首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human prion diseases are fatal neurodegenerative maladies that may present as sporadic, genetic, or infectious illnesses. The sporadic form is called Creutzfeldt-Jakob disease (CJD) while the inherited disorders are called familial (f) CJD, Gerstmann-Sträussler-Scheinker (GSS) disease and fatal familial insomnia (FFI). Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc).The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high β-sheet content. In fCJD, GSS, and FFI, mutations in the PrP gene located on the short arm of chromosome 20 are the cause of disease. Considerable evidence argues that the prion diseases are disorders of protein conformation.  相似文献   

2.
Cerebral and cardiac amyloid deposits have been reported after scrapie infection in transgenic mice expressing variant prion protein (PrP(C)) lacking the glycophosphatidylinositol anchor. The amyloid fibril protein in the systemic amyloid deposits was not characterized, and there is no clinical or pathological association between prion diseases and systemic amyloidosis in humans. Nevertheless, in view of the potential clinical significance of these murine observations, we tested both human amyloidotic tissues and isolated amyloid fibrils for the presence of PrP(Sc), the prion protein conformation associated with transmissible spongiform encephalopathy (TSE). We also sequenced the complete prion protein gene, PRNP, in amyloidosis patients. No specific immunohistochemical staining for PrP(Sc) was obtained in the amyloidotic cardiac and other visceral tissues of patients with different types of systemic amyloidosis. No protease-resistant prion protein, PrP(res), was detectable by Western blotting of amyloid fibrils isolated from cardiac and other systemic amyloid deposits. Only the complete normal wild-type PRNP gene sequence was identified, including the usual distribution of codon 129 polymorphisms. These reassuringly negative results do not support the idea that there is any relationship of prions or TSE with human systemic amyloidosis, including cardiac amyloid deposition.  相似文献   

3.
Prion Protein Transgenes and the Neuropathology in Prion Diseases   总被引:2,自引:0,他引:2  
The concept that prions are novel pathogens which are different from both viroids and viruses has received increasing support from many avenues of investigation over the past decade. Enriching fractions from Syrian hamster (SHa) brain for scrapie prion infectivity led to the discovery of the prion protein (PrP). Prion diseases of animals include scrapie and “mad cow” disease; those of humans present as inherited, sporadic and infectious neurodegenerative disorders, two of which are called Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). The inherited human prion diseases are genetically linked to mutations in the PrP gene that result in non-conservative amino acid substitutions. Transgenic (Tg) mice expressing PrP carrying a GSS mutation developed neurodegeneration spontaneously and produced prions de novo. In other studies, Tg mice expressing both SHa and mouse (Mo) PrP genes were used to demonstrate that the “species barrier” for scrapie prions resides in the primary structure of PrP. This concept was strengthened by the results of studies in which mice expressing chimeric Mo/human (Hu) PrP transgenes were constructed which differ from MoPrP by nine amino acids between residues 96 and 167. All of the Tg(MHu2M) mice developed neurologic disease ~200 days after inoculation with brain homogenate from three patients who died of CJD. About 10% of Tg(HuPrP) mice expressing HuPrP and non-Tg mice developed neurologic disease >500 days after inoculation with CJD prions. The different susceptibilities of Tg(HuPrP) and Tg(MHu2M) mice to human prions indicate that additional species specific factors such as chaperone proteins are involved in prion replication. Diagnosis, prevention and treatment of human prion diseases should be facilitated by study of Tg(MHu2M) mice. Our findings and those from other studies suggest that mutant and wtPrP interact, perhaps through a chaperone-like protein, during the pathogenesis of the prion diseases.  相似文献   

4.
The prion diseases are fatal neurodegenerative disorders that afflict both humans and animals. They comprise kuru, Creutzfeldt-Jakob disease (CJD), Gerstmman-Straussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). Both GSS, FFI and approximately 10% of CJD cases are genetically linked disorders, whereas 90% of CJD cases are not associated with mutations in the PRNP coding region, therefore other factors must be involved in pathogenesis of these forms of CJD. There is strong evidence that in transgenic mice the level of PrP gene expression influences the initiation and progression of the prion diseases. Moreover, in in vitro experiments demonstrated that mutations in the regulatory region of PRNP gene altered gene expression, therefore it may be expected that PrP expression level influences the susceptibility to CJD. In order to investigate whether single nucleotide polymorphisms within regulatory region of PRNP may modulate genetic susceptibility to sporadic CJD we examined an association of the C/G polymorphism at position -101 with the sCJD. In our study -101G polymorphism is over-represented among sCJD PRNP codon 129M/V cases compared with the control group. Our data suggest that polymorphism at position -101 in the regulatory region of PRNP may be a risk factor for sCJD among codon 129 heterozygotes.  相似文献   

5.
Human prion disorders include Kuru, Creutzfeld-Jakob disease (CJD), Gerstman-Straussler-Scheinkler syndrome (GSS), fatal familial insomnia (FFI) and prion protein cerebral amyloid angiopathy (PrPCAA). Prion diseases manifest as infections, genetic and sporadic disorders. In these diseases an abnormal form of the host's protein, prion protein protease-resistant (PrPres), is essential for pathogenic process. Host protein, prion protein protease-sensitive (PrPsen) in humans is encoded by a single copy gene (PRNP) located in the short arm of chromosome 20. To date, 19 different mutations in PRNP have been found that cause inherited prion disease. In these diseases PrPsen undergoes conformational changes involving a shift from alpha-helix to beta-sheet structures. This conversion is important for PrP-amyloidogenesis which occurs to the highest degree in GSS, while it is less frequently seen in other prion diseases. Pathomorphologically, amyloidogenesis in the brain is characterized by formation of PrPres conglomerates, diffuse homogeneous deposits and pleomorphic fibrillar amyloid plaques. The neurotoxic activity of PrPres and its fragments supports the causal relationship between PrPres deposits and neuropathological events in prion diseases. Congo-red and certain sulfated glycans potently inhibit PrPres formation. This raises the potential of therapeutic strategies for the treatment of these diseases.  相似文献   

6.
Gerstmann-Str?ussler-Scheinker disease (GSS) is characterized by the accumulation of proteinase K (PK)-resistant prion protein fragments (PrP(sc)) of approximately 7 to 15 kd in the brain. Purified GSS amyloid is composed primarily of approximately 7-kd PrP peptides, whose N terminus corresponds to residues W(81) and G(88) to G(90) in patients with the A117V mutation and to residue W(81) in patients with the F198S mutation. The aim of this study was to characterize PrP in brain extracts, microsomal preparations, and purified fractions from A117V patients and to determine the N terminus of PrP(sc) species in both GSS A117V and F198S. In all GSS A117V patients, the approximately 7-kd PrP(sc) fragment isolated from nondigested and PK-digested samples had the major N terminus at residue G(88) and G(90), respectively. Conversely, in all patients with GSS F198S, an approximately 8-kd PrP(sc) fragment was isolated having the major N terminus start at residue G(74). It is possible that a further degradation of this fragment generates the amyloid subunit starting at W(81). The finding that patients with GSS A117V and F198S accumulate PrP(sc) fragments of different size and N-terminal sequence, suggests that these mutations generate two distinct PrP conformers.  相似文献   

7.
Gerstmann-Sträussler-Scheinker disease is an autosomal dominant disorder with a wide spectrum of clinical presentations including ataxia, spastic paraparesis, extrapyramidal signs, and dementia. The patients present with symptoms in the third to sixth decade of life and the mean duration of illness is five years. Mutations at codons 102, 105, 117, 145, 198 and 217 of the open reading frame of the prion protein gene have been associated with GSS disease. As a result of the mutations, a substitution at the corresponding residues of the prion protein occurs, or as in the case of the STOP mutation at codon 145, a truncated protein is produced. Neuropathologically, the common denominator is a cerebral prion protein amyloidosis; however, there is significant variability in the pattern of amyloid deposition in regions of the central nervous system among reported families. Amyloidosis coexists with severe spongiform degeneration in patients with the mutation at codon 102, and with neurofibrillary degeneration in the patients with mutation at codons 145, 198 and 217. The development of a transmissible spongiform encephalopathy in animals inoculated with brain tissue from affected subjects with mutation at codon 102 suggests that in some formsofgenetically-determined Gerstmann-Sträussler-Scheinker disease, and particularly those characterized by severe spongiosis, amyloidogenesis and production of an infectious "agent" occur concomitantly via mechanisms that are only partially understood.  相似文献   

8.
Gerstmann‐Sträussler‐Scheinker syndrome (GSS) is a dominantly inherited disorder belonging to the group of transmissible human spongiform encephalopathies or prion diseases. Several families affected by GSS with patients carrying mutations in the prion protein gene have been described worldwide. We report clinical, genealogical, neuropathology and molecular study results from two members of the first Argentine kindred affected by GSS. Both family members presented a frontotemporal‐like syndrome, one with and the other without ataxia, with different lesions on neuropathology. A Pro to Leu point mutation at codon 102 (P102L) of the prion protein gene was detected in one of the subjects studied. The pathogenic basis of phenotypic variability observed in this family remains unclear, but resembles that observed in other P102L GSS patients from the same family.  相似文献   

9.
Although the key event in the pathology of prion diseases is thought to be the conversion of cellular prion protein (PrP(C)) to the protease-resistant scrapie species termed PrP(Sc), the factors that contribute to neurodegeneration in scrapie-infected animals are poorly understood. One probable determinant could be when the accumulation of PrP(Sc) in infected brain overwhelms the ubiquitin-proteasome system and triggers the degenerative cascade. In the present study, it was found that in mouse brains infected with the ME7 scrapie strain, the level of ubiquitin protein conjugates increased significantly at approximately 144 days post-infection (pi) when clinical signs first become apparent. This elevation correlated with the detection of protease-resistant PrP(Sc) and a decline in two endopeptidase activities associated with proteasome function. However, ubiquitination of PrP was only detected at the terminal stage, 3 weeks after the development of clinical symptoms (approximately 165 days pi). These results suggest that ubiquitination of PrP is a late event phenomenon and this conjugation occurs after the formation of protease-resistant PrP(Sc). Whether this post-translational modification and the impairment of proteasome function are pivotal events in the pathogenesis of prion diseases remains to be determined.  相似文献   

10.
Prion protein can display two conformations: a normal cellular conformation (PrP) and a pathological conformation associated with prion diseases (PrPSc). Three complementary strategies are used by researchers investigating how PrP is involved in the pathogenesis of prion diseases: elucidation of the normal function of PrP, determination of how PrPSc is toxic to neurons, and unraveling the mechanism for the conversion of PrP to PrPSc. We review the normal function of PrP as an antioxidant and an antiapoptotic protein in vivo and in vitro. This review also addresses contrasting evidence that PrP is cytotoxic. Finally, we discuss the implication of the neuroprotective role of PrP in prion diseases.  相似文献   

11.
Alzheimer's disease and prion diseases are neuropathological disorders that are caused by abnormal processing and aggregation of amyloid and prion proteins. Interactions between amyloid precursor protein (APP) and PrPc proteins have been described at the neuron level. Accordingly to this putative interaction, we investigated whether β-amyloid accumulation may affect prion infectivity and, conversely, whether different amounts of PrP may affect β-amyloid accumulation. For this purpose, we used the APPswe/PS1dE9 mouse line, a common model of Alzheimer's disease, crossed with mice that either overexpress (Tga20) or that lack prion protein (knock-out) to generate mice that express varying amounts of prion protein and deposit β-amyloid. On these mouse lines, we investigated the influence of each protein on the evolution of both diseases. Our results indicated that although the presence of APP/PS1 and β-amyloid accumulation had no effect on prion infectivity, the accumulation of β-amyloid deposits was dependent on PrPc, whereby increasing levels of prion protein were accompanied by a significant increase in β-amyloid aggregation associated with aging.  相似文献   

12.
Jeong JK  Seo JS  Moon MH  Lee YJ  Seol JW  Park SY 《Neurobiology of aging》2012,33(5):1006.e1-1006.10
The human prion protein fragment, PrP (106-126), may contain a majority of the pathological features associated with the infectious scrapie isoform of PrP, known as PrP(Sc). Based on our previous findings that hypoxia protects neuronal cells from PrP (106-126)-induced apoptosis and increases cellular prion protein (PrP(C)) expression, we hypothesized that hypoxia-related genes, including hypoxia-inducible factor-1 alpha (HIF-1α), may regulate PrP(C) expression and that these genes may be involved in prion-related neurodegenerative diseases. Hypoxic conditions are known to elicit cellular responses designed to improve cell survival through adaptive processes. Under normoxic conditions, a deferoxamine-mediated elevation of HIF-1α produced the same effect as hypoxia-inhibited neuron cell death. However, under hypoxic conditions, doxorubicin-suppressed HIF-1α attenuated the inhibitory effect on neuron cell death mediated by PrP (106-126). Knock-down of HIF-1α using lentiviral short hairpin (sh) RNA-induced downregulation of PrP(C) mRNA and protein expression under hypoxic conditions, and sensitized neuron cells to prion peptide-mediated cell death even in hypoxic conditions. In PrP(C) knockout hippocampal neuron cells, hypoxia increased the HIF-1α protein but the cells did not display the inhibitory effect of prion peptide-induced neuron cell death. Adenoviruses expressing the full length Prnp gene (Ad-Prnp) were utilized for overexpression of the Prnp gene in PrP(C) knockout hippocampal neuron cells. Adenoviral transfection of PrP(C) knockout cells with Prnp resulted in the inhibition of prion peptide-mediated cell death in these cells. This is the first report demonstrating that expression of normal PrP(C) is regulated by HIF-1α, and PrP(C) overexpression induced by hypoxia plays a pivotal role in hypoxic inhibition of prion peptide-induced neuron cell death. These results suggest that hypoxia-related genes, including HIF-1α, may be involved in the pathogenesis of prion-related diseases and as such may be a therapeutic target for prion-related neurodegenerative diseases.  相似文献   

13.
In an immunohistochemical study of naturally-occurring and experimental scrapie in sheep, deposits of cerebrovascular amyloid were found to react with antibodies to hamster scrapie prion protein (PrP 27-30), but not with antibodies to the amyloid beta-protein of Alzheimer's disease. It is concluded that this vascular amyloid is formed from PrP and is therefore closely associated with scrapie infection. It is likely that this amyloid is formed from a host precursor protein as a specific pathological consequence of invasion by the scrapie agent.  相似文献   

14.
Cerebral accumulation of hyperphosphorylated tau (phospho-tau) occurs in several neurodegenerative conditions including Alzheimer disease. In prion diseases, phospho-tau deposition has been described in a rare genetic form, Gerstmann-Sträussler-Scheinker disease, but is not considered part of the neuropathological picture of Creutzfeldt-Jakob disease. Aim of this study was to investigate whether changes related to phospho-tau accumulation are present in the brain of patients with variant Creutzfeldt-Jakob disease (vCJD) that shares with Gerstmann-Sträussler-Scheinker disease abundant prion protein (PrP) deposition in amyloid form. The analysis was extended to experimental mouse models of vCJD. We detected a large number of phospho-tau-immunoreactive neuritic profiles, often clustered around PrP amyloid deposits, not only in the cerebral cortex, but also in the cerebellum of all vCJD patients examined, in the absence of Aβ. Although less constantly, phospho-tau was localized in some perikaria and dendrites. The biochemical counterpart was the presence of phospho-tau in the detergent-insoluble fraction of cerebral cortex. Phospho-tau-immunoreactive neuronal profiles were also found in association with PrP deposits in mouse models of vCJD. These findings suggest that the abnormal forms of PrP associated with vCJD trigger a tauopathy, and provide a paradigm for the early stages of tau pathology associated with cerebral amyloidoses, including Alzheimer disease.  相似文献   

15.
The classical prion diseases (e.g. scrapie of sheep and goats and bovine spongiform encephalopathy of cattle) are characterized by the accumulation of abnormal forms of the prion protein (PrP), usually recognized by their relative resistance to proteolysis compared with the physiological cellular forms of PrP. However, novel prion diseases have been detected in sheep, cattle and man, in which the abnormal PrP has less resistance to proteolysis than identified previously. These more subtle differences between abnormal and normal forms of PrP can be problematic in routine diagnostic tests and raise questions in respect of the range of PrP disorders. Abnormal accumulations of PrP in atypical and classical prion diseases can be recognized by immunohistochemistry. To determine whether altered PrP expression or trafficking might occur in nosological entities not previously connected with prion disease, the brains of sheep affected with diverse neurological conditions were examined for evidence of altered PrP labelling. Such altered immunolabelling was detected in association with either basic lesions or specific diseases. Some reactive glial cells and degenerate neurons found in several different recognized disorders and non-specific inflammatory processes were associated with abnormal PrP labelling, which was absent from brains of healthy, age-matched sheep. The results agree with previous indications that normal PrP function may be linked with the oxidative stress response, but the data also suggest that PrP functions are more extensive than simple protective responses against stress insults.  相似文献   

16.
The hallmark of prion diseases is the cerebral accumulation of a conformationally altered isoform (PrP(Sc)) of a normal cellular protein, the prion protein (PrP(C)). In the inherited form, mutations in the prion protein gene are thought to cause the disease by altering the metabolism of the mutant PrP (PrP(M)) engendering its conversion into PrP(Sc). We used a cell model to study biosynthesis and processing of PrP(M) carrying the glutamic acid to lysine substitution at residue 200 (E200K), which is linked to the most common inherited human prion disease. PrP(M) contained an aberrant glycan at residue 197 and generated an increased quantity of truncated fragments. In addition, PrP(M) showed impaired transport of the unglycosylated isoform to the cell surface. Similar changes were found in the PrP isolated from brains of patients affected by the E200K variant of Creutzfeldt-Jakob disease. Although the cellular PrP(M) displayed some characteristics of PrP(Sc), the PrP(Sc) found in the E200K brains was quantitatively and qualitatively different. We propose that the E200K mutation cause the same metabolic changes of PrP(M) in the cell model and in the brain. However, in the brain, PrP(M) undergoes additional modifications, by an age-dependent mechanism that leads to the formation of PrP(Sc) and the development of the disease.  相似文献   

17.
BACKGROUND. We previously described two members of a family affected by an apparently genetically determined fatal disease characterized clinically by progressive insomnia, dysautonomia, and motor signs and characterized pathologically by severe atrophy of the anterior ventral and mediodorsal thalamic nuclei. Five other family members who died of this disease, which we termed "fatal familial insomnia," had broader neuropathologic changes suggesting that fatal familial insomnia could be a prion disease. METHODS. We used antibodies to prion protein (PrP) to perform dot and Western blot analyses, with and without proteinase K, on brain tissue obtained at autopsy from two patients with fatal familial insomnia, three patients with sporadic Creutzfeldt-Jakob disease, and six control subjects. The coding region of the PrP gene was amplified and sequenced in the samples from the two patients with fatal familial insomnia. Restriction-enzyme analysis was carried out with amplified PrP DNA from 33 members of the kindred. RESULTS. Protease-resistant PrP was found in both patients with fatal familial insomnia, but the size and number of protease-resistant fragments differed from those in Creutzfeldt-Jakob disease. In the family with fatal familial insomnia, all 4 affected members and 11 of the 29 unaffected members had a point mutation in PrP codon 178 that results in the substitution of asparagine for aspartic acid and elimination of the Tth111 I restriction site. Linkage analysis showed a close relation between the point mutation and the disease (maximal lod score, 3.4 when theta was zero). CONCLUSIONS. Fatal familial insomnia is a prion disease with a mutation in codon 178 of the PrP gene, but the disease phenotype seems to differ from that of previously described kindreds with the same point mutation.  相似文献   

18.
C1q binds to many non-self and altered-self-materials. These include microorganisms, immune complexes, apoptotic and necrotic cells and their breakdown products, and amyloids. C1q binding to amyloid fibrils found as extracellular deposits in tissues, and subsequent complement activation are involved in the pathology of several amyloid diseases, such as Alzheimer's disease. Prion diseases, such as scrapie also involve formation of amyloid by polymerization of the host prion protein (PrP). Complement activation is likely to contribute to neuronal damage in the end stages of prion diseases, but is also thought to participate in the initial infection, dissemination and replication stages. Infectious prion particles are likely to bind C1q and activate the complement system. Bound complement proteins may then influence the uptake and transport of prion particles by dendritic cells (DCs) and their subsequent proliferation at sites such as follicular DCs.  相似文献   

19.
Prion diseases are fatal neurodegenerative diseases of humans and animals which, in addition to sporadic and familial modes of manifestation, can be acquired via an infectious route of propagation. In disease, the prion protein (PrP(C)) undergoes a structural transition to its disease-causing form (PrP(Sc)) with profoundly different physicochemical properties. Surprisingly, despite intense interest in the prion protein, its function in the context of other cellular activities has largely remained elusive. We recently employed quantitative mass spectrometry to characterize the interactome of the prion protein in a murine neuroblastoma cell line (N2a), an established cell model for prion replication. Extensive bioinformatic analyses subsequently established an evolutionary link between the prion gene family and the family of ZIP (Zrt-, Irt-like protein) metal ion transporters. More specifically, sequence alignments, structural threading data and multiple additional pieces of evidence placed a ZIP5/ZIP6/ZIP10-like ancestor gene at the root of the PrP gene family. In this review we examine the biology of prion proteins and ZIP transporters from the viewpoint of a shared phylogenetic origin. We summarize and compare available data that shed light on genetics, function, expression, signaling, post-translational modifications and metal binding preferences of PrP and ZIP family members. Finally, we explore data indicative of retropositional origins of the prion gene founder and discuss a possible function for the prion-like (PL) domain within ZIP transporters. While throughout the article emphasis is placed on ZIP proteins, the intent is to highlight connections between PrP and ZIP transporters and uncover promising directions for future research.  相似文献   

20.
Prion diseases: from protein to cell pathology   总被引:2,自引:0,他引:2       下载免费PDF全文
Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative conditions in humans and animals that originate spontaneously, genetically or by infection. Conformational change of the normal (cellular) form of prion protein (PrP c) to a pathological, disease-associated form (PrP TSE) is considered central to pathogenesis and formation of the infectious agent or prion. Neuronal damage is central to clinical manifestation of prion diseases but poorly understood. In this review, we analyze the major pathogenetic pathways that lead to tissue pathology in different forms of disease. Neuropathogenesis of prion diseases evolves in complex ways on several front lines, most but not all of which exist also in other neurodegenerative as well as infectious diseases. Whereas intracellular accumulation of PrP forms might significantly impair cell function and lead to cytopathology, mere extracellular deposition of PrP TSE is questionable as a direct cytotoxic factor. Tissue damage may result from several parallel, interacting, or subsequent pathways. Future studies should clarify the trigger(s) and sequence of these processes and whether, and which, one is dominating or decisive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号