首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacogenetic testing for UDP-glucuronosyltransferase (UGT) 1A1*28, a promoter variant of the UGT1A1 gene, is now carried out clinically to estimate the risk of irinotecan-associated toxicity. We studied the clinical significance of UGT1A1*6 and UGT1A1*27, two variants in exon 1 of the UGT1A1 gene that are found mainly in Asians. The study group comprised 46 Japanese patients who received various regimens of chemotherapy including irinotecan at doses from 50 to 180 mg/m(2). Pharmacogenetic relationships were explored between the UGT1A1 genotype and the ratio of the area under the plasma concentration-time curve (AUC) of the active metabolite of irinotecan (SN-38) to that of SN-38 glucuronide (SN-38G), used as a surrogate for UGT1A1 activity (AUC(SN-38)/AUC(SN-38G)). No patient was homozygous for UGT1A1*28, and none had UGT1A1*27. Two were heterozygous for UGT1A1*28. Two were homozygous and 15 heterozygous for UGT1A1*6, all of whom were wild type with respect to UGT1A1*28. Two patients were simultaneously heterozygous for UGT1A1*28 and UGT1A1*6, present on different chromosomes. The other 25 patients had none of the variants studied. The two patients simultaneously heterozygous for UGT1A1*28 and UGT1A1*6 and the two patients homozygous for UGT1A1*6 had significantly higher AUC(SN-38)/AUC(SN-38G) ratios than the others (P = 0.0039). Concurrence of UGT1A1*28 and UGT1A1*6, even when heterozygous, altered the disposition of irinotecan remarkably, potentially increasing susceptibility to toxicity. Patients homozygous for UGT1A1*6 should also be carefully monitored. UGT1A1 polymorphisms in the coding region of the UGT1A1 gene should be genotyped in addition to testing for UGT1A1*28 to more accurately predict irinotecan-related toxicity, at least in Asian patients.  相似文献   

2.
3.

Background

In Japan, CPT-11 is often used to treat unresectable gastric cancer in the second-line setting. However, evidence regarding benefit of second-line chemotherapy remains sparse, especially after failing S-1.

Methods

A phase II study to evaluate the efficacy and safety of weekly administration of CPT-11 at a dose of 100 mg/m2 after failing a S-1-containing first-line treatment was planned with response rate as a primary end point. UGT1A1*6, *27, and *28 genotyping were performed in all cases, and those found to have either homozygous for *28, homozygous for *6, heterozygous for both *6 and *28, and heterozygous for *27 were rendered ineligible for the phase II trial.

Results

Two patients of homozygous for *28, two patients of homozygous for *6, and one patient of heterozygous for *27 were found among 39 recruited patients. The median number of courses delivered was 3 courses. The overall response rate was 15.4 % and disease control rate was 65.4 %. The median time to treatment failure was 87.5 days and median overall survival was 268 days. Twenty-two (73 %) of 30 valuable patients experienced protocol-specified skip of treatment and 8 (30 %) of patients could continue treatment with dose reduction. ≥G3 neutropenia was found in 30 % and ≥G3 anorexia and diarrhea were found in 23 and 17 %, respectively.

Conclusion

Weekly CPT-11 at 100 mg/m2 showed moderate response among gastric cancer patients who were refractory to S-1, but the disease control rate seemed meaningful. Even after selection of patients by UGT1A1 polymorphism of *6, *27, and *28, severe toxic events could not be prevented completely.  相似文献   

4.
The present study has investigated the effect of panipenem, a widely used antibiotic, on the pharmacokinetics of an active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxy-camptothecin (SN-38) and SN-38 glucuronide (SN-38G) produced by uridine-diphosphate glucuronosyltransferase (UGT) 1A isoform-mediated glucuronidation in rats. Rats received a 1 h infusion with panipenem at a loading dose of 10 mg/kg and a maintenance dose of 15 mg/min/kg once a day for 5 days. When the effect of pretreatment with panipenem on glucuronidation activities of substrates for hepatic UGT1A isoforms was investigated using substrates 4-methylumbelliferone (4MU), estradiol and SN-38, the rate of 4MU glucuronide formation was significantly increased, but that of estradiol glucuronide formation was unchanged. However, the rate of SN-38G formation showed a tendency to increase. One hour after the final infusion of panipenem or saline, SN-38 (2 mg/kg) was administered intravenously in rats with or without bile duct cannulation. Pretreatment with panipenem had no effect on the plasma concentration-time curves and biliary excretion of SN-38 and SN-38G in rats with and without bile duct cannulation. There were also no significant differences in the relative extent of glucuronidation of SN-38 to SN-38G (AUC(2 h, SN-38G)/AUC(2 h, SN-38)) between panipenem-treated and untreated rats. These findings suggest that pretreatment with panipenem does not alter the pharmacokinetics of SN-38 and SN-38G, suggesting the possibility that panipenem can be used safely for cancer patients undergoing irinotecan chemotherapy.  相似文献   

5.
PURPOSE: Irinotecan (CPT-11) is approved in metastatic colorectal cancer treatment and can cause severe toxicity. The main purpose of our study was to assess the role of different polymorphisms on the occurrence of hematologic toxicities and disease-free survival in high-risk stage III colon cancer patients receiving 5-fluorouracil (5FU) and CPT-11 adjuvant chemotherapy regimen in a prospective randomized trial. EXPERIMENTAL DESIGN: Four hundred patients were randomized in a phase III trial comparing LV5FU2 to LV5FU2 + CPT-11. DNA from 184 patients was extracted and genotyped to detect nucleotide polymorphism: 3435C>T for ABCB1, 6986A>G for CYP3A5, UGT1A1*28 and -3156G>A for UGT1A1. RESULTS: Genotype frequencies were similar in both treatment arms. In the test arm, no significant difference was observed in toxicity or disease-free survival for ABCB1 and CYP3A5 polymorphisms. UGT1A1*28 homozygous patients showed more frequent severe hematologic toxicity (50%) than UGT1A1*1 homozygous patients (16.2%), P = 0.06. Moreover, patients homozygous for the mutant allele of -3156G>A UGT1A1 polymorphism showed more frequent severe hematologic toxicity (50%) than patients homozygous for wild-type allele (12.5%), P = 0.01. This toxicity occurred significantly earlier in homozygous mutant than wild-type homozygous patients (P = 0.043). In a Cox model, the hazard ratio for severe hematologic toxicity is significantly higher for patients with the A/A compared with the G/G genotype [hazard ratio, 8.4; 95% confidence interval, 1.9-37.2; P = 0.005]. CONCLUSIONS: This study supports the clinical utility of identification of UGT1A1 promoter polymorphisms before LV5FU2 + CPT-11 treatment to predict early hematologic toxicity. The -3156G>A polymorphism seems to be a better predictor than the UGT1A1 (TA)(6)TAA>(TA)(7)TAA polymorphism.  相似文献   

6.
Irinotecan is widely used in the treatment of colorectal, gastric, and lung cancers. However, adverse drug reactions such as severe diarrhea and neutropenia limit the dose of this drug. Irinotecan is metabolized by carboxylesterase to form an active metabolite, 7-ethyl-10-hydroxycamptothecin(SN-38), which in turn is subsequently conjugated by UGT-glucuronosyltransferase 1A1(UGT1A1)to yield an inactive form, SN-38 glucuronide(SN-38 G). The UGT1A1 gene polymorphisms contribute to the individual variation in adverse events among patients administered irinotecan. However, the distribution of polymorphisms shows large interethnic differences. The distribution of UGT1A1*28 greatly differs between Caucasians and Japanese; the frequency of UGT1A1*28 is high in Caucasians, whereas it is low in Asians including Japanese. Recently, it has been demonstrated that genetic variants of UGT1A1*6 in addition to UGT1A1*28 are associated with the occurrence of adverse events in irinotecan chemotherapy in Asians. This review summarizes recent studies to outline the role of UGT1A1*28 and UGT1A1*6 for irinotecan-induced adverse drug reaction in Japanese cancer patients.  相似文献   

7.
It remains uncertain whether there is an correlation between clinical pharmacokinetic parameters and outcomes for metastatic colorectal cancer especially with UGT1A1 *28 and *6 wild type (*1/*1-*1/*1) for serious events associated with Irinotecan are largely excluded. This study retrospectively analyzed the relationship between Irinotecan metabolite levels and outcomes of UGT1A1 *1/*1-*1/*1 genotype arrangement. Blood samples (n = 244) were collected for analysis of plasma DPD activity (before first chemotherapy) and SN-38 levels (1.5 and 49 hour after CPT-11 administration). Clinical variables such as toxicity and outcomes were then assessed. Of the *1/*1 -*1/*1 genotype combination, the median progression free survival of the CSN-38 1.5 h > 50.24 ng/ml subset was remarkably longer than that of the CSN-38 1.5 h ≤ 50.24 ng/ml subset. However, there were no differences between the CSN-38 49 h > 15.25 ng/ml subgroup and the ≤ 15.25 ng/ml group. It was lower DPD activity that responsible for the relatively higher incidence of bone marrow hypocellular, diarrhea, and oral mucositis in the CSN-38 1.5 h > 50.24 ng/ml and CSN-38 49 h > 15.25 ng/ml subsets. Therefore, plasma SN-38 levels is related to outcomes for UGT1A1 *1/*1-*1/*1 genotype, to improve efficacy, patients with CSN-38 1.5 h lower than 50.24 ng/ml, CPT-11 dosage could be added in next chemmotherapy on SN-38 plasma level monitoring. Additionally, in patients with DPD activity below 3.18 before treatment, appropriate reduction of 5-FU dose could be considered to minimize the incidence of adverse events.  相似文献   

8.
The objective of this study was to develop a limited sampling model (LSM) to estimate the area under the curve (AUC) of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) and that of 7-ethyl-10-hydroxycamptothecin (SN-38) as predictive pharmacokinetic variables for leukopenia and episodes of diarrhea induced by CPT-11 administration. The model was developed with a training set consisting of pharmacokinetic studies in 36 patients who received a 90-min i.v. infusion of CPT-11 at a dose of 100 mg/m2. A multiple regression analysis of CPT-11 or SN-38 concentrations observed at each time point in the training set was used to predict the AUC of CPT-11 or SN-38. The final sampling models using only two time points were:
AUCCPT-11=3.7891★C2.5+14.0479*C13.5+1.5463
AUCSN-38=0.5319★C2.5+19.1468*C13.5+72.7349
where C2.5 and C13.5 are the plasma concentration of CPT-11 (μg/ml) or SN-38 (ng/ml) at 2.5 and 13.5 h after the initiation of CPT-11 infusion, respectively. The models were validated prospectively on a separate test data set of 12 patients receiving the same dose of CPT-11 investigated in a previous study. Validation of the final LSM on the test data set gave values of root mean square error (RMSE) of 12.72% and 5.97% for the AUC of CPT-11 and that of SN-38, respectively. The model can be used to monitor the AUCs of both CPT-11 and SN-38 for the early prediction of toxicities and to establish a pharmacokinetically based dose modification strategy for safe administration of CPT-11.  相似文献   

9.
The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN-38), is either formed through enzymatic cleavage of CPT-11 by carboxyl esterases (CEs) or through cytochrome P-450 3A-mediated oxidation to 7-ethyl-10-[4-(1-piperidino)-1-amino] carbonyloxycamptothecin (NPC) and a subsequent conversion by CE. In the liver, SN-38 is glucuronidated (SN-38G) by UGT1A1, which also conjugates bilirubin. Fourteen patients were treated with 350 mg/m2 CPT-11, and we performed pharmacokinetic analysis during a 500-h collection period. The half-life and area under the plasma concentration-time curve of SN-38 were 47+/-7.9 h and 2.0+/-0.79 microM x h, respectively, both representing a 2-fold increase as compared with earlier reported estimates (A. Sparreboom et al, Clin. Cancer Res., 4: 2747-2754, 1998). As an explanation for this phenomenon, we noted substantial formation of SN-38 from CPT-11 and NPC by plasma CE, consistent with the low circulating levels of NPC observed. In addition, transport studies in Caco-2 monolayers indicated that nonglucuronidated SN-38 could cross the membrane from apical to basolateral, indicating the potential for recirculation processes that can prolong circulation times. Interestingly, individual levels of fecal beta-glucuronidase, which is known to mediate SN-38G hydrolysis, were not related to any of the SN-38 kinetic parameters (r = 0.09; P = 0.26), suggesting that interindividual variation in this enzyme is unimportant in explaining SN-38 pharmacokinetic variability. We have also found, in contrast to earlier data, that SN-38G/SN-38 plasma concentration ratios decrease over time from approximately 7 (up to 50 h) to approximately 1 (at 500 h). This decrease could be explained by the fact that glucuronidation of SN-38 and bilirubin is increasingly competitive at lower drug levels. In addition, no evidence was found for SN-38G transport through the Caco-2 cells. Our findings indicate that until now the circulation time of SN-38 has been underestimated. This is of crucial importance to our understanding of the clinical action of CPT-11 and for future pharmacokinetic/pharmacodynamic relationships.  相似文献   

10.
Background: Irinotecan (CPT-11) is metabolized by esterase to form a SN-38, which is further conjugated by UGT1A1. Genetic polymorphism has been shown in a promoter region of UGT1A1 and is related to its activity. We investigated whether there might be an inter-individual difference in pharmacokinetics of SN-38 and its glucuronide, depending on the genotypes of UGT1A1.Patients and methods: Nine male patients with lung cancer were treated with irinotecan (50 mg/m2) and carboplatin. Pharmacokinetic parameters were calculated with full sampling plasma data. Genotypes were determined by analyzing the sequence of TATA box of UGT1A1 of genomic DNA from the patients.Results: The genotyping analysis revealed one heterozygote (6/7) and one homozygote (7/7) for (TA)7TAA allele (UGT1A1*28). The remaining seven patients were homozygote for (TA)6TAA allele (6/6, wild type). The metabolic ratios (SN-38/SN-38 glucuronide) in the patient with 7/7 genotype were uncharacteristically higher than those in the patients with other genotypes (6/6 and 6/7). Biliary index was 6980 versus 2180 ± 1110 (range 840–3730) in patients with 7/7 versus 6/6 genotypes, respectively.Conclusion: These results support the idea that the patient with 7/7 genotype has an impaired capacity for glucuronidation of SN-38.  相似文献   

11.
12.

Purpose

Bevacizumab (BV) prolongs the survival of colorectal cancer patients when combined with irinotecan (CPT-11)-based regimens. In the AVF2107g study, the area under the curve (AUC) ratio for bolus CPT-11/5-fluorouracil (5-FU)/leucovorin (LV) (IFL) with the BV arm to bolus IFL with placebo indicated that SN-38 concentrations may have been increased in subjects receiving BV. However, the mechanism underlying such increase remains unclear, and the difference might be caused by an imbalance between the two arms and a possible inter-subject variability of CPT-11 metabolism. Within-subject comparisons were used to evaluate the effect of BV on advanced colorectal cancer patients when administered with the FOLFIRI regimen as second-line chemotherapy.

Methods

Ten advanced colorectal cancer patients received the FOLFIRI regimen every 2 weeks. At cycle 1, BV was administered following FOLFIRI administration to allow baseline pharmacokinetic (PK) analysis of CPT-11 and its metabolites. From cycle 2, BV was administered just before FOLFIRI administration. Plasma samples were collected under the same condition (at cycle 3).

Results

There were no significant differences in the C max and AUC0-∞ of CPT-11, SN-38, and SN-38G between cycle 1 (without BV) and cycle 3 (with BV). PK parameters of CPT-11, SN-38, and SN-38G were not significantly affected by BV. There were no significant differences in the changes in the AUC ratio of CPT-11 to SN-38 between cycles 1 and 3, as well as in the ratio of SN-38 to SN-38G.

Conclusion

BV does not affect the plasma concentration of CPT-11 and its metabolites on FOLFIRI regimen.  相似文献   

13.

Purpose

Previous studies confirmed that genotyping uridine diphosphate glucuronosyltransferase (UGT) 1A1*28 polymorphisms could predict the side effects in cancer patients using irinotecan (IRI) and then reduce IRI-induced toxicity by preventative treatment or decrease in dose. However, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in Asian patients is still unclear. The aim of this study was to evaluate the association between UGT1A1*6 polymorphisms and IRI-induced severe neutropenia as well as diarrhea in Asian patients.

Methods

We searched all papers on PubMed and Embase from February 1998 to August 2013. Then we assessed the methodologies quality, extracted data and made statistics analysis using STATA software. To uncover the sources of heterogeneity, subgroup meta-analysis was conducted according to the dosage of IRI.

Results

Eleven papers were included according to the inclusion and exclusion criteria after searching Pubmed and Embase. Overall, an increased risk of severe toxicity in Asian patients with UGT1A1*6 polymorphisms was found. Patients with heterozygous variant of UGT1A1*6 showed an increased risk [odds ratio (OR) = 1.98, 95 % confidence intervals (CI) 1.45–2.71, P < 0.001], and homozygous mutation showed an even higher risk (OR = 4.44, 95 % CI 2.42–8.14, P < 0.001) for severe neutropenia. For severe diarrhea, heterozygous variant of UGT1A1*6 showed no significant risk, while the homozygous variant performed a notable risk (OR = 3.51, 95 % CI 1.41–8.73, P = 0.007). Subgroup meta-analysis indicated that for patients harboring either heterozygous or homozygous variant, low dose of IRI also presented comparably increased risk in suffering severe neutropenia.

Conclusion

In this meta-analysis, UGT1A1*6 polymorphisms were revealed as potential biomarkers, predicting IRI-induced severe toxicity in patients from Asia, and increased incidences of severe neutropenia could occur in both high/medium and low doses of IRI.  相似文献   

14.
Jada SR  Lim R  Wong CI  Shu X  Lee SC  Zhou Q  Goh BC  Chowbay B 《Cancer science》2007,98(9):1461-1467
The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.  相似文献   

15.

Purpose

UGT1A1 genotypes are important when considering treatment with irinotecan-containing regimens. In this study, we determined the dose, efficacy, and tolerability of irinotecan according to UGT1A1 genotypes when combined with capecitabine in patients with metastatic colorectal cancer.

Methods

Patients with histologically confirmed metastatic adenocarcinoma of the colon or rectum were enrolled into a UGT1A1 genotype-directed dose-escalation trial of irinotecan plus fixed-dose capecitabine (2,000 mg/m2/day). The starting dose of irinotecan was different for each genotype group and ranged from 200 to 280 mg/m2. Pharmacokinetic concentrations of irinotecan and metabolites were determined by LC/MS/MS.

Results

Fifty patients were genotyped for UGT1A1 *28 and *6, and grouped according to the numbers of defective alleles (DA): 0, 1, and 2. Plasma concentrations of irinotecan, SN-38, and SN-38G were measured. The maximum tolerated dose of irinotecan was 350 mg/m2 for the 0 and 1 DA groups, and 200 mg/m2 for the 2 DA group. For the 0, 1, and 2 DA groups, mean AUClast ratios of SN-38G to SN-38 were 7.72, 5.71, and 2.72 (P = 0.0023) and relative dose intensities at recommended dose were 85, 83, and 97 %.

Conclusion

Irinotecan dosing based on UGT1A1*28 and *6 is feasible, and higher doses of irinotecan can be safely administered in patients with 0 or 1 DA, compared to those with 2 DA.  相似文献   

16.
Irinotecan-induced severe neutropenia is associated with homozygosity for the UGT1A1*28 or UGT1A1*6 alleles. In this study, we determined the maximum-tolerated dose (MTD) of irinotecan in patients with UGT1A1 polymorphisms. Patients who had received chemotherapy other than irinotecan for metastatic gastrointestinal cancer were enrolled. Patients were divided into three groups according to UGT1A1 genotypes: wild-type (*1/*1); heterozygous (*28/*1, *6/*1); or homozygous (*28/*28, *6/*6, *28/*6). Irinotecan was given every 2 weeks for two cycles. The wild-type group received a fixed dose of irinotecan (150 mg/m(2)) to serve as a reference. The MTD was guided from 75 to 150 mg/m(2) by the continual reassessment method in the heterozygous and homozygous groups. Dose-limiting toxicity (DLT) and pharmacokinetics were evaluated during cycle 1. Of 82 patients enrolled, DLT was assessable in 79 patients (wild-type, 40; heterozygous, 20; and homozygous, 19). Dose-limiting toxicity occurred in one patient in the wild-type group, none in the heterozygous group, and six patients (grade 4 neutropenia) in the homozygous group. In the homozygous group, the MTD was 150 mg/m(2) and the probability of DLT was 37.4%. The second cycle was delayed because of neutropenia in 56.3% of the patients given the MTD. The AUC(0-24 h) of SN-38 was significantly greater (P < 0.001) and more widely distributed in the homozygous group. Patients homozygous for the UGT1A1*28 or UGT1A1*6 allele can receive irinotecan in a starting dose of 150 mg/m(2), but many required dose reductions or delayed treatment in subsequent cycles. UMIN Clinical Trial Registration number: UMIN000000618.  相似文献   

17.

Purpose

This study examined the pharmacokinetics of irinotecan (CPT-11), active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38), SN-38 glucuronide (SN-38G) amrubicin (AMR), and active metabolite amrubicinol (AMR-OH) after intravenous administration of this combination therapy in rats.

Methods

Male Sprague-Dawley rats were treated with 10 mg/kg CPT-11 with 10 mg/kg AMR. AMR, AMR-OH, CPT-11, SN-38 and SN-38G were measured in plasma, bile, and tissues using high-performance liquid chromatography.

Results

Co-administration of CPT-11 resulted in a significant decrease in plasma concentrations and area under the curves (AUC) of AMR-OH compared with treatment with AMR alone. On the other hand, co-administration of AMR resulted in a slight increase in the initial plasma concentration of SN-38; however, there were no differences in AUC values in CPT-11 and SN-38. The cumulative biliary excretion curves of AMR, CPT-11, and their active metabolites were not changed. CPT-11 inhibited the conversion of AMR to AMR-OH in rat cytosolic fractions.

Conclusions

CPT-11 did not affect the pharmacokinetic of AMR but decreased the plasma concentration of AMR-OH and might affect the formation of AMR-OH from AMR in hepatocytes.  相似文献   

18.

Purpose

Inhibition of the UDP-glucuronosyltransferase (UGT) 1A1 by nilotinib was examined in vitro with SN-38 as a substrate, to estimate the possibility of drug–drug interaction of nilotinib with other medicines predominantly detoxified by UGT1A1.

Methods

Inhibition of UGT1A1-catalyzed SN-38 glucuronidation by nilotinib was examined with human liver microsomes (HLM) and recombinant human UGT1A1 as enzyme sources. Inhibition constants (K i) were estimated with kinetic analysis.

Results

Nilotinib potently inhibited the SN-38 glucuronidation by human liver microsomal UGT1A1 and recombinant UGT1A1 in a noncompetitive manner, with K i values of 0.286 ± 0.0094 and 0.079 ± 0.0029 μM, respectively. If a drug that serves as a substrate of UGT1A1 is administered with nilotinib, the area under the plasma concentration–time curve of a drug estimated by using these K i values would be two times or higher than that without nilotinib, suggesting drug–drug interactions involving UGT1A1. These in vitro data and the prediction of drug–drug interaction are helpful for the clinical management of the nilotinib use.

Conclusion

We found that nilotinib is a potent noncompetitive inhibitor of human UGT1A1 activity.  相似文献   

19.

Purpose

Neutropenia is a life-threatening side effect of irinotecan, and uridine diphosphate glucuronosyltransferases (UGTs) gene polymorphisms are considered to be one of the predictive markers of irinotecan-related toxicities. Many studies have demonstrated that patients bearing UGT1A1*28 have a higher risk of severe neutropenia on toxicity of irinotecan. However, UGT1A1 (TA7/TA7) was very rare in Asian populations. Some researches reported that UGT1A1*28 and/or UGT1A1*6 could predict irinotecan-induced toxicities in Asian populations, but controversial conclusions still remained. This study aims to investigate the association between UGT1A1 gene polymorphisms *6, *6/*28 and irinotecan-related neutropenia in Asian cancer patients receiving irinotecan regimen chemotherapy.

Experimental design

Meta-analyses were done to assess the relationship between UGT1A1*6 or UGT1A1*6/*28 and irinotecan-induced neutropenia.

Results

The risk of neutropenia was significantly higher among patients with a UGT1A1*6 genotype than among those carrying the UGT1A1*1 allele(s) [odds ratio (OR) 3.276; 95 % confidence interval (CI) 1.887–5.688; P = 0.000 (*6/*6 vs. *1/*6 or *1/*1)], [OR 1.542; 95 % CI 1.180–2.041; P = 0.001 (*6/*6 or *1/*6 vs. *1/*1)]. Also, the risk was significantly higher among patients with a UGT1A1*6/*28 than among those carrying the UGT1A1*1 allele(s) [OR 3.275; 95 % CI 2.152–4.983; P = 0.000 (*6/*6 or *28/*28 or *6/*28 vs. *1/*6 or *1/*28 or *1/*1)].

Conclusions

In conclusion, the UGT1A1*6 and UGT1A1*6/*28 genotypes were associated with an increased risk of irinotecan-induced neutropenia in Asian cancer patients.  相似文献   

20.
Irinotecan unexpectedly causes severe toxicity of leukopenia or diarrhea. Irinotecan is metabolized to form active SN-38, which is further conjugated and detoxified by UDP-glucuronosyltransferase (UGT) 1A1 enzyme. Genetic polymorphisms of the UGT1A1 would affect an interindividual variation of the toxicity by irinotecan via the alternation of bioavailability of SN-38. In this case-control study, retrospective review of clinical records and determination of UGT1A1 polymorphisms were performed to investigate whether a patient with the variant UGT1A1 genotypes would be at higher risk for severe toxicity by irinotecan. All patients previously received irinotecan against cancer in university hospitals, cancer centers, or large urban hospitals in Japan. We identified 26 patients who experienced severe toxicity and 92 patients who did not. The relationship was studied between the multiple variant genotypes (UGT1A1*28 in the promoter and UGT1A1*6, UGT1A1*27, UGT1A1*29, and UGT1A1*7 in the coding region) and the severe toxicity of grade 4 leukopenia (< or =0.9 x 10(9)/liter) and/or grade 3 (watery for 5 days or more) or grade 4 (hemorrhagic or dehydration) diarrhea. Of the 26 patients with the severe toxicity, the genotypes of UGT1A1*28 were homozygous in 4 (15%) and heterozygous in 8 (31%), whereas 3 (3%) homozygous and 10 (11%) heterozygous were found among the 92 patients without the severe toxicity. Multivariate analysis suggested that the genotype either heterozygous or homozygous for UGT1A1*28 would be a significant risk factor for severe toxicity by irinotecan (P < 0.001; odds ratio, 7.23; 95% confidence interval, 2.52-22.3). All 3 patients heterozygous for UGT1A1*27 encountered severe toxicity. No statistical association of UGT1A1*6 with the occurrence of severe toxicity was observed. None had UGT1A1*29 or UGT1A1*7. We suggest that determination of the UGT1A1 genotypes might be clinically useful for predicting severe toxicity by irinotecan in cancer patients. This research warrants a prospective trial to corroborate the usefulness of gene diagnosis of UGT1A1 polymorphisms prior tb irinotecan chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号