首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic stellate cells (HSCs) interact with fibrillar collagen through the discoidin domain receptor 2 (DDR2) in acute hepatic injury, generating increased fibrosis. However, the contribution of DDR2 signaling to chronic liver fibrosis in vivo is unclear, despite its relevance to chronic human liver disease. We administered carbon tetrachloride (CCl(4)) to DDR2(+/+) and DDR2(-/-) mice twice weekly, and liver tissues and isolated HSCs were analyzed. In contrast to changes seen in acute injury, after chronic CCl(4) administration, DDR2(-/-) livers had increased collagen deposition, gelatinolytic activity, and HSC density. Increased basal gene expression of osteopontin, transforming growth factor-β1, monocyte chemoattractant protein-1, and IL-10 and reduced basal gene expression of matrix metalloproteinase-2, matrix metalloproteinase-13, and collagen type I in quiescent DDR2(-/-) HSCs were amplified further after chronic CCl(4). In concordance, DDR2(-/-) HSCs isolated from chronically injured livers had enhanced in vitro migration and proliferation, but less extracellular matrix degradative activity. Macrophages from chronic CCl(4)-treated DDR2(-/-) livers showed stronger chemoattractive activity toward DDR2(-/-) HSCs than DDR2(+/+) macrophages, increased extracellular matrix degradation, and higher cytokine mRNA expression. In conclusion, loss of DDR2 promotes chronic liver fibrosis after CCl(4) injury. The fibrogenic sinusoidal milieu generated in chronic DDR2(-/-) livers recruits more HSCs to injured regions, which enhances fibrosis. Together, these findings suggest that DDR2 normally orchestrates gene programs and paracrine interactions between HSCs and macrophages that together attenuate chronic hepatic fibrosis.  相似文献   

2.
Objectives: Activation of hepatic stellate cells (HSCs) into collagen producing myofibroblasts is critical for pathogenesis of liver fibrosis. Transforming growth factor-β1 (TGF-β1) is one of the main profibrogenic mediators for HSC transdifferentiation. Recent studies have shown effect of microRNAs (miRNAs) on regulating TGF-β1-induced HSC activation during liver fibrosis. Here, we aimed to explore the roles of miR-144 and miR-200c in human liver fibrosis. Methods: Expression of TGF-β1 was detected in 42 fibrotic and 18 normal human liver tissues by quantitative real time polymerase chain reaction (qRT-PCR) and immunohistochemistry, and its correlation with α-smooth muscle actin (α-SMA) was calculated. miR-144 and miR-200c expression level in fibrotic liver tissues were also detected by qRT-PCR. The correlation of TGF-β1 expression with miR-200c and miR-144 in the fibrotic liver was analyzed. Results: The results showed that TGF-β1 expression was much higher in fibrotic liver than that in normal liver tissues (P<0.05). TGF-β1 protein high expressing liver fibrosis showed α-SMA positive cells in the liver parenchyma indicating activated HSCs. Expression of TGF-β1 in fibrotic liver was significantly correlated with α-SMA expression (R=0.633, P<0.001). Furthermore, miR-144 was less expressed in liver fibrosis (P<0.05) and was significantly correlated with expression of TGF-β1 in fibrotic liver tissues (R=-0.442, P<0.01). However, miR-200c did not show significant difference between normal and fibrotic liver (P=0.48) and correlation with TGF-β1 expression (R=0.106, P=0.51). Conclusion: All the results indicate that miR-144 can be a novel regulator of TGF-β1-induced HSC activation during liver fibrosis.  相似文献   

3.
4.
Hepatocellular apoptosis, hepatic inflammation, and fibrosis are prominent features in chronic liver diseases. However, the linkage among these processes remains mechanistically unclear. In this study, we examined the apoptosis and activation of Kupffer cells (KCs) as well as their pathophysiological involvement in liver fibrosis process. Hepatic fibrosis was induced in rats by dimethylnitrosamine (DMN) or carbon tetrachloride (CCl4) treatment. KCs were isolated from normal rats and incubated with lipopolysaccharide (LPS) or from fibrotic rats. The KCs were stained immunohistochemically with anti-CD68 antibody, a biomarker for KC. The level of expression of CD68 was analyzed by western blot and real-time PCR methods. The apoptosis and pathophysiological involvement of KCs in the formation of liver fibrosis were studied using confocal microscopy. The mRNA and protein expression of CD68 were significantly increased in DMN- and CCL4-treated rats. Confocal microscopy analysis showed that CD68-positive KCs, but not α-smooth muscle actin (SMA)-positive cells, underwent apoptosis in the liver of DMN- and CCL4-treated rats. It was also revealed that the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and CD68-double-positive apoptotic KCs located in the portal or fibrotic septa area were situated next to hepatic stellate cells (HSCs). Tumor necrosis factor-α (TNF-α) and KC co-localized in the liver in the neighbor of HSCs. The double α-SMA- and collagen type I-positive cells predominantly existed in fibrotic septa, and those cells were co-localized clearly with CD68-positive cells. Interestingly, some CD68 and Col (1) double positive, but completely negative for α-SMA, were found in the portal areas and hepatic sinusoids; this phenomenon was also validated in primary isolated KCs after 6 h LPS exposure or fibrotic rats in vitro. These results show that KCs are associated with hepatocellular apoptosis, inflammation, and fibrosis process in a liver fibrosis models.  相似文献   

5.
The progression of rat liver fibrosis induced by intraperitoneal administration of thioacetamide (TAA) was evaluated by immunocytochemistry using anti-α-smooth muscle actin (α-SMA), antiendothelin-converting enzyme (ECE)-1, and anti-monocyte chemotactic protein (MCP)-1 antibodies. The fibrous septal spaces gradually increased after administration of TAA, and pseudolobules were established in the 7-week TAA-treated groups. Immunoreactivities against α-SMA were not detected in hepatic stellate cells (HSCs) of the control group without TAA treatment, although they were observed in the HSCs around the fibrous septal spaces in all TAA-treated groups, indicating that activation of HSCs occurs during the establishment of pseudolobules. Immunoreactivities against ECE-1 and MCP-1 were seen in such HSCs of the TAA-treated groups, but few or no immunoreactivities were detected in the HSCs of the control group. The most significant increase in the ECE-1 immunoreactivities was detected in the 1-week TAA-treated group, whereas that in MCP-1 was observed in the 7-week TAA-treated group. The present immunocytochemistry indicated a difference in the accelerated expression period between immunoreactivities against ECE-1 and MCP-1 in the HSCs during the progression of TAA-induced liver fibrosis, suggesting that ECE-1 is involved in the early phase of liver fibrosis and that MCP-1 plays a role during the later phase.  相似文献   

6.
The aim of this study was elucidate the inhibitory role of growth differentiation factor 15 (GDF15) in liver fibrosis and its possible activation mechanism in hepatic stellate cells (HSCs) of mice. We generated a GDF15neutralizing antibody that can inhibit TGF1induced activation of the TGF/Smad2/3 pathway in LX2 cells. All the mice in this study were induced by carbon tetrachloride and thioacetamide. In addition, primary HSCs from mice were isolated from fresh livers using Nycodenz density gradient separation. The severity and extent of liver fibrosis were evaluated by Sirius Red and Masson staining. The effect of GDF15 on the activation of the TGF pathway was detected using dualluciferase reporter and Western blotting assays. The expression of GDF15 in cirrhotic liver tissue was higher than that in normal liver tissue. Blocking GDF15 with a neutralizing antibody resulted in a delay in primary hepatic stellate cell activation and remission of liver fibrosis induced by carbon tetrachloride or thioacetamide. Meanwhile, TGF pathway activation was partly inhibited by a GDF15neutralizing antibody in primary HSCs. These results indicated that GDF15 plays an important role in regulating HSC activation and liver fibrosis progression. The inhibition of GDF15 attenuates chemicalinducible liver fibrosis and delays hepatic stellate cell activation, and this effect is probably mainly attributed to its regulatory role in TGF signalling.  相似文献   

7.
Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular injury and initial fibrosis severity has been suggested as an important prognostic factor of NASH. Silymarin was reported to improve carbon tetrachloride-induced liver fibrosis and reduce the activation of hepatic stellate cells (HSC). We investigated whether silymarin could suppress the activation of HSCs in NASH induced by methionine- and choline-deficient (MCD) diet fed to insulin-resistant rats. NASH was induced by feeding MCD diet to obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were fed with standard chow and served as the control. OLETF rats were fed on either standard laboratory chow, or MCD diet or MCD diet mixed with silymarin. Histological analysis of the liver showed improved non-alcoholic fatty liver disease (NAFLD) activity score in silymarin-fed MCD-induced NASH. Silymarin reduced the activation of HSCs, evaluated by counting α-smooth muscle actin (SMA)-positive cells and measuring α-SMA mRNA expression in the liver lysates as well as in HSCs isolated from the experimental animals. Although silymarin decreased α(1)-procollagen mRNA expression in isolated HSCs, the anti-fibrogenic effect of silymarin was not prominent so as to show significant difference under histological analysis. Silymarin increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased tumor necrosis factor (TNF)-α mRNA expression in the liver. Our study suggested that the possible protective effect of silymarin in diet induced NASH by suppressing the activation of HSCs and disturbing the role of the inflammatory cytokine TNF-α.  相似文献   

8.
目的: 明确抗胰岛素样生长因子结合蛋白相关蛋白1(IGFBPrP1)抗体能否预防硫代乙酰胺(TAA)诱导的小鼠肝纤维化的形成,同时探讨其机制。方法: 将24只雄性C57BL/6野生型小鼠随机分为正常对照组、TAA 4周组和TAA+抗IGFBPrP1抗体4周组,每组8只,观察肝组织形态学改变,免疫组织化学染色和Western blotting检测肝组织中α-平滑肌肌动蛋白(α-SMA)、转化生长因子β1(TGF-β1)、Smad3、磷酸化Smad2/3(p-Smad2/3)、纤维连接蛋白(FN)、Ⅰ、Ⅲ型胶原(collagen Ⅰ、Ⅲ)及IGFBPrP1的表达。结果: TAA 4周组肝损伤严重,α-SMA、TGF-β1、Smad3、p-Smad2/3、FN、collagen Ⅰ、Ⅲ及IGFBPrP1的表达明显高于正常对照组(P<0.01),TAA+抗IGFBPrP1抗体4周组肝损伤减轻,上述各指标表达均低于TAA 4周组(P<0.01)。IGFBPrP1与TGF-β1、Smad3、p-Smad2/3 、FN及collagen Ⅰ的表达呈正相关(P<0.01)。结论: 抗IGFBPrP1抗体可预防TAA诱导的小鼠肝纤维化的形成,其机制为抑制肝星状细胞的活化和减少细胞核内p-Smad2/3的表达、抑制TGF-β1/Smad3信号通路,进而导致细胞外基质在肝组织中沉积减少。  相似文献   

9.
A key feature of recovery from liver fibrosis is hepatic stellate cell (HSC) apoptosis, which serves the dual function of removing the major source of neomatrix and tissue inhibitors of metalloproteinases thereby facilitating matrix degradation. The mechanisms regulating HSC apoptosis remain undefined but may include the interaction of nerve growth factor (NGF) with its receptor, p75, on HSC. In this study, by TaqMan polymerase chain reaction in situ hybridization and immunohistochemistry, we demonstrate that NGF is expressed by hepatocytes during fibrotic injury. Peak hepatocyte expression of NGF (48 hours after CCl(4) injection) coincides with maximal rate of apoptosis of HSC by terminal dUTP nick-end labeling staining. Addition of recombinant NGF to HSC in tissue culture causes a dose-dependent increase in apoptosis. NGF regulates nuclear factor (NF)-kappaB activity, reducing p50/p65 binding detected by electromobility shift assay and reduced NF-kappaB CAT reporter activities from both basal unstimulated levels and after NF-kappaB induction by tumor necrosis factor. In each case, a relative reduction in NF-kappaB binding was associated with a significant increase in caspase 3 activity. These data provide evidence that NGF is expressed during fibrotic liver injury and may regulate number of activated HSCs via induction of apoptosis.  相似文献   

10.
Mineralocorticoid receptor (MR) antagonist spironolactone (SPL) is an effective agent for prevention of cardiovascular injury. However, whether and how SPL ameliorates hepatic fibrosis in rats is unknown. Pig serum (PS) (0.5 mL, twice a week, ip) or vehicle-administered rats for 12 weeks were used as rats with hepatic fibrosis or control rats, respectively. Rats given PS were treated with SPL (50 mg/kg/day, sc) for 12 weeks. Hepatic fibrosis, using picro-sirius red staining and determination of hydroxyproline content, immunohistochemistries of alpha-smooth muscle actin (alpha-SMA)-positive hepatic stellate cells (HSCs), Na/H exchange isoform-1 (NHE-1) protein, CYP11B2 aldosterone synthase protein for liver tissues, and plasma aldosterone concentrations were compared among the 3 groups of rats. Rats given PS alone exhibited hepatic fibrosis as well as increases in the number of the alpha-SMA-positive HSCs and NHE-1 protein expression in HSCs and hepatocytes, all of which were suppressed by SPL. Rats given PS alone revealed increased CYP11B2 protein expression in HSCs and hepatocytes, which was not inhibited by SPL. Plasma aldosterone concentrations were significantly greater in rats given PS and SPL than in control rats and rats given PS alone, although they were not different between control rats and rats given PS alone. PS-induced hepatic fibrosis together with HSC activation and NHE-1 protein expression occurs via MRs, and SPL ameliorates hepatic fibrosis presumably via the inhibition of HSC activation and NHE-1 protein expression in PS-induced liver injuries. The aldosterone produced in the injured liver contributes to the PS-induced hepatic fibrosis.  相似文献   

11.
12.
TNF-alpha has pleiotropic functions, but its role in liver fibrosis has not yet been clarified. To understand the pathophysiologic role of the TNF-alpha/TNF receptor (TNFR) p55 signals in liver fibrosis, 10 mg/kg of dimethylnitrosamine, a specific hepatotoxicant, was administered twice a week into the peritoneal cavity of both TNFRp55 knock-out (KO) and wild-type mice, and the severity of fibrosis was monitored histologically and biochemically. In wild-type mice, histologic analysis demonstrated evident fibrotic changes 1 week after the initiation of dimethylnitrosamine administration, consistent with increased liver collagen contents. Concomitantly, the numbers of Kupffer cells and activated hepatic stellate cells (HSCs) were increased in liver tissue. On the contrary, fibrotic changes were attenuated and the numbers of Kupffer cells and HSCs were decreased in TNFRp55-KO mice. Moreover, gene expression of TNF-alpha and monocyte chemoattractant protein-1, which are involved in Kupffer cell activation or migration, was decreased in the liver of TNFRp55-KO mice. Collectively, TNFRp55-mediated signals may regulate activation of Kupffer cells and HSCs and eventually enhance fibrotic process.  相似文献   

13.
14.
Mice lacking aryl hydrocarbon (dioxin) receptor (AhR) had variable degree of hepatic fibrosis and altered liver architecture. Transforming growth factor-beta (TGF-beta), a major profibrogenic molecule in the liver, is localized to the extracellular matrix by its association to the latent TGF-beta-binding protein-1 (LTBP-1). Very recently, LTBP-1 has been shown to be negatively regulated by the AhR. Embryonic fibroblasts from AhR-null (AhR(-/-)) mice overexpress LTBP-1 and secrete four times more active TGF-beta than wild-type fibroblasts. To test whether TGF-beta and LTBP-1 overexpression colocalize within the fibrotic nodule of AhR(-/-) liver, we have characterized this hepatic portal fibrosis using collagen protein staining, immunohistochemistry and in situ hybridization. LTBP-1 mRNA and protein were overexpressed in the fibrotic region and colocalized with other indicators of fibrosis such as collagen and fibronectin and the fibroblast marker proteins alpha-actin and vimentin. TGF-beta protein also colocalized with fibrosis, although in contrast, TGF-beta mRNA expression, rather than restricted to the fibrotic compartment, was present throughout the hepatic parenchyma and exhibited similar levels in wild-type and AhR(-/-) mice. These results suggest that LTBP-1 targets TGF-beta to specific areas of the liver and that the AhR could be a negative regulator of liver fibrosis, possibly through the control of LTBP-1 and TGF-beta activities.  相似文献   

15.
Chemokines, such as CXCL10, promote hepatic inflammation in chronic or acute liver injury through recruitment of leukocytes to the liver parenchyma. The CXCL10 receptor CXCR3, which is expressed on a subset of leukocytes, plays an important part in Th1-dependent inflammatory responses. Here, we investigated the role of CXCL10 in chemically induced liver fibrosis. We used carbon tetrachloride (CCl(4)) to trigger chronic liver damage in wildtype C57BL/6 and CXCL10-deficient mice. Fibrosis severity was assessed by Sirius Red staining and intrahepatic leukocyte subsets were investigated by immunohistochemistry. We have further analyzed hepatic stellate cell (HSC) distribution and activation and investigated the effect of CXCL10 on HSC motility and proliferation. In order to demonstrate a possible therapeutic intervention strategy, we have examined the anti-fibrotic potential of a neutralizing anti-CXCL10 antibody. Upon CCl(4) administration, CXCL10-deficient mice showed massively reduced liver fibrosis, when compared to wildtype mice. CXCL10-deficient mice had less B- and T lymphocyte and dendritic cell infiltrations within the liver and the number and activity of HSCs was reduced. In contrast, natural killer (NK) cells were more abundant in CXCL10-deficient mice and granzyme B expression was increased in areas with high numbers of NK cells. Further detailed analysis revealed that HSCs express CXCR3, respond to CXCL10 and secrete CXCL10 when stimulated with IFNγ. Blockade of CXCL10 with a neutralizing antibody exhibited a significant anti-fibrotic effect. Our data suggest that CXCL10 is a pro-fibrotic factor, which participates in a crosstalk between hepatocytes, HSCs and immune cells. NK cells seem to play an important role in controlling HSC activity and fibrosis. CXCL10 blockade may constitute a possible therapeutic intervention for hepatic fibrosis.  相似文献   

16.
Recent functional research studies suggest an anti-fibrotic role for natural killer (NK) cells coupled with a profibrotic role for CD8 cells. However, the morphological cellular interplay between the different cell types is less clear. To investigate lymphocyte/hepatic stellate cell (HSC) interactions, hepatic fibrosis was induced by administering carbon tetrachloride (CCl4) intraperitoneally (i.p.) for 4 weeks in C57Bl/6 mice. Animals were killed at 0, 1, 2, 3 and 4 weeks. Liver sections were stained for Sirius red. Confocal microscopy was used to evaluate alpha smooth-muscle actin (alphaSMA) and lymphocyte subsets in liver sections. At weeks 0 and 4, liver protein extracts were assessed for alphaSMA by Western blotting and isolated liver lymphocytes as well as HSC were analysed by fluorescence activated cell sorter (FACS). Similar to the results obtained from classical Sirius red staining and alphaSMA blotting, analysis of liver sections by confocal microscopy revealed a marked and continuous accumulation of alphaSMA staining along sequential experimental check-points after administering CCl4. Although the number of all liver lymphocyte subsets increased following fibrosis induction, FACS analysis revealed an increase in the distribution of liver CD8 subsets and a decrease of CD4 T cells. Confocal microscopy showed a significant early appearance of CD8 and NK cells, and to a lesser extent CD4 T cells, appearing only from week 2. Lymphocytes were seen in proximity only to HSC, mainly in the periportal area and along fibrotic septa, suggesting a direct interaction. Notably, lymphocyte subsets were undetectable in naive liver sections. Freshly isolated HCS show high expression of major histocompatibility complex (MHC) class II and CD11c. In the animal model of hepatic fibrosis, lymphocytes infiltrate into the liver parenchyma and it is thought that they attach directly to activated HSC. Because HSCs express CD11c/class II molecules, interactions involving them might reflect that HSCs have an antigen-presenting capacity.  相似文献   

17.
Hepatic stellate cells (HSCs), which can express glial fibrillary acidic protein (GFAP) in normal rat livers, play important roles in hepatic fibrogenesis through the conversion into myofibroblasts (MFs). Cellular properties and possible derivation of GFAP-expressing MFs were investigated in thioacetamide (TAA)-induced rat liver injury and subsequent fibrosis. Seven-week-old male F344 rats were injected with TAA (300 mg/kg BW, once, intraperitoneally), and were examined on post single injection (PSI) days 1–10 by the single and double immunolabeling with MF and stem cell marker antibodies. After hepatocyte injury in the perivenular areas on PSI days 1 and 2, the fibrotic lesion consisting of MF developed at a peak on PSI day 3, and then recovered gradually by PSI day 10. MFs expressed GFAP, and also showed co-expressions such cytoskeletons (MF markers) as vimentin, desmin and α-SMA in varying degrees. Besides MFs co-expressing vimentin/desmin, desmin/α-SMA or α-SMA/vimentin, some GFAP positive MFs co-expressed with nestin or A3 (both, stem cell markers), and there were also MFs co-expressing nestin/A3. However, there were no GFAP positive MFs co-expressing RECA-1 (endothelial marker) or Thy-1 (immature mesenchymal cell marker). GFAP positive MFs showed the proliferating activity, but they did not undergo apoptosis. However, α-SMA positive MFs underwent apoptosis. These findings indicate that HSCs can proliferate and then convert into MFs with co-expressing various cytoskeletons for MF markers, and that the converted MFs may be derived partly from the stem cell lineage. Additionally, well-differentiated MFs expressing α-SMA may disappear by apoptosis for healing. These findings shed some light on the pathogenesis of chemically induced hepatic fibrosis.  相似文献   

18.
Hepatic stellate cells (HSCs) are key cellular components of hepatic wound healing and fibrosis. There is emerging evidence that the fibrogenic function of HSCs may be influenced by neurochemical and neurotrophic factors. This study addresses the potential for the serotonin (5-HT) system to influence HSC biology. Rat and human HSCs express the 5-HT1B, 5-HT1F 5-HT2A 5-HT2B, and 5-HT7 receptors, with expression of 5-HT1B 5-HT2A and 5-HT2B being induced on HSC activation. Induction of 5-HT2A and 5-HT2B was 106+/-39- and 52+/-8.5-fold that of quiescent cells, respectively. 5-HT2B was strongly associated with fibrotic tissue in diseased rat liver. Treatment of HSCs with 5-HT2 antagonists suppressed proliferation and elevated their rate of apoptosis; by contrast 5-HT was protective against nerve growth factor-induced apoptosis. 5-HT synergized with platelet-derived growth factor to stimulate increased HSC proliferation. HSCs were shown to express a functional serotonin transporter and to participate in both active uptake and release of 5-HT. We conclude that HSCs express key regulatory components of the 5-HT system enabling them to store and release 5-HT and to respond to the neurotransmitter in a profibrogenic manner. Antagonists that selectively target the 5-HT class of receptors may be exploited as antifibrotic drugs.  相似文献   

19.
The aim of this study was to elucidate the effect of bone morphogenetic protein-7 (BMP-7) on liver fibrosis induced by carbon tetrachloride (CCl4) in vivo and on the hepatic stellate cells (HSC) activation in vitro. In vivo, thirty male ICR mice were randomly allocated to three groups, the control group (n = 6), the CCl4 group (n = 18) and the BMP-7+CCl4 group (n = 6). The model of liver fibrosis was induced by intraperitoneal injection with CCl4 three times per week lasting for 12 weeks in CCl4 group and the BMP-7+CCl4 group. After 8 weeks injection with CCl4, mice were intraperitoneal injected with human recombinant BMP-7 in BMP-7+CCl4 group. Meanwhile, mice in the CCl4 group were only intraperitoneal injection with equal amount of saline. The degree of liver fibrosis was assessed by HE and Masson’s staining. PCR and western blot were used to detect mRNA and protein levels. In BMP-7+CCl4 group, serum levels of alanine aminotransferase (ALT) and aminotransferase (AST) were decreased and serum albumin (Alb) was increased. Meanwhile, the expressions of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) were down-regulated by BMP-7 intervention as compared to the CCl4 group (P < 0.05). Furthermore, BMP-7 also suppressed the expression of epidermal growth factor receptor (EGFR) and phosphorylated-epidermal growth factor receptor (pEGFR). HE and Masson stain showed that liver damage was alleviated in BMP-7+CCl4 group. In vitro study, expression of EGFR, TGF-β1 and α-SMA were down regulated by BMP-7 dose-dependently, indicating it might effect on suppression of HSC activation. Therefore, our data indicate BMP-7 was capable of inhibiting liver fibrosis and suppressing HSCs activation, and these effects might rely on its crosstalk with EGFR and TGF-β1. We suggest that BMP-7 may be a potential reagentfor the prevention and treatment of liver fibrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号