首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yersinia pseudotuberculosis inv mutant strains cured of the virulence plasmid exhibit thermoinducible adhesion to cultured mammalian cells. To identify the genes responsible for this phenotype, Y. pseudotuberculosis homologs of the Y. enterocolitica ail and the Y. pestis psa loci were identified. Mutations in the Y. pseudotuberculosis ail and psa loci were constructed and tested for thermoinducible binding. Results of cellular binding assays indicated that only mutations in psa, not in ail, resulted in defects for thermoinducible binding, with inv yadA psa strains showing no detectable cell adhesion. In addition, an inv psa strain was defective for hemagglutination of sheep erythrocytes, in contrast to an inv psa+ strain which was fully competent for hemagglutination. The introduction of a plasmid containing a 6.7-kb KpnI-ClaI fragment of Y. pseudotuberculosis encompassing the psa locus was sufficient to complement both the cell adhesion and hemagglutination defects of the psa mutant. Results from subcloning and transposon mutagenesis indicated that the complete 6.7-kb region was required for thermoinducible binding and hemagglutination.  相似文献   

2.
The Yersinia pseudotuberculosis invasin protein is able to promote bacterial penetration into mammalian cells. Insertion mutations that eliminate production of this protein show residual internalization that is dependent on the presence of the Yersinia virulence plasmid. An enrichment procedure was used to isolate molecular clones containing regions of the virulence plasmid that confer this low-level uptake on Y. pseudotuberculosis inv mutants. All of the Y. pseudotuberculosis strains isolated from this procedure harbored plasmids containing a region encompassing the yadA gene, which encodes a previously identified adhesin associated with attachment to extracellular matrix proteins. All of the mutations isolated that affected internalization of one of the strains that survived the enrichment disrupted the yadA open reading frame. Furthermore, a strain that contained yadA sequences and no other region of the virulence plasmid was able to promote internalization of a Y. pseudotuberculosis inv mutant. Consistent with these results, an intact virulence plasmid containing an insertion mutation in yadA was as defective as a plasmid-cured strain at promoting uptake of Y. pseudotuberculosis inv mutants. These results indicate that the product of the yadA gene is responsible for the plasmid-dependent entry observed in Y. pseudotuberculosis inv mutants.  相似文献   

3.
Yersinia pestis, the agent of plague, has arisen from a less virulent pathogen, Yersinia pseudotuberculosis, by a rapid evolutionary process. Although Y. pestis displays a large number of virulence phenotypes, it is not yet clear which of these phenotypes descended from Y. pseudotuberculosis and which were acquired independently. Y. pestis is known to replicate in macrophages, but there is no consensus in the literature on whether Y. pseudotuberculosis shares this property. We investigated whether the ability to replicate in macrophages is common to Y. pestis and Y. pseudotuberculosis or is a unique phenotype of Y. pestis. We also examined whether a chromosomal type III secretion system (TTSS) found in Y. pestis is present in Y. pseudotuberculosis and whether this system is important for replication of Yersinia in macrophages. A number of Y. pestis and Y. pseudotuberculosis strains of different biovars and serogroups, respectively, were tested for the ability to replicate in primary murine macrophages. Two Y. pestis strains (EV766 and KIM10(+)) and three Y. pseudotuberculosis strains (IP2790c, IP2515c, and IP2666c) were able to replicate in macrophages with similar efficiencies. Only one of six strains tested, the Y. pseudotuberculosis YPIII(p(-)) strain, was defective for intracellular replication. Thus, the ability to replicate in macrophages is conserved in Y. pestis and Y. pseudotuberculosis. Our results also indicate that a homologous TTSS is present on the chromosomes of Y. pestis and Y. pseudotuberculosis and that this secretion system is not required for replication of these bacteria in macrophages.  相似文献   

4.
Yersinia pseudotuberculosis initiates systemic disease after translocation across the intestinal epithelium. Three Y. pseudotuberculosis factors, previously identified by their ability to promote association with cultured cells, were evaluated for their relative roles in translocation. To this end, mutants defective for invasin, YadA, or pH 6 antigen were tested for movement from the intestinal lumen into the subepithelium. Within 45 min after introduction of bacteria into the lumen, wild-type bacteria were found in the Peyer's patch. Mutants expressing defective invasin derivatives were unable to promote efficient translocation into the Peyer's patch and instead colonized on the luminal surface of the intestinal epithelium. In particular, a translocation defect was observed in a Y. pseudotuberculosis strain that expressed an uptake-defective invasin protein retaining considerable receptor binding activity. To attempt to reduce binding to luminal mucus, Y. pseudotuberculosis yadA and inv yadA strains were analyzed. Both strains had reduced mucus binding, with the inv yadA mutant revealing an alternate uptake pathway that was invasin independent. A mutant defective in the production of the pH 6 antigen adhesin also showed reduced binding to luminal mucus, with specific localization of bacteria in M cells. These results indicate that Y. pseudotuberculosis adhesive factors control the site of bacterial interaction within the intestinal environment and that loss of one factor causes drastic changes in the preferred site of localization of the bacterium in this locale.  相似文献   

5.
Yersinia pestis, the causative agent of plague, evolved from the gastrointestinal pathogen Yersinia pseudotuberculosis. Both species have numerous type Va autotransporters, most of which appear to be highly conserved. In Y. pestis CO92, the autotransporter genes yapK and yapJ share a high level of sequence identity. By comparing yapK and yapJ to three homologous genes in Y. pseudotuberculosis IP32953 (YPTB0365, YPTB3285, and YPTB3286), we show that yapK is conserved in Y. pseudotuberculosis, while yapJ is unique to Y. pestis. All of these autotransporters exhibit >96% identity in the C terminus of the protein and identities ranging from 58 to 72% in their N termini. By extending this analysis to include homologous sequences from numerous Y. pestis and Y. pseudotuberculosis strains, we determined that these autotransporters cluster into a YapK (YPTB3285) class and a YapJ (YPTB3286) class. The YPTB3286-like gene of most Y. pestis strains appears to be inactivated, perhaps in favor of maintaining yapJ. Since autotransporters are important for virulence in many bacterial pathogens, including Y. pestis, any change in autotransporter content should be considered for its impact on virulence. Using established mouse models of Y. pestis infection, we demonstrated that despite the high level of sequence identity, yapK is distinct from yapJ in its contribution to disseminated Y. pestis infection. In addition, a mutant lacking both of these genes exhibits an additive attenuation, suggesting nonredundant roles for yapJ and yapK in systemic Y. pestis infection. However, the deletion of the homologous genes in Y. pseudotuberculosis does not seem to impact the virulence of this organism in orogastric or systemic infection models.  相似文献   

6.
致病性耶尔森氏菌PCR扩增多态性的研究   总被引:8,自引:0,他引:8  
目的为了解不同来源的鼠疫耶尔森氏菌和不同血清型的小肠结肠炎耶尔森氏菌及假结核耶尔森氏菌(PTB3)的遗传学差异。方法使用随机引物扩增多态DNA(RAPD)技术。结果鼠疫耶尔森氏菌和假结核耶尔森氏菌的扩增主带型相似,而与小肠结肠炎耶尔森氏菌的差异较大;不同来源的鼠疫耶尔森氏菌株RAPD图谱亦有细微差别。小肠结肠炎耶尔森氏菌不同血清型的菌株以及同一血清型不同来源株的RAPD亦有较大差异。这为耶尔森氏菌更进一步的分型提供了一种新方法。此外,还根据小肠结肠炎耶尔森氏菌肠毒素基因设计了一对引物,将7个血清型66株小肠结肠炎耶尔氏菌分成两组,一组的扩增为预期的289bp片段,另一组为约200bp的片段。结论实验表明,鼠疫菌和假结核菌可以通过RAPD和其它生物学技术相结合加以区分。使用RAPD技术可对同一血清型不同来源的小肠结肠炎耶尔森氏菌进行更进一步分型。上述方法可用于分子流行病学调查。  相似文献   

7.
Yersinia pestis, the causative agent of plague, diverged from Yersinia pseudotuberculosis, an enteric pathogen, an estimated 1500-20,000 years ago. Genetic characterization of these closely related organisms represents a useful model to study the rapid emergence of bacterial pathogens that threaten mankind. To this end, we undertook genome-wide DNA microarray analysis of 22 strains of Y. pestis and 10 strains of Y. pseudotuberculosis of diverse origin. Eleven Y. pestis DNA loci were deemed absent or highly divergent in all strains of Y. pseudotuberculosis. Four were regions of phage origin, whereas the other seven included genes encoding a vitamin B12 receptor and the insect toxin sepC. Sixteen differences were identified between Y. pestis strains, with biovar Antiqua and Mediaevalis strains showing most divergence from the arrayed CO92 Orientalis strain. Fifty-eight Y. pestis regions were specific to a limited number of Y. pseudotuberculosis strains, including the high pathogenicity island, three putative autotransporters, and several possible insecticidal toxins and hemolysins. The O-antigen gene cluster and one of two possible flagellar operons had high levels of divergence between Y. pseudotuberculosis strains. This study reports chromosomal differences between species, biovars, serotypes, and strains of Y. pestis and Y. pseudotuberculosis that may relate to the evolution of these species in their respective niches.  相似文献   

8.
The IS200-like insertion sequence (IS) is a 708-bp element recently found in Yersinia pestis. Its nucleotide sequence is 85% identical to that of IS200 recovered in most Salmonella enterica isolates. It is also present in multiple copies in Y. pseudotuberculosis. In contrast, this IS is found in some (biotype 1B strains) but not other Y. enterocolitica strains and is absent in the nonpathogenic yersiniae: Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. bercovieri, and Y. mollaretii. The number and locations of the ISs in the Y. pseudotuberculosis genome vary among strains, resulting in a high degree of polymorphism, but IS fingerprints are stable after multiple subcultures of clinical isolates. The discriminative power of IS typing is better than that of ribotyping and almost as good as that of the time-consuming method of pulsotyping. Overall, IS200-like is a useful molecular marker in determining the epidemiology of Y. pseudotuberculosis infections.  相似文献   

9.
We report the complete 119,443-bp sequence of the pgm locus from Yersinia pestis and its flanking regions. Sequence analysis confirms that the 102-kb unstable pgm locus is composed of two distinct parts: the pigmentation segment and a high-pathogenicity island (HPI) which carries virulence genes involved in iron acquisition (yersiniabactin biosynthetic gene cluster). Within the HPI, three genes coding for proteins related to phage proteins were uncovered. They are located at both extremities indicating that the entire HPI was acquired en bloc by phage-mediated horizontal transfer. We identified, within the pigmentation segment, two novel loci that may be involved in virulence: a fimbriae gene cluster and a locus probably encoding a two component regulatory system similar to the BvgAS regulatory system of Bordetella pertussis. Three genes containing frameshift mutations and two genes interrupted by insertion element insertion were found within this region. To investigate diversity among different Y. pestis and Yersinia pseudotuberculosis strains, the sequence of selected regions of the pgm locus and flanking regions were compared from 20 different Y. pestis and 10 Y. pseudotuberculosis strains. The results showed that the genes interrupted in Y. pestis are intact in Y. pseudotuberculosis. However, one of these mutations, in the bvgS homologue, is only present in Y. pestis strains of biovar Orientalis and not in those of the biovars Antiqua and Medievalis. The results obtained by analysis of variable positions in the sequence are in accordance with historical records, confirming that biovar Orientalis is the most recent lineage. Furthermore, sequence comparisons among 29 Yersinia strains suggest that Y. pestis is a recently emerged pathogen that is probably entering the initial phase of reductive evolution.  相似文献   

10.
The Yersinia virulence plasmid confers on strains of Yersinia pseudotuberculosis and Y. enterocolitica an adhesive potential superior to the one encoded by the chromosome alone. We have evaluated the role of the plasmid-encoded outer membrane protein YadA (formerly called Yopl) in adhesion. Insertional inactivation of the yadA gene (formerly called yopA), which encodes YadA, led to a reduction in the capacity of plasmid-carrying strains of Y. pseudotuberculosis 0:III and Y. enterocolitica 0:9 to adhere to intestinal tissue, brush border membranes and polystyrene surfaces. The adhesive characteristics of the mutants were comparable to those of their plasmid-cured counterparts. When the yadA gene from Y. pseudotuberculosis serotype 0:III or Y. enterocolitica serotype 0:3 or 0:8 was cloned into an Escherichia coli strain, increased ability to adhere to intestinal tissue, brush border membrane vesicles and polystyrene was transferred concomitantly. The introduction of the yadA gene from Y. pestis, which is unable to express YadA due to a one base pair deletion, did not change the adhesive characteristics of E. coli. Expression of YadA in the outer membrane may, therefore, make an important contribution to intestinal adherence of the two enteropathogenic members of the Yersinia species, Y. pseudotuberculosis and Y. enterocolitica.  相似文献   

11.
Yersinia pseudotuberculosis and Yersinia enterocolitica are closely related human pathogens causing gastroenteritis. Invasin and YadA are two of the most extensively studied virulence factors of the Yersinia genus. Invasin is the primary invasion factor encoded by the inv gene on the chromosome and is required for the penetration of the epithelial cells. YadA is encoded by the yadA gene on the 70-kb virulence plasmid and has multiple functions. Previous studies indicate that an inv yadA double mutant of Y. enterocolitica is avirulent while an inv yadA mutant of Y. pseudotuberculosis is hypervirulent. In this study, we investigated this unexpected difference. New constructs of the inv yadA mutants of Y. pseudotuberculosis were made and tested in mice. These new constructs were not hypervirulent; rather, they maintained the same virulence as the wild-type strain. Further examination of the inv mutant used for the previous study revealed that it carries an aberrant inv phenotype and has an altered outer membrane profile and an altered colony morphology. Therefore, the mutants used previously were not isogenic to the parental wild-type strain, which may in part account for the difference in the results obtained.  相似文献   

12.
Transposon Tn5 insertion derivatives of the virulence plasmid pYV019 of Yersinia pestis were transferred by P1 transduction into a plasmid-free strain of Y. pseudotuberculosis. One of these plasmid derivatives conferred virulence upon the Y. pseudotuberculosis strain. This strain had the ability to express temperature-inducible plasmid-coded outer membrane proteins and was also found to be Ca2+ dependent.  相似文献   

13.
Yersinia pestis and Yersinia pseudotuberculosis are closely related facultative intracellular pathogens. The response regulator PhoP was previously shown to be important for Y. pestis survival in macrophages and for virulence in a murine bubonic plague infection assay. Here the importance of PhoP for Y. pseudotuberculosis pathogenesis was investigated. Y. pseudotuberculosis phoP mutants were unable to replicate in low-Mg(2+) medium or in macrophages. phoP(+) Y. pseudotuberculosis strains initiated replication in macrophages after a lag period of approximately 5 h, as shown by fluorescence microscopy and viable count assays. Y. pseudotuberculosis phoP mutants died at a low rate in macrophages; there was no decrease in viability over the first 5 h of infection, and there was a 10-fold decrease in viability between 5 and 24 h of infection. Trafficking of phagosomes containing phoP(+) or phoP mutant Y. pseudotuberculosis was studied by using immunofluorescence microscopy and cathepsin D as a marker for lysosomes. Phagosomes containing phoP mutant Y. pseudotuberculosis acquired cathepsin D at a higher rate than phagosomes containing phoP(+) bacteria. However, the increased rate of marker acquisition for phagosomes containing mutant bacteria was only evident approximately 5 h after infection, suggesting that phoP mutants are able to retard phagosome maturation during the lag phase of intracellular growth. The results obtained with a Y. pestis phoP mutant were similar to those described above, except that the rates of intracellular killing and trafficking to cathepsin D-positive vacuoles were significantly higher. A Y. pseudotuberculosis phoP mutant was 100-fold less virulent than the wild-type strain in a murine intestinal infection model, suggesting that survival and replication in macrophages are important for Y. pseudotuberculosis pathogenesis.  相似文献   

14.
At the genomic level, Yersinia pestis and Yersinia pseudotuberculosis are nearly identical but cause very different diseases. Y. pestis is the etiologic agent of plague; whereas Y. pseudotuberculosis causes a gastrointestinal infection primarily after the consumption of contaminated food. In many gram-negative pathogenic bacteria, PhoP is part of a two-component global regulatory system in which PhoQ serves as the sensor kinase, and PhoP is the response regulator. PhoP is known to activate a number of genes in many bacteria related to virulence. To determine the role of the PhoPQ proteins in Yersinia infections, primarily using aerosol challenge models, the phoP gene was deleted from the chromosome of the CO92 strain of Y. pestis and the IP32953 strain of Y. pseudotuberculosis, leading to a polar mutation of the phoPQ operon. We demonstrated that loss of phoPQ from both strains leads to a defect in intracellular growth and/or survival within macrophages. These in vitro data would suggest that the phoPQ mutants would be attenuated in vivo. However, the LD(50) for the Y. pestis mutant did not differ from the calculated LD(50) for the wild-type CO92 strain for either the bubonic or pneumonic murine models of infection. In contrast, mice challenged by aerosol with the Y. pseudotuberculosis mutant had a LD(50) value 40× higher than the wild-type strain. These results demonstrate that phoPQ are necessary for full virulence by aerosol infection with the IP32953 strain of Y. pseudotuberculosis. However, the PhoPQ proteins do not play a significant role in infection with a fully virulent strain of Y. pestis.  相似文献   

15.
Yersinia pestis is a very recently evolved clone of Yersinia pseudotuberculosis serotype O:1b. This close relationship causes potential difficulties in DNA-based diagnostic methods. Analysis of the O-antigen gene clusters in these two organisms identified two regions that were used to specifically identify Y. pestis-Y. pseudotuberculosis as a group or Y. pestis alone. Both PCR assays were found to be 100% specific when tested on a large collection of Yersinia species and other Enterobacteriaceae. Furthermore, advantage was taken of the different setups of the O-antigen gene clusters of the 21 known Y. pseudotuberculosis serotypes to develop a multiplex PCR assay to replace the conventional serotyping method of Y. pseudotuberculosis by O-genotyping. The multiplex PCR assay contained nine sets of specific PCRs in a single tube and when used on Y. pseudotuberculosis reference strains allowed the distinction of 14 individual serotypes and two duplex serotypes (O:4a-O:8 and O:12-O:13). Serotype O:7, O:9, and O:10 strains required additional PCRs for O-genotyping. Once applied to Y. pseudotuberculosis strains of various origins, a very good correlation between classical serotypes and O-genotypes was observed, although some discrepancies were found. O-genotyping also proved useful to correct misidentification of some strains and to type Y. pseudotuberculosis isolates that had lost the expression of the O-antigen. The PCR-based O-genotyping can easily be applied in conventional laboratories, without the need for tedious preparation of a large set of specific antisera.  相似文献   

16.
The expression of the temperature-inducible plasmid-coded outer membrane proteins (YOPs) of Yersinia pseudotuberculosis was studied. These proteins were not recovered in the outer membrane fraction when the strain was grown in minimal medium at 37 degrees C, but they were expressed under these conditions. A strict correlation was found between Ca2+ dependency in the virulent strain, YPIII(pIB1), and ability to express YOPs. Ca2+-independent plasmid mutants or RNA-polymerase mutants harboring the virulence plasmid were unable to express YOPs, in contrast to the wild-type strain. These strains were also found to be avirulent. Sera recovered from patients or animals undergoing infection with either Y. pseudotuberculosis, Y. pestis, or Y. enterocolitica possessed antibodies directed against YOPs, indicating that they were expressed in all three pathogenic Yersinia species during infection. The YOPs of the three different species showed high immunological relatedness.  相似文献   

17.
Invasin expression in Yersinia pseudotuberculosis.   总被引:6,自引:0,他引:6       下载免费PDF全文
A 3.2-kb region on the chromosome of Yersinia pseudotuberculosis, called inv, encodes invasin, a 103-kDa protein of the bacterial outer membrane. Invasin mediates bacterial entry into cultured animal cells. Six Y. pseudotuberculosis strains isolated from animal or human infections were analyzed for the presence of inv-related sequences with a radiolabeled inv clone, pRI203. We found that inv-specific sequences were present in all strains studied. Strains cured of virulence plasmid pYV were studied by Western immunoblot analysis with a monoclonal antibody directed against invasin. All but one strain produced invasin, but some strains produced more invasin than others. A strong correlation was found between the level of invasin production by these strains and their ability to enter into HEp-2 or CHO cells. The virulence of these strains was assessed in a murine model by measuring the number of bacteria in the spleen after intravenous challenge or in the mesenteric lymph nodes after intragastric challenge. The capacities of strains to invade cultured mammalian cells and to colonize the spleen were strongly correlative. In contrast, the ability of strains to translocate from the intestinal lumen to the mesenteric lymph nodes after intragastric inoculation did not correlate with their in vitro invasiveness.  相似文献   

18.
19.
20.
Forty Yersinia pestis isolates from endemic foci of plague in the Republic of Georgia, and six Y. pestis isolates from neighbouring former Soviet Union countries, were analysed for their biochemical and phenotypic properties, and their genetic relatedness was compared with Y. pestis strains KIM and CO92 by pulsed-field gel electrophoresis (PFGE). In addition, 11 Y. pestis isolates from the USA, together with published nucleotide sequences from Y. pestis strains KIM, CO92 and 91001, were compared with the 46 isolates in the present collection using multilocus sequence typing (MLST), based on sequence data for the 16S rRNA, hsp60, glnA, gyrB, recA, manB, thrA and tmk loci. Four virulence gene loci (caf1, lcrV, psaA and pla) were also sequenced and analysed. Two sequence types (ST1 and ST2), which differed by a single nucleotide, were identified by MLST. With the exception of a single isolate (771G), all of the Georgian Y. pestis isolates belonged to ST2. PFGE also grouped the Georgian Y. pestis isolates separately from the non-Georgian isolates. Overall, PFGE discriminated the Y. pestis isolates more effectively than MLST. The sequences of three of the four virulence genes (lcrV, psaA and pla) were identical in all Georgian and non-Georgian isolates, but the caf1 locus was represented by two allele types, with caf1 NT1 being associated with the non-Georgian isolates and caf1 NT2 being associated with the Georgian isolates. These results suggest that Georgian Y. pestis isolates are of clonal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号