首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 :研究bikunin在实验性肾草酸钙结石大鼠肾组织的表达及意义。方法 :采用乙二醇和氯化铵诱导大鼠肾草酸钙结石模型形成 ,检测各组大鼠肾功能、肾组织Ca2 + 含量和草酸钙晶体沉积、尿生化指标 ,并用逆转录聚合酶链反应 (RT PCR)检测bikuninmRNA在肾组织的表达情况。结果 :模型组大鼠的血清Cr、BUN、肾Ca2 + 含量、2 4h尿Ca2 + 、草酸 (Ox)分泌量和肾组织bikuninmRNA的表达均明显高于正常组 (P <0 .0 5 )。结论 :高草酸尿和草酸钙结晶的沉积能促使大鼠肾脏通过合成更多的bikunin来抑制大鼠肾组织草酸钙晶体的形成。  相似文献   

2.
PURPOSE: To investigate the involvement of the inter-alpha inhibitor family of proteins in calcium oxalate stone formation we determined immunohistochemical distribution in the kidneys and excretion in the urine of these proteins in normal and hyperoxaluric rats. Various members of the family have been shown to inhibit the formation and retention of calcium oxalate crystals in the kidneys. MATERIALS AND METHODS: Hyperoxaluria was induced in male Sprague-Dawley rats by administering 0.75% ethylene glycol. The inter-alpha inhibitor family consists of inter-alpha inhibitor, pre-alpha inhibitor, the so-called heavy chains H1, H2 and H3, and the light chain bikunin. Antibodies against these molecules were used to localize various proteins in rat kidneys by immunohistochemical techniques. Urine was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis to determine the expression of various members of the inter-alpha inhibitor family. RESULTS: In normal kidneys staining for inter-alpha inhibitor and other members of the family was mostly limited to the proximal tubules and generally to their luminal contents. Eight weeks after the induction of hyperoxaluria various sections of renal tubules stained positive for inter-alpha inhibitor, bikunin and H3. Positive staining was observed in the tubular lumina as well as in the cytoplasm of epithelial cells. Crystal associated material was heavily stained. Western blot analysis recognized 7 protein bands in the urine. The urinary expression of H1, H3 and pre-alpha-inhibitor was significantly increased. CONCLUSIONS: Apparently hyperoxaluria and renal calcium oxalate crystal deposition result in the increased expression of crystallization inhibitors, such as inter-alpha-inhibitor related proteins, in the kidneys and urine. Results indicate that kidneys respond to nephrolithic challenges by producing proteins that inhibit crystal formation and retention.  相似文献   

3.
Osteopontin (OPN) expression is increased in kidneys of rats with ethylene glycol (EG) induced hyperoxaluria and calcium oxalate (CaOx) nephrolithiasis. The aim of this study is to clarify the effect of OPN knockdown by in vivo transfection of OPN siRNA on deposition of CaOx crystals in the kidneys. Hyperoxaluria was induced in 6-week-old male Sprague–Dawley rats by administering 1.5 % EG in drinking water for 2 weeks. Four groups of six rats each were studied: Group A, untreated animals (tap water); Group B, administering 1.5 % EG; Group C, 1.5 % EG with in vivo transfection of OPN siRNA; Group D, 1.5 % EG with in vivo transfection of negative control siRNA. OPN siRNA transfections were performed on day 1 and 8 by renal sub-capsular injection. Rats were killed at day 15 and kidneys were removed. Extent of crystal deposition was determined by measuring renal calcium concentrations and counting renal crystal deposits. OPN siRNA transfection resulted in significant reduction in expression of OPN mRNA as well as protein in group C compared to group B. Reduction in OPN expression was associated with significant decrease in crystal deposition in group C compared to group B. Specific suppression of OPN mRNA expression in kidneys of hyperoxaluric rats leads to a decrease in OPN production and simultaneously inhibits renal crystal deposition.  相似文献   

4.
Calcium nephrolithiasis is the most common form of renal stone disease, with calcium oxalate (CaOx) being the predominant constituent of renal stones. Current in vitro evidence implicates osteopontin (OPN) as one of several macromolecular inhibitors of urinary crystallization with potentially important actions at several stages of CaOx crystal formation and retention. To determine the importance of OPN in vivo, hyperoxaluria was induced in mice targeted for the deletion of the OPN gene together with wild-type control mice. Both groups were given 1% ethylene glycol, an oxalate precursor, in their drinking water for up to 4 wk. At 4 wk, OPN-deficient mice demonstrated significant intratubular deposits of CaOx crystals, whereas wild-type mice were completely unaffected. Retained crystals in tissue sections were positively identified as CaOx monohydrate by both polarized optical microscopy and x-ray powder diffraction analysis. Furthermore, hyperoxaluria in the OPN wild-type mice was associated with a significant 2- to 4-fold upregulation of renal OPN expression by immunocytochemistry, lending further support to a renoprotective role for OPN. These data indicate that OPN plays a critical renoprotective role in vivo as an inhibitor of CaOx crystal formation and retention in renal tubules.  相似文献   

5.
6.
Adhesion of calcium oxalate (CaOx) crystals to kidney cells may be a key event in the pathogenesis of kidney stones associated with marked hyperoxaluria. Previously, we found that 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), isolated from a traditional medicinal herb, reduced CaOx crystal adhesion to renal epithelial cells by acting on the cells as well as on the crystal surface. Here we used the ethylene glycol (EG)-mediated hyperoxaluric rat model and found evidence of oxidant stress as indicated by decreases in the activities of the renal antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, with increased kidney cell apoptosis and serum malondialdehyde levels, all evident by 21 days of EG treatment. These effects of hyperoxaluria were reversed by concurrent PGG treatment along with decreased urinary oxalate levels and CaOx supersaturation. Renal epithelial cell expression of the crystal binding molecule hyaluronan increased diffusely within 7 days of EG initiation, suggesting it is not a result of but precedes crystal deposition. Renal cell osteopontin (OPN) was also upregulated in EG-treated animals, and PGG significantly attenuated overexpression of both OPN and hyaluronan. Thus, our findings demonstrate that PGG reduces renal crystallization and oxidative renal cell injury, and may be a candidate chemopreventive agent for nephrolithiasis.  相似文献   

7.
He Y  Chen X  Yu Z  Wu D  Lv Y  Shi S  Zhu H 《Journal of nephrology》2004,17(1):34-42
BACKGROUND: Nephrolithiasis is a common disease with a high recurrence rate; however, calcium stone pathogenesis remains unknown because of complex multiple factors. Hypocitraturia induced by citrate transport disturbance is known to be involved in nephrolithiasis development. Sodium dicarboxylate cotransporter (NaDC) mediates citrate uptake from the renal proximal tubule. However, the role of NaDC in nephrolithiasis is unclear. This study aimed to investigate NaDC-1 expression in rat renal proximal tubule epithelial cells and its relationship with experimental nephrolithiasis. METHODS: Male Wastar rats were divided into control, ethylene glycol (EG)-treated and potassium citrate-treated groups. Calcium oxalate (CaOx) crystal deposition and histological changes in the kidneys were examined with anatomical and light microscopes. The plasma and urinary biochemical parameters, such as citrate, oxalate etc, were analyzed by routine biochemical methods. NaDC-1 mRNA expression in kidneys was determined by northern blot analysis, the change in NaDC-1 protein abundance was detected by immunohistochemistry. RESULTS: It was found that NaDC-1 expression and its mRNA significantly increased in the EG group when compared with controls. Increased NaDC-1 expression was associated with a decline in urinary citrate excretion. Potassium citrate administration could significantly down-regulate NaDC-1 expression and its mRNA, and elevate urinary citrate content alleviate renal pathological changes and reduce nephrolithiasis occurrence. CONCLUSION: Increased NaDC-1 expression on the renal proximal tubule epithelial cells could play an important role in nephrolithiasis development, suggesting it could be a therapeutic target for the treatment of nephrolithiasis.  相似文献   

8.
Hyperoxaluria leads to calcium oxalate (CaOx) crystallization and development of tubulointerstitial lesions in the kidneys. Treatment of hyperoxaluric rats with angiotensin II (Ang II) type I receptor blocker (ARB) reduces lesion formation. Because Ang II mediates osteopontin (OPN) synthesis, which is involved in both macrophage recruitment and CaOx crystallization, it was hypothesized that ARB acts via OPN. Hyperoxaluria was induced in 10-wk-old male Sprague-Dawley rats, and they were treated with ARB candesartan. At the end of 4 wk, kidneys were examined for crystal deposits, ED-1-positive cells, and expression of OPN mRNA. PCR was used to quantify OPN, renin, and angiotensin-converting enzyme (ACE) mRNA in kidneys. RIA was used to determine renal, plasma, and urinary OPN; plasma renin; Ang II and ACE; and renal Ang II. For evaluating oxidative stress, malondialdehyde was measured. Urinary calcium, oxalate, creatinine, and albumin were also determined. Despite similar urinary calcium and oxalate levels, kidneys of hyperoxaluric rats on candesartan had fewer CaOx crystals, fewer ED-1-positive cells, reduced OPN expression, and reduced malondialdehyde than hyperoxaluric rats. Urinary albumin excretion and serum creatinine levels improved significantly on candesartan treatment. mRNA for OPN, renin, and ACE were significantly elevated in hyperoxaluric rats. OPN synthesis and production increased with hyperoxaluria but to a lesser extent in candesartan-treated hyperoxaluric rats. These results show for the first time that oxalate can activate the renal renin-angiotensin system and that oxalate-induced upregulation of OPN is in part mediated via renal renin-angiotensin system.  相似文献   

9.
Studies using in vitro systems have indicated that Tamm-Horsfall protein (THP) can interact with calcium oxalate (CaOx) crystals during kidney stone formation. However, information regarding the nature of its participation in this process remains controversial and unclear. In order to better understand the putative interaction of THP and crystals in vivo, we compared the localization of THP in normal rats and in chronic and semi-acute rat models of nephrolithiasis. In these rats, CaOx crystal deposits were induced in the kidneys by administering ethylene glycol (EG) in drinking water. The formation of CaOx mono- and dihydrate aggregates in the urine was confirmed by scanning electron microscopy. Immunohistochemical localization, as well as protein A-gold labeling at the ultrastructural level, demonstrated that in addition to its normal distribution, THP specifically associated with the renal crystal deposits. The THP-containing, organic matrix-like material consisted of a fine, fibrillar meshwork surrounding individual crystals and their aggregates. In addition, THP also appeared in the papilla, where it is normally absent, concurrent with the appearance of crystal deposits in the kidneys. These observations indicate that in nephrolithic rats the normal localization of THP is altered. Such an alteration may indicate an important physiological event related to crystal aggregation and kidney stone formation.  相似文献   

10.
Retention of crystals in the kidney is an essential early step in renal stone formation. Studies with renal tubular cells in culture indicate that hyaluronan (HA) and osteopontin (OPN) and their mutual cell surface receptor CD44 play an important role in calcium oxalate (CaOx) crystal binding during wound healing. This concept was investigated in vivo by treating rats for 1, 4, and 8 d with ethylene glycol (0.5 and 0.75%) in their drinking water to induce renal tubular cell damage and CaOx crystalluria. Tubular injury was morphologically scored on periodic acid-Schiff-stained renal tissue sections and tissue repair assessed by immunohistochemical staining for proliferating cell nuclear antigen. CaOx crystals were visualized in periodic acid-Schiff-stained sections by polarized light microscopy, and renal calcium deposits were quantified with von Kossa staining. HA was visualized with HA-binding protein and OPN and CD44 immunohistochemically with specific antibodies and quantified with an image analyzer system. Already after 1 d of treatment, both concentrations of ethylene glycol induced hyperoxaluria and CaOx crystalluria. At this point, there was neither tubular injury nor crystal retention in the kidney, and expression of HA, OPN, and CD44 was comparable to untreated controls. After 4 and 8 d of ethylene glycol, however, intratubular crystals were found adhered to injured/regenerating (proliferating cell nuclear antigen positive) tubular epithelial cells, expressing HA, OPN, and CD44 at their luminal membrane. In conclusion, the expression of HA, OPN, and CD44 by injured/regenerating tubular cells seems to play a role in retention of crystals in the rat kidney.  相似文献   

11.
A number of animal models have been developed to investigate calcium oxalate (CaOx) nephrolithiasis. Ethylene glycol (EG)-induced hyperoxaluria in rats is most common, but is criticized because EG and some of its metabolites are nephrotoxic and EG causes metabolic acidosis. Both oxalate (Ox) and CaOx crystals are also injurious to renal epithelial cells. Thus, it is difficult to distinguish the effects of EG and its metabolites from those induced by Ox and CaOx crystals. This study was performed to investigate hydroxy-L-proline (HLP), a common ingredient of many diets, as a hyperoxaluria-inducing agent. In rats, HLP has been shown to induce CaOx nephrolithiasis in only hypercalciuric conditions. Five percent HLP mixed with chow was given to male Sprague-Dawley rats for 63 days, resulting in hyperoxaluria, CaOx crystalluria, and nephrolithiasis. Crystal deposits were surrounded by ED-1-positive inflammatory cells. Cell injury and death was followed by regeneration, as suggested by an increase in proliferating cell nuclear antigen-positive cells. Both osteopontin (OPN) and CD44 were upregulated. Staining for CD44 and OPN was intense in cells lining the tubules that contained crystals. Along with a rise in urinary Ox and lactate dehydrogenase, there were significant increases in 8-isoprostane and hydrogen peroxide excretion, indicating that the oxidative stress induced cell injury. Thus, HLP-induced hyperoxaluria alone can induce CaOx nephrolithiasis in rats.  相似文献   

12.
Experimental animal model studies suggest that calcium oxalate (CaOx) crystal deposition in the kidneys is associated with the development of oxidative stress, epithelial injury and inflammation. There is increased production of inflammatory molecules including osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1) and various subunits of inter-alpha-inhibitor such as bikunin. What does the increased production of such molecules suggest? Is it a cause or consequence of crystal deposition? We hypothesized that over-expression and increased production of MCP-1 is a result of the interaction between renal epithelial cells and CaOx crystals after their deposition in the renal tubules. We induced hyperoxaluria in MCP-1 null as well as wild type mice and examined pathological changes in their kidneys and urine. Both wild type and MCP-1 null male mice became hyperoxaluric and demonstrated CaOx crystalluria. Neither of them developed crystal deposits in their kidneys. Both showed some morphological changes in their renal proximal tubules. Significant pathological changes such as cell death and increased urinary excretion of LDH were not seen. Results suggest that at least in mice (1) Increase in oxalate and decrease in citrate excretion can lead to CaOx crystalluria but not CaOx nephrolithiasis; (2) MCP-1 does not play a role in crystal retention within the kidneys; (3) Expression of OPN and MCP-1 is not increased in the kidneys in the absence of crystal deposition; (4) Crystal deposition is necessary for significant pathological changes and movement of monocytes and macrophages into the interstitium.  相似文献   

13.
目的 观察NADPH氧化酶特异抑制剂夹竹桃麻素(apocynin)对高草酸尿症大鼠肾脏氧化应激(OS)损伤的保护作用。 方法 自由饮用含有0.8%乙二醇的水4周建立高草酸尿症SD大鼠模型。大鼠按随机数字表法分为4个组:空白组、高草酸尿症组、apocynin干预组、apocynin对照组。后两组给予apocynin(0.2 g&#8226;kg-1&#8226;d-1)灌胃,对照组给予正常饮水。4周后检测大鼠肾脏OS 指标(尿H2O2和8-异前列腺素),以及Ccr及肾脏/体质量比值。免疫组化观察NADPH氧化酶亚基p47phox在肾脏中的表达位置。RT-PCR和免疫印迹法分别检测肾组织NADPH氧化酶亚基p47phox、gp91phox、Nox-1 mRNA以及p47phox蛋白的表达水平。 结果 p47phox在各组肾脏中均有广泛的表达,包括肾皮质区、内髓区、外髓区等。与空白组比较,高草酸尿症组大鼠尿H2O2和8-异前列腺素水平显著升高,Ccr降低,肾脏/体质量比值增高(均P < 0.05);肾脏p47phox、gp91phox和Nox-1 的mRNA表达均显著增加(均P < 0.05), p47phox蛋白表达也增多(P < 0.01)。apocynin干预治疗可抑制肾脏p47phox、Nox-1 mRNA及p47phox蛋白的表达,但gp91phox mRNA表达未明显减少,而大鼠尿H2O2和8-异前列腺素水平下降,Ccr增加,肾脏/体质量比值减少,但仍高于对照组水平。 结论 NADPH氧化酶是高草酸尿症诱导大鼠肾脏OS损伤过程中活性氧形成的来源之一。使用apocynin抑制NADPH氧化酶活性可部分减轻肾脏的OS损伤程度,保护肾功能。  相似文献   

14.
Objective: Although an epidemiological link between the metabolic syndrome and kidney stone formation has been reported, the mechanism by which metabolic syndrome promotes kidney stone formation has yet to be elucidated. We investigated calcium oxalate (CaOx) kidney stone formation in a rat metabolic syndrome model. Methods: We induced hyperoxaluria in 8‐week‐old male Otsuka Long‐Evans Tokushima fatty (OLETF) rats, and a control strain, Long‐Evans Tokushima Otsuka (LETO) rats, by administering 1.0% ethylene glycol (EG) as their drinking water for 2 weeks. Rats were divided into four groups: LETO‐C (control, n = 7); LETO‐SF (stone forming, n = 8); OLETF‐C (n = 7); and OLETF‐SF (n = 8). Urine and blood samples were collected for biochemistry testing, and the kidneys were harvested for estimation of crystal deposition and determinations of the expression of osteopontin (OPN) and monocyte chemoattractant protein‐1 (MCP‐1). Results: Administration of EG induced hyperoxaluria to the same degree in both strains. The OLETF‐SF group showed a higher grade of renal crystal deposition and significantly higher renal calcium content than the LETO‐SF group. Although the OLETF‐C group excreted significantly higher amounts of uric acid and more acidic urine than the LETO‐C group, similar differences were not observed in rats given EG. Significant upregulation of both OPN and MCP‐1 was seen in the kidneys of hyperoxaluric rats, with higher levels of expression in the OLETF‐SF group than the LETO‐SF group. Conclusions: The present results show for the first time that OLETF rats form more renal CaOx crystal deposits compared with control rats under EG‐induced hyperoxaluric conditions. The model described here should be useful for investigating the mechanisms by which the metabolic syndrome promotes CaOx kidney stone formation.  相似文献   

15.
16.
PURPOSE: Tamm-Horsfall protein is believed to inhibit calcium oxalate crystallization, aggregation or adhesion to the renal epithelium. We determined whether ethylene glycol induced urolithiasis changes the expression of renal and urinary Tamm-Horsfall protein. For comparison the expression of another calcium oxalate inhibitor, osteopontin, was also analyzed. MATERIALS AND METHODS: Male rats were treated with 0.75% ethylene glycol plus an AIN-76 diet (Dyets, Bethlehem Pennsylvania) (ethylene glycol group) or standard rat chow and water (control group) for up to 8 weeks (6 per group for 8 weeks and 3 per group for 3 days to 6 weeks). Kidneys and urine (8 weeks only) were harvested and analyzed by Northern and Western blot analysis, and immunohistochemistry. RESULTS: Tamm-Horsfall protein message and protein (membrane bound form) were decreased, while those of osteopontin were increased in the kidneys of rats treated with ethylene glycol for 8 weeks. As judged by immunochemistry Tamm-Horsfall protein and osteopontin were consistently present in a few tubules in rats in the ethylene glycol and control groups, respectively. In urine expression of the free form of Tamm-Horsfall protein (approximately 75 kDa.) was decreased but detectable in ethylene glycol treated rats. Although readily detected in tissue, osteopontin was not detected in the urine of control or ethylene glycol treated rats. In the time course experiment Tamm-Horsfall protein did not decrease until 4 weeks, when calcium oxalate crystals were detectable in the kidneys of treated rats. In contrast, osteopontin was increased, although inconsistently, beginning at 3 days. CONCLUSIONS: Unlike other calcium oxalate inhibitors, such as osteopontin, renal message and protein for Tamm-Horsfall protein was decreased in ethylene glycol treated rats. Tamm-Horsfall protein expression did not decrease until aggregates of crystals had been deposited in the kidneys, while osteopontin expression began to increase almost immediately. Comparisons of the data on kidneys and urine obtained by RNA or protein blot analysis and immunochemistry underscore the need to examine tissue and urine by multiple techniques to obtain the most accurate assessment of how protein expression is changed by a given treatment.  相似文献   

17.
Intestinal resection (IR) may lead to hyperoxaluria and nephrolithiasis. A rat model of IR was developed, in which kidney stones form. We describe the urine chemistries and histopathologic features. Rats underwent resection of 40–45 cm of distal ileum (n=16) or sham resection (SR) (n=8), and were then fed a 1% Na oxalate, 0.02% Ca diet. After 1 week on the diet, 24 h urine samples were obtained for stone chemistries. At 4–7 months after surgery, kidneys were examined grossly and by light microscopy. The extent and location of crystallization was assessed by polarized light. Histochemistry and infrared spectroscopy were used to determine crystal composition. IR rats had higher urine oxalate excretion (P<0.01) and concentration (P<0.001) than SR rats, and lower urine citrate excretion; only IR rats formed kidney stones (12/15 surviving rats). Tissue calcification was found only in kidneys from IR rats, located in the cortex (83% of kidneys), medulla (73%) and papillary tip (47%). Crystals, composed of CaOx, apatite, and calcium carbonate, filled collecting duct lumens, and were associated with tubular obstruction, and interstitial inflammation. Crystals in the papillary interstitium incited inflammation with tubular destruction and development of progressive papillary erosion. This new rat model of nephrolithiasis and nephrocalcinosis resembles the pattern of urinary abnormalities and tissue calcification that may be seen in humans with small bowel resection. The model allows further studies of the mechanisms of renal crystal formation, and possible therapeutic interventions.  相似文献   

18.
目的 研究肾组织钠/二羧基转运蛋白1(SDCT1)与低枸橼酸尿的关系以及枸橼酸钾的干预作用,探讨肾结石发病的分子机制和防治措施。方法 雄性Wistar大鼠分为对照组、肾结石组及枸橼酸钾干预组。血、尿枸橼酸和草酸采用酶法测定,Northern blot检测大鼠肾组织SDCT1mRNA水平的改变,免疫组织化学观察SDCT1在肾组织的分布及表达变化。结果 与对照组比较,肾结石组第3天尿草酸水平显著升高,枸橼酸水平显著降低,同时肾组织SDCT1mRNA及其蛋白水平上调。第7天SDCT1mRNA及其表达产物增加更为显著,同时尿枸橼酸水平进一步降低,尿钙排泄显著增加,87.5%大鼠有中-大量的草酸钙结石形成。第14天上述改变更为明显,结石形成率达100%。枸橼酸钾干预组各时间点尿草酸水平与肾结石组差异无显著性意义,但尿枸橼酸水平显著高于肾结石组及对照组,肾组织SDCT1mRNA及蛋白表达显著低于肾结石组,与对照组差异无显著性意义;结石形成率显著低于肾结石组;肾小管扩张、炎细胞浸润等病变也明显减轻。结论 肾组织SDCT1表达上调可能是低枸橼酸尿的重要原因,与肾结石的形成有密切关系。枸橼酸钾可下调肾结石大鼠肾组织SDCT1的表达,对肾结石的形成具有明显的干预作用。  相似文献   

19.
OBJECTIVE: To examine the responses of renal fibroblasts to high oxalate (Ox) and calcium Ox (CaOx) crystals, as the latter are found in the renal interstitium of patients with primary or enteric hyperoxaluria, and in animals with experimental CaOx nephrolithiasis, and are associated with tubulointerstitial inflammation (TI). TI might begin with the production of chemoattractants by the renal epithelial cells exposed to high Ox and/or CaOx crystals; as Ox levels are also high in the renal interstitium and crystal deposition in nephrolithiasis might start in the interstitium, we hypothesized that renal fibroblasts might also be involved in the development of TI. MATERIALS AND METHODS: We exposed renal fibroblast cells of line NRK 49F in vitro to Ox ions (500 micromol/L) or CaOx monohydrate crystals (67 microg/cm(2)). We assessed the production of osteopontin and monocyte chemoattractant protein-1 (MCP-1), and expression of their mRNA, in the cells. We also determined the cellular malondialdehyde content as a marker of reactive oxygen species (ROS)-induced lipid peroxidation, and Trypan blue staining and the release of lactate dehydrogenase as markers of injury. RESULTS: Similar to renal epithelial cells, renal fibroblasts were stimulated by exposure to Ox and CaOx crystals. They showed signs of injury and ROS-induced lipid peroxidation. The mRNA expression and production of osteopontin and MCP-1 increased significantly. CONCLUSIONS: These results indicate that fibroblasts respond to high Ox and CaOx crystals by up-regulating specific pathways producing pro-inflammatory conditions. Migration of monocytes/macrophages to sites of interstitial crystal deposits can lead to localized interstitial inflammation and fibrosis.  相似文献   

20.
Osteopontin (OPN) is the major constituent of calcium-containing urinary stones and is involved in the inhibition of nucleation and aggregation of calcium oxalate (CaOx) crystals, promotion of the adherence of CaOx crystals to cultured renal epithelial cells, and regulation of inflammatory cells as chemokine. OPN has different effects (inhibitor and promoter) at each stage of stone formation in vitro and these multifunctional actions of OPN have not been fully elucidated. We developed a modified crystal method using collagen granules (CG) and immobilized OPN. OPN had strong inhibitory activity on the aggregation/growth of CaOx crystals, but the inhibitory activity decreased by use of OPN-immobilized CG. OPN is also a critical promoter of adherence for CaOx crystals to cultured renal epithelial cells in an in vitro experimental system. We examined the effect of OPN in vivo, by OPN siRNA transfection in rats. Hydrodynamic intravenous and renal subcapsular injections with lipofection were performed on days 1 and 8. The calcium concentration in the kidney was significantly lower and the frequency of CaOx crystal deposits in the tubules was lower in the OPN siRNA transfection group (drinking 1.5% ethylene glycol (EG)), than in the EG drinking group (sham operation) at day 15. We examined the effect of candesartan, an angiotensin II (Ang II) type 1 receptor blockers (ARB) in hyperoxaluric rats. ARB reduced crystal formation and calcium concentrations in the whole kidney. Hyperoxaluria leads to CaOx crystallization and the development of tubulointerstitial lesions in the kidney. AngII mediates OPN synthesis, which is involved in both macrophage recruitment and CaOx crystallization. OPN synthesis and production increased with hyperoxaluria but to a lesser extent in ARB-treated hyperoxaluric rats. These results show that oxalate can activate the renal renin-angiotensin system and that oxalate-induced upregulation of OPN is in part mediated via the renal renin-angiotensin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号