首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10–100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

2.
Mature nodose and petrosal ganglia neurons (placodally derived afferent neurons of the vagal and glossopharyngeal nerves) contain TrkA and TrkC, and transport specific neurotrophins [nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4)]. This study evaluated neurotrophin influences on the presence of neuropeptides and/or neurotransmitter enzymes in these visceral sensory neurons. NGF, NT-3 and NT-4 (10-100 ng/ml) were applied (5 days) to dissociated, enriched, cultures of mature nodose/petrosal ganglia neurons, and the neurons processed for tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neurofilament (NF-200) immunocytochemistry. Addition of NGF to nodose/petrosal ganglia neuron-enriched cultures significantly increased the number of TH-immunoreactive (ir) neurons, decreased the number of VIP-ir neurons in the cultures, and did not affect the numbers of CGRP-ir neurons. The addition of an NGF neutralizing antibody attenuated the effects of NGF on TH and VIP-ir neurons. NT-3 increased the number of VIP-ir neurons in the nodose/petrosal ganglia cultures and did not alter the numbers of TH-, or CGRP-ir neurons. The addition of an NT-3 neutralizing antibody attenuated the effects of NT-3 on VIP-ir neurons. NT-4 had no significant effects on the numbers of TH, VIP and CGRP-ir neurons. The absence of neurotrophin-induced changes in the numbers of NF-200-ir neurons in culture showed the lack of neurotrophin-mediated changes in survival of mature vagal afferent neurons. These data demonstrate that specific neurotrophins influence the numbers of neurons labeled for specific neurochemicals in nodose/petrosal ganglia cultures. These data, coupled with previous evidence for the presence of TrkA and TrkC mRNA and of the retrograde transport of NGF and NT-3, suggest important roles for NGF and NT-3 in the maintenance of transmitter phenotype of these mature visceral afferent neurons.  相似文献   

3.
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain‐derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post‐mortem anterograde tracing with 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbo‐cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild‐type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3–6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3–6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation. J. Comp. Neurol. 518:2934–2951, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Transduction sites of vagal mechanoreceptors in the guinea pig esophagus.   总被引:16,自引:0,他引:16  
Extrinsic afferent neurons play an essential role in both sensation and reflex control of visceral organs, but their specialized morphological peripheral endings have never been functionally identified. Extracellular recordings were made from fine nerve trunks running between the vagus nerve and esophagus of the guinea pig. Mechanoreceptors, which responded to esophageal distension, fired spontaneously, had low thresholds to circumferential stretch, and were slowly adapting. Calibrated von Frey hairs (0.12 mN) were used to probe the serosal surface at 100-200 sites, which were mapped on a video image of the live preparation. Each stretch-sensitive unit had one to three highly localized receptive fields ("hot spots"), which were marked with Indian ink applied on the tip of the von Frey hair. Recorded nerve trunks were then filled anterogradely, using biotinamide in an artificial intracellular solution. Receptive fields were consistently associated with intraganglionic laminar endings (IGLEs) in myenteric ganglia, but not with other filled neuronal structures. The average distance of receptive fields to IGLEs was 73 +/- 14 microm (24 receptive fields, from 12 units; n = 5), compared to 374 +/- 17 microm for 240 randomly generated sites (n = 5; p < 0.001). After maintained probing on a single receptive field, spontaneous discharge of units was inhibited, as were responses to distension. During adapted discharge to maintained distension, interspike intervals were distributed in a narrow range. This indicates that multiple receptive fields interact to encode mechanical distortion in a graded manner. IGLEs are specialized transduction sites of mechanosensitive vagal afferent neurons in the guinea pig esophagus.  相似文献   

5.
To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions.  相似文献   

6.
Lee PG  Cai F  Helke CJ 《Brain research》2002,941(1-2):127-136
Diabetes-induced alterations in nerve function include reductions in the retrograde axonal transport of neurotrophins. A decreased axonal accumulation of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of streptozotocin (STZ)-induced diabetic rats was previously shown. In the current study, no changes in the NGF and NT-3 protein or mRNA levels in the stomach or atrium, two vagally innervated organs, were noted after 16 or 24 weeks of diabetes. Moreover, the amounts of neurotrophin receptor (p75, TrkA, TrkC) mRNAs in the vagus nerve and vagal afferent nodose ganglion were not reduced in diabetic rats. These data suggest that neither diminished access to target-derived neurotrophins nor the loss of relevant neurotrophin receptors accounts for the diabetes-induced alteration in the retrograde axonal transport of neurotrophins. To assess whether diabetes causes a defect in axonal transport that may not be specific to neurotrophin transport, we studied the ability of a neuronal tracer (FluoroGold, FG) to be retrogradely transported by vagal neurons of control and diabetic rats. After vagal target tissue (stomach) injections of FG, the numbers of FG-labeled afferent and efferent vagal neurons were counted in the nodose ganglion and in the dorsal motor nucleus of the vagus, respectively. After 24 weeks of diabetes, FG was retrogradely transported to more than 50% fewer afferent and efferent vagal neurons in the STZ-diabetic compared to control rats. The diabetes-induced deficit in retrograde axonal transport of FG is likely to reflect alterations in basic axonal transport mechanisms in both the afferent and efferent vagus nerve that contribute to the previously observed reductions in neurotrophin transport.  相似文献   

7.
Neurotrophins and neurotrophin receptors play an important role in survival and growth of injured peripheral nerves. To study the injury-mediated neurotrophic response in autonomic nerves, we investigated changes in mRNA expression of neurotrophins and their receptors in the transected vagus nerve and nodose ganglion. Studies using in situ hybridization histochemistry showed that axotomy of the cervical vagus nerve resulted in increased expression of mRNAs for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and for TrkA, TrkB, and TrkC receptors in non-neuronal cells at both the proximal and distal segments of the transected cervical vagus nerve. Moreover, NGF protein was increased in the distal end, and NT-3 protein was increased in both the proximal and the distal ends of the transected nerve 3 days after axotomy. No change of p75(NTR) mRNA was detected in the transected vagus nerve. The induction of each neurotrophin and Trk receptor mRNA was apparent within 1 day after the axotomy and was sustained at least 14 days. By 45 days after the axotomy, a time when axonal reconnection with target tissue is made (integrity of the nerve-target connection was confirmed by the retrograde transport of FluoroGold from the stomach to vagal cell bodies), the levels of neurotrophin and Trk mRNAs in the vagus nerve declined to pre-axotomy levels. TrkA, TrkC, and p75(NTR) mRNA-containing vagal sensory neurons in the nodose ganglion were reduced in number after cervical vagotomy. Neurotrophin-mRNA-containing neurons were not found in the nodose ganglia from either intact or vagotomized rats. The axotomy-induced up-regulation of neurotrophins and Trk receptors mainly in the non-neuronal cells at or near the site of transection suggests that neurotrophins are involved in the survival and regeneration process of the vagus nerve after injury.  相似文献   

8.
To survey the vagal hepatic branch afferent projections to and the terminal specializations in the gastrointestinal tract, male Sprague-Dawley rats were given subdiaphragmatic vagotomies, sparing only the common hepatic branch, and were injected with 3 μl of 8% wheat germ agglutinin-horseradish peroxidase in the left nodose ganglion. The nodose ganglia, the stomach, the first 8 cm of duodenum, and the cecum were prepared as wholemounts and were processed with tetramethyl benzidine. Hepatic afferent innervation of the ventral stomach consisted of one or more bundles entering at the lower esophageal sphincter and coursing to the forestomach, where they branched into distinct terminal fields. The only fibers on the dorsal forestomach were distal branches and terminals that wrapped around the greater curvature from the ventral side. Hepatic afferents supplied the forestomach with both intraganglionic laminar endings (IGLEs; putative mechanosensors that coordinate peristalsis) and intramuscular arrays (IMAs; considered tension receptors). IGLEs were located primarily on the ventral wall of the stomach, whereas IMAs were distributed symmetrically. Afferents were also supplied to the distal antrum and the pylorus, with pyloric innervation consisting almost exclusively of IMAs. Innervation of the proximal duodenum was denser in the first 3 cm and decreased progressively caudally, with only meager innervation after 6 cm. Cecal innervation consisted of a few fibers at the ileocecal junction. Duodenal and cecal endings were predominately IGLEs. These results indicate that the hepatic branch carries sensory information from the forestomach, antrum, pylorus, duodenum, and cecum. Furthermore, the different terminals it supplies suggest that the branch mediates a multiplicity of gastrointestinal functions. J. Comp. Neurol. 384:248-270, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Background The TRPA1 receptor is directly activated by a wide range of chemicals including many endogenous molecules relevant for esophageal pathophysiology. We addressed the hypothesis that the TRPA1 agonists differentially activate esophageal nociceptive subtypes depending on their embryological source (neural crest or epibranchial placodes). Methods Single cell RT‐PCR and whole cell patch clamp recordings were performed on the vagal neurons retrogradely labeled from the guinea pig esophagus. Extracellular recordings were made in the isolated innervated esophagus preparation ex vivo. Key Results Single cell RT‐PCR revealed that the majority of the nodose (placodes‐derived) and jugular (neural crest‐derived) TRPV1‐positive esophageal nociceptors express TRPA1. Single fiber recording showed that the TRPA1 agonists allyl‐isothiocyanate (AITC) and cinnamaldehyde were effective in inducing robust action potential discharge in the nerve terminals of nodose nociceptors, but had far less effect in jugular nociceptors (approximately fivefold less). Higher efficacy of the TRPA1 agonists to activate nodose nociceptors was confirmed in the isolated esophagus‐labeled vagal neurons in the whole cell patch clamp studies. Similarly to neural crest‐derived vagal jugular nociceptors, the spinal DRG nociceptors that are also neural crest‐derived were only modestly activated by allyl‐isothiocyanate. Conclusions & Inferences We conclude that the TRPA1 agonists are substantially more effective activators of the placodes‐derived than the neural crest‐derived esophageal nociceptors. Our data predict that in esophageal diseases the presence of endogenous TRPA1 activators will be preferentially signaled by the vagal nodose nociceptors.  相似文献   

10.
The receptor-mediated axonal transport of [125I]-labeled neurotrophins by afferent and efferent neurons of the vagus nerve was determined to predict the responsiveness of these neurons to neurotrophins in vivo. [125I]-labeled neurotrophins were administered to the proximal stump of the transected cervical vagus nerve of adult rats. Vagal afferent neurons retrogradely transported [125I]neurotrophin-3 (NT-3), [125I]nerve growth factor (NGF), and [125I]neurotrophin-4 (NT-4) to perikarya in the ipsilateral nodose ganglion, and transganglionically transported [125I]NT-3, [125I]NGF, and [125I]NT-4 to the central terminal field, the nucleus tractus solitarius (NTS). Vagal afferent neurons showed minimal accumulation of [125I]brain-derived neurotrophic factor (BDNF). In contrast, efferent (parasympathetic and motor) neurons located in the dorsal motor nucleus of the vagus and nucleus ambiguus retrogradely transported [125I]BDNF, [125I]NT-3, and [125I]NT-4, but not [125I]NGF. The receptor specificity of neurotrophin transport was examined by applying [125I]-labeled neurotrophins with an excess of unlabeled neurotrophins. The retrograde transport of [125I]NT-3 to the nodose ganglion was reduced by NT-3 and by NGF, and the transport of [125I]NGF was reduced only by NGF, whereas the transport of [125I]NT-4 was significantly reduced by each of the neurotrophins. The competition profiles for the transport of NT-3 and NGF are consistent with the presence of TrkA and TrkC and the absence of TrkB in the nodose ganglion, whereas the profile for NT-4 suggests a p75 receptor-mediated transport mechanism. The transport profiles of neurotrophins by efferent vagal neurons in the dorsal motor nucleus of the vagus and nucleus ambiguus are consistent with the presence of TrkB and TrkC, but not TrkA, in these nuclei. These observations describe the unique receptor-mediated axonal transport of neurotrophins in adult vagal afferent and efferent neurons and thus serve as a template to discern the role of specific neurotrophins in the functions of these visceral sensory and motor neurons in vivo. J. Comp. Neurol. 393:102–117, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    11.
    Background Transient lower esophageal sphincter relaxations (TLESRs) are the predominant mechanisms underlying gastro‐esophageal reflux. TLESRs are mediated by a vago‐vagal reflex, which can be blocked by interaction with metabotropic Glutamate Receptor 5 (mGluR5), γ‐aminobutyric acid type B (GABAB), γ‐aminobutyric acid type A (GABAA), and cannabinoid (CB) receptors. However, the distribution of these receptors in the neural pathway underlying the triggering of TLESRs has not been evaluated in humans. Methods Using immunohistochemistry, we investigated the distribution of mGluR5, GABAA, GABAB, CB1, and CB2 receptors in the human nodose ganglion, the brain stem, and the myenteric plexus of the esophagus. Key Results MGluR5, GABAB, CB1, and CB2 receptors are abundantly expressed in neurons of the myenteric plexus of the LES, nodose ganglion cell bodies and nerve fibers, the dorsal motor nucleus, and nucleus of the solitary tract in the brain stem. GABAA receptors are expressed in the same regions except in the nodose ganglion and myenteric plexus of the LES. Conclusions & Inferences Human mGluR5, GABAA,B, and CB1,2 receptors are abundantly expressed along the vago‐vagal neural pathway and involved in the triggering of TLESRs. These findings are not only in line with the central side effects observed during treatment with reflux inhibitors such as GABAB receptor agonists and mGluR5 antagonists, but also suggest that peripherally acting compounds may be effective.  相似文献   

    12.
    Retrograde and anterograde tracing and immunohistochemical techniques were used to examine the origin of the extrinsic innervation, and the development of the vagal innervation to the mouse esophagus. Cholinergic nerve terminals were localised using an antiserum to the vesicular acetylcholine transporter and cholinergic cell bodies were localised using an antiserum to choline acetyltransferase. Cholinergic nerve terminals, which also contained calcitonin gene-related peptide, were present at the motor end plates in the external (striated) muscle of the esophagus. Following injection of Fast Blue into subdiaphragmatic or cervical levels of the esophagus, the only retrogradely-labelled cholinergic nerve cell bodies that also contained calcitonin gene-related peptide were found in the nucleus ambiguus. Neurons in the dorsal motor nucleus of the vagus, the nodose ganglia and dorsal root ganglia gave rise to a number of different types of nerve terminals within the myenteric plexus. Retrogradely-labelled neurons in the dorsal motor nucleus of vagus contained cholinergic markers only, nitric oxide synthase only or cholinergic markers plus nitric oxide synthase, retrogradely-labelled neurons in the dorsal root ganglia contained calcitonin gene-related peptide only, and a small number of retrogradely-labelled neurons in the nodose ganglia contained tyrosine hydroxylase. The development of the vagal innervation to the esophagus was examined following application of DiI to the vagus nerve of fixed mouse embryos. Anterogradely-labelled nerve fibres, which arose from both nodose ganglia and the medulla, were already present in the esophagus of embryonic day 12 (E12) mice. Some of the DiI-labelled vagal nerve fibres were present in among the smooth muscle cells of the external muscle layer prior to their transdifferentiation to striated muscle. We conclude that the neurons in the nucleus ambiguus that project to the esophagus differ from other extrinsic neurons in their chemistry as well as their targets within the esophagus. The development of the extrinsic innervation precedes the transdifferentiation of the external muscle to striated muscle, raising the possibility that, during development, smooth muscle of the esophagus is innervated transiently by vagal neurons.  相似文献   

    13.
    To explore the effects of aging on the vagal innervation of the gastrointestinal (GI) tract, male Fischer 344 rats at 3 and 24 months of age were injected in the left nodose ganglion with 3 microl of either 4% wheat germ agglutinin-horseradish peroxidase (to label sensory endings) or 1% cholera toxin subunit B-horseradish peroxidase (to label motor endings). The stomach and duodenum were prepared as wholemounts and processed with tetramethyl benzidine. In addition, to study age-related changes in the myenteric plexus, the stomachs, small intestines, and large intestines from 3-, 12-, 21-, 24- and 27-month-old rats were prepared as wholemounts and processed with Cuprolinic Blue (to stain the neurons). Vagal afferent endings, motor terminal profiles, and myenteric neurons were counted and mapped with a sampling grid. In the stomach, both the vagal and myenteric innervation were stable between the ages of 3 and 24 months; however, a decrease in the number of myenteric neurons in the forestomach was noted at 27 months. In the small and large intestines, myenteric cell loss occurred by 12 months of age, progressed with age, and appeared to be governed by several general principles: (1) the rate of cell loss was organ-specific, with a gradient of increasing severity from proximal to distal in the gut; (2) within organs of the GI tract, the rate of cell loss differed between regions; and (3) for given regions, cell losses progressed linearly with increasing age. The findings suggest that a positive relationship exists between the density of vagal extrinsic innervation and myenteric neuron survival; however, whether this results from the vagal innervation and/or other factor(s) protecting or rescuing myenteric neurons from age-related attrition remains to be determined.  相似文献   

    14.
    Topographic inventories of vagal afferents in gastrointestinal muscle   总被引:11,自引:0,他引:11  
    To inventory and characterize the two types of vagal afferents (both putative mechanoreceptors) in the muscle of the gastrointestinal tract, the authors injected wheat germ agglutinin-horseradish peroxidase into the nodose ganglia of rats that had received unilateral ventral rhizotomies to eliminate efferents. The gut, from the oral esophagus to the distal colon, was divided into wholemounts, processed with tetramethylbenzidine, and surveyed to establish normative topographic maps of afferents. Vagal intraganglionic laminar endings (IGLEs) were ubiquitous, with concentrations varying on a longitudinal gradient (higher rostrally). This overall gradient was punctuated by denser condensations of endings in the oral esophagus, gastric corpus, and distal ileum. In regional specializations, IGLEs were fused into conspicuous, dense networks in the laryngeal esophagus and the antrum. Intramuscular arrays (IMAs) had restricted distributions, including the walls of the stomach and the sphincters throughout the gut. In the forestomach, a singular concentration of orthogonally crossed IMAs was organized into a lattice or "fovea." IMAs displayed variations in morphology, with one specialization consisting of short, terminal processes associated with sphincters and a more widespread form consisting of long, rectilinear processes in the forestomach, along the greater curvature, and in limited intestinal regions. On the basis of their topographic patterns and structural specializations, the two putative mechanoreceptors may have different functions: IGLEs appear situated to integrate intramural tension, and perhaps myenteric neuronal activity, into rhythmical, propagated motor programs, such as swallowing, peristalsis, and emptying. IMAs are distributed strategically and appear to satisfy structural requirements for stretch receptors tuned to tonic or more aperiodic events that may affect central nervous system processing as well as local gastrointestinal coordination.  相似文献   

    15.
    16.
    Ichikawa H  Sugimoto T 《Brain research》2005,1038(1):107-112
    Peptide 19 (PEP 19) is a 7.6-kDa polypeptide which binds to calmodulin and inhibits calcium-calmodulin signaling. In this study, PEP 19-immunoreactivity (PEP 19-IR) was examined in the rat vagal and glossopharyngeal sensory ganglia. Twenty-nine percent, 59%, and 41% of sensory neurons contained PEP 19-IR in the jugular, petrosal, and nodose ganglia, respectively. These neurons were of various sizes (jugular, mean +/- SD = 635.8 +/- 392.6 microm2, range = 105.9-1695.9 microm2; petrosal, mean +/- SD = 370.9 +/- 228.5 microm2, range = 57.7-1662.7 microm2; nodose, mean +/- SD = 380.5 +/- 157 microm2, range = 87.5-950.4 microm2) and scattered throughout these ganglia. Double immunofluorescence method revealed that PEP 19-IR neurons which had parvalbumin-IR were rare in the ganglia (jugular, 4%; petrosal, 10%; nodose, 8%). PEP 19-IR neurons which contained calbindin D-28k were abundant in the petrosal (20%) and nodose (22%) ganglia but not in the jugular ganglion (8%). Retrograde tracing method indicated that many PEP 19-IR neurons projected to the circumvallate papilla and soft palate. In the soft palate, taste buds were innervated by PEP 19-IR nerve fibers. The present study suggests that PEP 19-IR neurons include chemoreceptors in the vagal and glossopharyngeal sensory ganglia.  相似文献   

    17.
    Background The mouse is an invaluable model for mechanistic studies of esophageal nerves, but the afferent innervation of the mouse esophagus is incompletely understood. Vagal afferent neurons are derived from two embryonic sources: neural crest and epibranchial placodes. We hypothesized that both neural crest and placodes contribute to the TRPV1‐positive (potentially nociceptive) vagal innervation of the mouse esophagus. Methods Vagal jugular/nodose ganglion (JNG) and spinal dorsal root ganglia (DRG) neurons were retrogradely labeled from the cervical esophagus. Single cell RT‐PCR was performed on the labeled neurons. Key Results In the Wnt1Cre/R26R mice expressing a reporter in the neural crest‐derived cells we found that both the neural crest‐ and the placodes‐derived vagal JNG neurons innervate the mouse esophagus. In the wild‐type mouse the esophageal vagal JNG TRPV1‐positive neurons segregated into two subsets: putative neural crest‐derived purinergic receptor P2X2‐negative/preprotachykinin‐A (PPT‐A)‐positive subset and putative placodes‐derived P2X2‐positive/PPTA‐negative subset. These subsets also segregated by the expression of TrkA and GFRα3 in the putative neural crest‐derived subset, and TrkB in the putative placodes‐derived subset. The TRPV1‐positive esophageal DRG neurons had the phenotype similar to the vagal putative neural crest‐derived subset. Conclusions & Inferences The TRPV1‐positive (potentially nociceptive) vagal afferent neurons innervating the mouse esophagus originate from both neural crest and placodes. The expression profile of the receptors for neurotrophic factors is similar between the neural crest‐derived vagal and spinal nociceptors, but distinct from the vagal placodes‐derived nociceptors.  相似文献   

    18.
    Although the gastric tension receptor has been characterized behaviorally and electrophysiologically quite well, its location and structure remains elusive. Therefore, the vagal afferents to the rat fundus (forestomach or nonglandular stomach) were anterogradely labeled in vivo with injections of the carbocyanine dye Dil into the nodose ganglia, and the nerves and ganglia of the enteric nervous system were labeled in toto with intraperitoneal Fluorogold injection. Dissected layers and cryostat cross sections of the fundic wall were mounted in glycerin and analyzed by means of conventional and laser scanning confocal microscopy. Particularly in the longitudinal, and to a lesser extent in the circular, smooth muscle layers, Dil-labeled fibers and terminals were abundant. These processes, which originated from fibers coursing through the myenteric ganglia and connectives, entered either muscle coat and then ran parallel to the respective muscle fibers, often for several millimeters. They ran in close association with the Fluorogold-labeled network of interstitial cells of Cajal, upon which they appeared to form multiple spiny appositions or varicosities. In the myenteric plexus, two different types of afferent vagal structures were observed. Up to 300 highly arborizing endings forming dense accumulations of small puncta similar to the esophageal intraganglionic laminar endings (Rodrigo et al., '75 Acta Anat. 92:79-100) were found in the fundic wall ipsilateral to the injected nodose ganglion. They often covered small clusters of myenteric neurons or even single isolated ganglion cells (mean = 5.8 neurons) and tended to extend throughout the neuropil of the ganglia. In a second pattern, fine varicose fibers with less profuse arborizations innervated mainly the central regions of myenteric ganglia. Camera lucida analyses established that single vagal afferent fibers had separate collaterals in both a smooth muscle layer and the myenteric ganglia. Finally, Dil-labeled afferent vagal fibers were also found in the submucosa and mucosa. Control experiments in rats with supranodose vagotomy as well as rats with Dil injections directly in the distal cervical vagus ruled out the possibility of colabeling of afferent fibers of passage. In triple labeling experiments, in conjunction with Dil labeling of afferents and Fluorogold labeling of enteric neurons, the carbocyanine dye DiA was injected into the dorsal motor nucleus of the vagus to anterogradely label the efferent vagal fibers and terminals. The different distributions and morphological characteristics of the vagal afferents and efferents could be simultaneously compared. In some instances the same myenteric ganglion was apparently innervated by an afferent laminar ending and an efferent terminal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    19.
    We examined abdominal vagal afferents (n = 33) and the distributions of their intraganglionic laminar endings (IGLEs) in the duodenum. Rats (male, Sprague-Dawley) received a partial subdiaphragmatic vagotomy that spared a single branch. Wheat germ agglutinin-horseradish peroxidase (0.5-1.0 μl) was injected into the nodose ganglion ipsilateral to the vagotomized side. We observed that the hepatic branch does not project to the stomach, that the accessory celiac and celiac branches course along the celiac artery and innervate the intestines, and that the left nodose afferents innervate predominantly the duodenum. The hepatic branch innervates the duodenum via the "hepatoduodenal" subbranch and has the densest IGLE distribution in both the dorsoventral and the rostrocaudal extensions of the first 4-cm segment. Both gastric branches have two subbranches that innervate the duodenum; the "lesser curvature" subbranches follow the lesser curvature artery and may join the "hepatoduodenal" subbranch, whereas the "pyloric" subbranches run through the antrum and pylorus to reach the proximal duodenum. Moreover, the subbranches of ventral and dorsal gastric branches innervate more in the ventral and dorsal parts of the duodenum, respectively, and have more IGLEs in the rostral region than in the caudal. A posteriori comparisons indicate that, in the first-centimeter segment, the ventral gastric branch has significantly more IGLEs, whereas, in the third- and fourth-centimeter segments, the hepatic branch has more IGLEs. The finding that three different vagal branches innervate the duodenum with different densities of afferent endings might indicate a viscerotopic receptive field that coordinates digestive functions in feeding.  相似文献   

    20.
    Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) have previously been shown to support survival and axonal regeneration in various types of neurons. Also, synergistic neuroprotective effects of these neurotrophins have been reported in descending rubrospinal neurons after cervical spinal cord injury (Novikova et al., [2000] Eur. J. Neurosci. 12:776-780). The present study investigates the effects of intrathecally delivered NT-3 and BDNF on the survival and atrophy of ascending spinocerebellar neurons of Clarke nucleus (CN) after cervical spinal cord injury in adult rats. At 8 weeks after cervical spinal cord hemisection, 40% of the axotomized CN neurons had been lost, and the remaining cells exhibited marked atrophy. Microglial activity was significantly increased in CN of the operated side. Intrathecal infusion of NT-3 for 8 weeks postoperatively resulted in 91% cell survival and a reduction in cell atrophy, but did not reduce microglial activity. In spite of the fact that the CN neurons expressed both TrkC and TrkB receptors, only NT-3 had a neuroprotective effect, whereas BDNF was ineffective. Furthermore, when a combination of BDNF and NT-3 was administered, the neuroprotective effect of NT-3 was lost. The present results indicate a therapeutic potential for NT-3 in the treatment of spinal cord injury, but also demonstrate that in certain neuronal populations the neuroprotection obtained by a combination of neurotrophic factors may be less than that of a single neurotrophin.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号