virus-derived ligand for VEGFR2 but not for Flt-1/VEGFR1, was not dose sensitive even at late phase of culture. Delayed expression of VEGFR1 correlated with increased dose dependency of VEGF. These results suggested that greater requirement of VEGF in the maintenance than induction of ECs was due to the activity of VEGFR1 sequestering VEGF from VEGFR2 signal. The chemically defined serum-free culture system described here provides a new tool for assessing different factors for the proliferation and differentiation of VEGFR2(+) mesodermal cells.  相似文献   

9.
AIMS: Activin receptor-like kinase (ALK)1 is a transforming growth factor (TGF)-beta type I membrane receptor restricted almost entirely to endothelial cells (ECs) and involved in vascular remodelling and angiogenesis. Previous reports have shown that the ubiquitous TGF-beta type I receptor ALK5 and the type II receptor are located in cholesterol-rich membrane microdomains named caveolae. The aim of this work was to assess the location of ALK1 in endothelial caveolae as well as to study the role of caveolin-1 on the TGF-beta/ALK1 signalling pathway. METHODS AND RESULTS: The subcellular distribution of ALK1 was analysed by confocal microscopy and co-fractionation experiments in human ECs. The association between human ALK1 and caveolin-1 was studied in caveolin-1-deficient human epithelial cells by co-immunoprecipitation. The functional role of caveolin-1 on the ALK1-mediated TGF-beta signalling was elucidated using ALK1-specific luciferase reporters in human ECs, caveolin-1(-/-)mouse embryonic fibroblasts, and rat myoblasts. Confocal microscopy analyses, as well as cholesterol depletion experiments in the presence of cholesterol-depleting agents such as nystatin or methyl-beta-cyclodextrin, demonstrated that ALK1 is located in endothelial caveolae. Also, co-immunoprecipitation assays showed that ALK1 associates with the main caveolae component caveolin-1. Mapping of the ALK1/caveolin-1 interaction revealed that the caveolin-1 scaffolding domain and the caveolin-1 binding motif in ALK1 are responsible for this association. Moreover, this hitherto not reported interaction had a functional consequence for the ALK1-dependent signalling. In contrast with the previously published ALK5/caveolin-1 interaction, caveolin-1 enhances the TGF-beta/ALK1 signalling pathway, promoting the activity of the ALK1-specific reporters. Conversely, specific suppression of caveolin-1 abrogated the ALK1 signalling pathway. CONCLUSION: ALK1 is located in endothelial caveolae where it functionally interacts with caveolin-1 through its scaffolding domain, suggesting a joint contribution of ALK1 and caveolin-1 as key mediators of the TGF-beta pathway in angiogenesis.  相似文献   

10.
Vascular endothelial growth factor (VEGF) acting through VEGF receptor 2 (VEGFR2) on endothelial cells (ECs) is a key regulator of angiogenesis, a process essential for wound healing and tumor metastasis. Rap1a and Rap1b, 2 highly homologous small G proteins, are both required for angiogenesis in vivo and for normal EC responses to VEGF. Here we sought to determine the mechanism through which Rap1 promotes VEGF-mediated angiogenesis. Using lineage-restricted Rap1-knockout mice we show that Rap1-deficiency in endothelium leads to defective angiogenesis in vivo, in a dose-dependent manner. Using ECs obtained from Rap1-deficient mice we demonstrate that Rap1b promotes VEGF-VEGFR2 kinase activation and regulates integrin activation. Importantly, the Rap1b-dependent VEGF-VEGFR2 activation is in part mediated via integrin α(v)β(3). Furthermore, in an in vivo model of zebrafish angiogenesis, we demonstrate that Rap1b is essential for the sprouting of intersomitic vessels, a process known to be dependent on VEGF signaling. Using 2 distinct pharmacologic VEGFR2 inhibitors we show that Rap1b and VEGFR2 act additively to control angiogenesis in vivo. We conclude that Rap1b promotes VEGF-mediated angiogenesis by promoting VEGFR2 activation in ECs via integrin α(v)β(3). These results provide a novel insight into the role of Rap1 in VEGF signaling in ECs.  相似文献   

11.
The relative importance of lipid rafts vs. specialized rafts termed caveolae to influence signal transduction is not known. Here we show that in cells lacking caveolae, the dually acylated protein, endothelial nitric oxide synthase (eNOS), localizes to cholesterol-rich lipid raft domains of the plasma membrane. In these cells, expression of caveolin-1 (cav-1) stimulates caveolae biogenesis, promotes the interaction of cav-1 with eNOS, and the inhibition of NO release from cells. Interestingly, in cells where cav-1 does not drive caveolae assembly, despite equal levels of cav-1 and eNOS and localization of both proteins to raft domains of the plasmalemma, the physical interaction of eNOS with cav-1 is dramatically less resulting in less inhibition of NO release. Thus, cav-1 concentrated in caveolae, not in rafts, is in closer proximity to eNOS and is necessary for negative regulation of eNOS function, thereby providing the first clear example of spatial regulation of signaling in this organelle that is distinct from raft domains.  相似文献   

12.
The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2-associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases.  相似文献   

13.
Kim J  Park J  Choi S  Chi SG  Mowbray AL  Jo H  Park H 《Circulation research》2008,102(8):896-904
Vascular endothelial growth factor (VEGF) is a critical regulator of endothelial cell biology and vascular function. Chronic VEGF treatment has been shown to inhibit tumor necrosis factor-induced apoptosis in endothelial cells. However, the mechanism for this cell survival is unclear. Interestingly, VEGF also enhances the expression of X-linked inhibitor of apoptosis (XIAP), a well-established antiapoptotic factor. XIAP has been shown to suppress apoptosis by blocking caspase activity in cancer cells, but it remains under studied in the endothelium. Therefore, we hypothesized that VEGF affects important endothelial functions, such as apoptosis and cell migration, by regulating XIAP expression and downstream caspase activity. To test this hypothesis, caspase activity, apoptosis, and cell migration were assessed following XIAP overexpression or depletion in bovine aortic endothelial cells. Much like VEGF treatment, ectopic expression of XIAP blocked tumor necrosis factor-induced apoptosis. Surprisingly, the mechanism was caspase-independent. In addition, XIAP-associated cell survival was the result of enhanced nitric oxide (NO) production, and XIAP was partially localized in caveolae. In these lipid rafts, XIAP interacted with a regulator of NO production, caveolin-1, via a binding motif (FtFgtwiY, where the bold letters represent aromatic amino acids) in the baculoviral IAP repeat-3 domain. Endothelial NO synthase binding to caveolin-1 was competitively inhibited by XIAP, suggesting that XIAP acts as a modulator of NO production by releasing endothelial NO synthase from caveolin-1. Further studies showed that endothelial cell migration was also controlled by XIAP-dependent NO. Taken together, these results suggest that XIAP plays a novel role in endothelial cells, interacting with caveolin-1 and acting as a regulator of vascular antiatherogenic function.  相似文献   

14.
15.
The relative importance of cyclophilin (CyP) versus calcineurin (Cn)-mediated mechanisms in the effect of cyclosporin A (CsA) on endothelial cells (ECs) is largely unknown. In cultured ECs, CsA was cytotoxic/proapoptotic or cytoprotective/antiapoptotic at high or low concentrations, respectively. CsA analogs (MeVal-4-CsA and MeIle-4-CsA), which bind to CyP but do not inhibit Cn, closely reproduced the CsA effects. Based on our previous data, the role of vascular endothelial growth factor (VEGF) as a mediator of CsA-induced cytoprotection was further analyzed. The actions of CsA and CsA analogs were shifted from a protective to a cell-damaging pattern in the presence of a specific anti-VEGF monoclonal antibody (mAb). This positive interaction was further supported by a transient increase in cytosolic free calcium concentration ([Ca(2+)](i)) by VEGF after pretreatment with either CsA or MeVal-4-CsA and an increase in the expression and synthesis of VEGF receptor 2 (VEGFR2). Of functional importance, blockade of the interaction between VEGF and VEGFR2 by a VEGFR2 mAb abolished the cytoprotective effect of CsA. In addition, preconditioning with low concentrations of CsA or CsA analogs increased both cytoprotection and VEGFR2 mRNA expression when EC were exposed to higher concentrations of CsA. In summary, our results reveal that (1) the biphasic responses to CsA in EC are related to the interaction of CsA with CyP rather than with Cn and (2) VEGF is a critical factor in the cytoprotective effect of CsA, by a mechanism that involves VEGFR2.  相似文献   

16.
Neuropilin-1 (Npn-1) is a cell surface receptor that binds vascular endothelial growth factor (VEGF), a potent mediator of endothelial permeability, chemotaxis, and proliferation. In vitro, Npn-1 can complex with VEGF receptor-2 (VEGFR2) to enhance VEGFR2-mediated endothelial cell chemotaxis and proliferation. To determine the role of Npn-1/VEGFR2 complexes in VEGF-induced endothelial barrier dysfunction, endothelial cells were stably transfected with Npn1 or VEGFR2 alone (PAE/Npn and PAE/KDR, respectively), or VEGFR2 and Npn-1 (PAE/KDR/Npn-1). Permeability, estimated by measurement of transendothelial electrical resistance (TER), of PAE/Npn and PAE/KDR cell lines was not altered by VEGF165. In contrast, TER of PAE/KDR/Npn-1 cells decreased in dose-dependent fashion following VEGF165 (10 to 200 ng/mL). Activation of VEGFR2, and 2 downstream signaling intermediates (p38 and ERK1/2 MAPK) involved in VEGF-mediated permeability, also increased in PAE/KDR/Npn-1. Consistent with these data, inhibition of Npn-1, but not VEGFR2, attenuated VEGF165-mediated permeability of human pulmonary artery endothelial cells (HPAE), and VEGF121 (which cannot ligate Npn-1) did not alter TER of HPAE. Npn-1 inhibition also attenuated both VEGF165-mediated pulmonary vascular leak and activation of VEGFR2, p38, and ERK1/2 MAPK, in inducible lung-specific VEGF transgenic mice. These data support a critical role for Npn-1 in regulating endothelial barrier dysfunction in response to VEGF and suggest that activation of distinct receptor complexes may determine specificity of cellular response to VEGF.  相似文献   

17.
Endothelial cell migration and tube formation in response to vascular endothelial growth factor (VEGF) play an important role in the process of angiogenesis. Recent data indicate that angiotensin type 2 (AT2) receptor stimulation is antiangiogenic. Therefore, we studied the effect of angiotensin II (Ang II) on VEGF-induced migration and in vitro tube formation of human endothelial cells. Ang II inhibited VEGF-induced migration of EA.hy926 cells, human coronary artery (HCA) and human dermal microvascular (HDM) endothelial cells (ECs) as well as tube formation by HDMECs. The AT2 receptor antagonist PD123,319 but not the AT1 receptor antagonist losartan blocked the inhibitory effect of Ang II. The inhibitory effect of Ang II on VEGF-induced migration of endothelial cells was mimicked by the specific AT2 receptor agonist CGP-42112A. The phosphorylation of Akt and its downstream effector endothelial NO synthase (eNOS) is pivotal to VEGF-induced angiogenesis. We therefore investigated the effect of Ang II on VEGF-induced Akt and eNOS phosphorylation. Ang II diminished the VEGF-induced phosphorylation of Akt and eNOS in endothelial cells, whereas the autophosphorylation of VEGF receptors was unaffected. CGP-42112A again mimicked and PD123,319 but not losartan blocked the inhibitory effect of Ang II. Treatment of endothelial cells with pertussis toxin (PTX) totally abolished the AT2 receptor-mediated inhibition of VEGF-induced endothelial cell migration and blocked the inhibition of Akt and eNOS phosphorylation. In conclusion, this study indicates that AT2 receptor stimulation inhibits VEGF-induced endothelial cell migration and tube formation via activation of a PTX-sensitive G protein. These findings may explain the reported antiangiogenic properties of the AT2 receptor.  相似文献   

18.
Previous studies suggested an important role for vascular endothelial growth factor (VEGF) and its receptors in postnatal haemopoiesis. However, it is unclear how VEGF receptor (VEGFR) signalling could interact with that issued from the activation of haematopoietic growth factor receptors. To elucidate this point we explored VEGF-R2 and granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) membrane localization and cell signalling in TF1-KDR cells (TF1 leukaemic cells that overexpress VEGF-R2/KDR). Activation of either GM-CSFR or VEGF-R2 was shown to determine the migration of both receptor elements (VEGF-R2 and the common β-chain of the GM-CSFR) to lipid rafts. The study of receptor phosphorylation showed that GM-CSF induced the phosphorylation of its own receptor and the transphosphorylation of VEGF-R2; on the other hand, VEGF triggered the phosphorylation of its receptor and transphosphorylated the β-chain of the GM-CSFR. Co-stimulation of TF1-KDR cells with both GM-CSF and VEGF-A resulted in massive migration of both the common GM-CSFR β-chain and VEGF-R2 to lipid rafts and sustained p38 mitogen-activated protein kinase activation. Disruption of lipid rafts inhibited the capacity of both GM-CSF and VEGF-A to activate p38. Experiments with specific p38 inhibitors showed that p38 activation was required to sustain the VEGF- and GM-CSF-dependent proliferation of TF1-KDR and the survival of primary acute myeloid leukaemia blasts.  相似文献   

19.
Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in physiologic and pathologic angiogenesis. Plasma membrane (PM) levels of VEGFR2 are regulated by endocytosis and secretory transport through the Golgi apparatus. To date, the mechanism whereby the VEGFR2 traffics through the Golgi apparatus remains incompletely characterized. We show in human endothelial cells that binding of VEGF to the cell surface localized VEGFR2 stimulates exit of intracellular VEGFR2 from the Golgi apparatus. Brefeldin A treatment reduced the level of surface VEGFR2, confirming that VEGFR2 traffics through the Golgi apparatus en route to the PM. Mechanistically, we show that inhibition of syntaxin 6, a Golgi-localized target membrane-soluble N-ethylmaleimide attachment protein receptor (t-SNARE) protein, interferes with VEGFR2 trafficking to the PM and facilitates lysosomal degradation of the VEGFR2. In cell culture, inhibition of syntaxin 6 also reduced VEGF-induced cell proliferation, cell migration, and vascular tube formation. Furthermore, in a mouse ear model of angiogenesis, an inhibitory form of syntaxin 6 reduced VEGF-induced neovascularization and permeability. Our data demonstrate the importance of syntaxin 6 in the maintenance of cellular VEGFR2 levels, and suggest that the inhibitory form of syntaxin 6 has good potential as an antiangiogenic agent.  相似文献   

20.
A metalloprotease, ADAM17, mediates the generation of mature ligands for the epidermal growth factor receptor (EGFR). This is the key signaling step by which angiotensin II (AngII) induces EGFR transactivation leading to hypertrophy and migration of vascular smooth muscle cells (VSMCs). However, the regulatory mechanism of ADAM17 activity remains largely unclear. Here we hypothesized that caveolin-1 (Cav1), the major structural protein of a caveolae, a membrane microdomain, is involved in the regulation of ADAM17. In cultured VSMCs, infection of adenovirus encoding Cav1 markedly inhibited AngII-induced EGFR ligand shedding, EGFR transactivation, ERK activation, hypertrophy and migration, but not intracellular Ca2+ elevation. Methyl-β-cyclodextrin and filipin, reagents that disrupt raft structure, both stimulated an EGFR ligand shedding and EGFR transactivation in VSMCs. In addition, non-detergent sucrose gradient membrane fractionations revealed that ADAM17 cofractionated with Cav1 in lipid rafts. These results suggest that lipid rafts and perhaps caveolae provide a negative regulatory environment for EGFR transactivation linked to vascular remodeling induced by AngII. These novel findings may provide important information to target cardiovascular diseases under the enhanced renin angiotensin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号