首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血管内皮祖细胞是血管内皮细胞的前体细胞,又称为血管母细胞。不仅参与胚胎血管生成,也参与出生后的血管发生过程。应用血管内皮祖细胞进行细胞移植是目前治疗缺血性血管病变的研究热点,已有报道开始应用于临床。现就血管内皮祖细胞在心血管疾病中的研究现状做一综述,同时对干细胞移植存在的安全性、靶向性、效应性方面的问题以及如何开发一种新型的干细胞移植技术做一评价和展望。  相似文献   

2.
Ingram DA  Caplice NM  Yoder MC 《Blood》2005,106(5):1525-1531
The field of vascular biology has been stimulated by the concept that circulating endothelial progenitor cells (EPCs) may play a role in neoangiogenesis (postnatal vasculogenesis). One problem for the field has been the difficulty in accurately defining an EPC. Likewise, circulating endothelial cells (CECs) are not well defined. The lack of a detailed understanding of the proliferative potential of EPCs and CECs has contributed to the controversy in identifying these cells and understanding their biology in vitro or in vivo. A novel paradigm using proliferative potential as one defining aspect of EPC biology suggests that a hierarchy of EPCs exists in human blood and blood vessels. The potential implications of this view in relation to current EPC definitions are discussed.  相似文献   

3.
Recent evidence suggests that bone marrow-derived angioblasts or endothelial progenitor cells circulate in peripheral blood and can incorporate at sites of pathologic neovascularization or during the ovarian cycle. However, the incorporation of endothelial progenitor cells into vessels of nonischemic tissues in adult animals has not been observed. We hypothesized that the vascular microenvironment differs between newborn and adult animals, and that donor endothelial cell progenitors would engraft in rapidly growing normal tissues during the neonatal period. After nonablative administration of bone marrow cells either at birth or at 4 weeks of age, donor-derived endothelial cells were found only in the neovasculature of the newborn recipients. Both the incorporation of donor endothelial cells into the newborn neovasculature as well as tissue vascularity were significantly increased by coadministering vascular endothelial growth factor with bone marrow cells. These findings suggest that bone marrow-derived endothelial progenitor cells can contribute to neovascularization during the newborn period and are responsive to vascular endothelial growth factor.  相似文献   

4.
Insulin resistance is increasingly acknowledged as an independent risk factor for cardiovascular disease. Despite this, our understanding of the cellular and molecular mechanisms that might account for this relationship remain incompletely understood. A key challenge has been in distinguishing between a ‘whole‐body’ milieu of inflammation and oxidative stress from the ramifications of cell‐specific resistance to insulin. Transgenic models have now begun to explore the cellular influences of insulin resistance on vascular biology, with novel implications for atherosclerosis across a range of cells including endothelial cells, endothelial progenitor cells, vascular smooth muscle cells, macrophages and fibroblasts. Emerging data from these models have also begun to challenge conventional dogma. In particular, the findings across various cell types are disparate with some even implying a protective influence on vascular biology. We now review these data, highlighting recent advances in our understanding of cellular resistance to insulin as well as those areas where there remains a paucity of data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Embryonic origins and assembly of blood vessels   总被引:10,自引:0,他引:10  
Embryonic blood vessels develop in two ways: angiogenesis, which is growth by budding, branching, and elongation of existing vessels, and in situ formation of endothelial vesicles that coalesce with elongating vessels. It is assumed that the former is more prevalent, with the latter restricted to vessels that form near the endoderm:mesoderm interface. Neither the relative contributions of each of these processes in the formation of specific blood vessels nor the origins of precursors (angioblasts) of these intraembryonic endothelial populations are known. Antibodies that recognize quail endothelial cells can be used to follow the movements and differentiation of endothelial cell precursors after the transplantation of putative precursor populations from quail into chick embryos. Using this method, it has been shown that all intraembryonic mesodermal tissues, except the prechordal plate, contain angiogenic precursors. After transplantation some angioblasts move in all directions away from the site of implantation, invading surrounding mesenchyme and contributing to the formation of arteries, veins, and capillaries in a wide area. Although it is clear that these invasive angioblasts, which behave unlike any other embryonic mesenchymal cell type, are found throughout the embryo, it is not known whether they represent a unique endothelial cell type in mature blood vessels. Irrespective of their original location in the donor embryo, transplanted angioblasts will form vascular channels that are appropriate for the tissues surrounding their site of implantation. These results indicate that the control over vascular assembly resides within the connective-tissue-forming mesenchyme of the embryo.  相似文献   

6.
7.
In the adult, new blood vessel formation can occur either through angiogenesis from pre-existing mature endothelium or vasculogenesis mediated by bone marrow-derived endothelial precursors. We recently isolated endothelial progenitor cells, or angioblasts, in human adult bone marrow which have selective migratory properties for ischemic tissues, including myocardium, to where they home and induce vasculogenesis. Here we show that myocardial production of the IL-8/Gro-alpha CXC chemokine family is significantly increased after acute ischemia, and that this provides a chemoattractant gradient for bone marrow-derived endothelial progenitors, or angioblasts. This chemokine-mediated homing of bone marrow angioblasts to the ischemic heart regulates their ability to induce myocardial neovascularization, protection against cardiomyocyte apoptosis, and functional cardiac recovery. Together, our results indicate that CXC chemokines play a central role in regulating vasculogenesis in the adult, and suggest that manipulation of interactions between chemokines and their receptors on autologous human bone marrow-derived angioblasts could augment neovascularization of ischemic myocardial tissue.  相似文献   

8.
9.
Cell-based therapies are attractive for revascularizing and regenerating tissues and organs, but clinical trials of endothelial progenitor cell transplantation have not resulted in consistent benefit. We propose a different approach in which a material delivery system is used to create a depot of vascular progenitor cells in vivo that exit over time to repopulate the damaged tissue and participate in regeneration of a vascular network. Microenvironmental conditions sufficient to maintain the viability and outward migration of outgrowth endothelial cells (OECs) have been delineated, and a material incorporating these signals improved engraftment of transplanted cells in ischemic murine hindlimb musculature, and increased blood vessel densities from 260 to 670 vessels per mm2, compared with direct cell injection. Further, material deployment dramatically improved the efficacy of these cells in salvaging ischemic murine limbs, whereas bolus OEC delivery was ineffective in preventing toe necrosis and foot loss. Finally, material deployment of a combination of OECs with another cell population commonly isolated from peripheral or cord blood, endothelial progenitor cells (EPCs) returned perfusion to normal levels in 40 days, and prevented toe and foot necrosis. Direct injection of an EPC/OEC combination was minimally effective in improving limb perfusion, and untreated limbs underwent autoamputation in 3 days. These results demonstrate that vascular progenitor cell utility is highly dependent on the mode of delivery, and suggest that one can create new vascular beds for a variety of applications with this material-controlled deployment of cells.  相似文献   

10.
Lymphatic biology and the microcirculation: past, present and future   总被引:3,自引:0,他引:3  
Because of the role that lymphatics have in fluid and macromolecular exchange, lymphatic function has been tightly tied to the study of the microcirculation for decades. Despite this, our understanding of many basic tenets of lymphatic function is far behind that of the blood vascular system. This is in part due to the difficulty inherent in working in small, thin-walled, clear lymphatic vessels and the relative lack of lymphatic specific molecular/cellular markers. The application of cellular and molecular tools to the field of lymphatic biology has recently produced some significant developments in lymphatic endothelial cell biology. These have propelled our understanding of lymphangiogenesis and related fields forward. Whereas the use of some of these techniques in lymphatic muscle biology has somewhat lagged behind those in the endothelium, recent developments in lymphatic muscle contractile and electrical physiology have also led to advances in our understanding of lymphatic transport function, particularly in the regulation of the intrinsic lymph pump. However, much work remains to be done. This paper reviews significant developments in lymphatic biology and discusses areas where further development of lymphatic biology via classical, cellular, and molecular approaches is needed to significantly advance our understanding of lymphatic physiology.  相似文献   

11.
Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that are provided by the bone marrow and other adult tissue in both animals and humans. They express both hematopoietic and endothelial surface markers, which challenge the classic dogma that the presumed differentiation of cells into angioblasts and subsequent endothelial and vascular differentiation occurred exclusively in embryonic development. This breakthrough stimulated research to understand the mechanism(s) underlying their physiologic function to allow development of new therapeutic options. One focus has been on their ability to form new vessels in injured tissues, and another has been on their ability to repair endothelial damage and restore both monolayer integrity and endothelial function in denuded vessels. Moreover, measures of their density have been shown to be a better predictor of cardiovascular events, both in healthy and coronary artery disease populations than the classical tools used in the clinic to evaluate the risk stratification. In the present paper we review the effects of EPCs on revascularization and endothelial repair in animal models and human studies, in an attempt to better understand their function, which may lead to potential advancement in clinical management.  相似文献   

12.
The identification of bone marrow-derived endothelial progenitor cells has altered our understanding of new blood vessel growth and tissue regeneration. Previously, new blood vessel growth in the adult was thought to only occur through angiogenesis, the sprouting of new vessels from existing structures. However, it has become clear that circulating bone marrow-derived cells can form new blood vessels through a process of postnatal vasculogenesis, with endothelial progenitor cells selectively recruited to injured or ischemic tissue. How this process occurs has remained unclear. One common element in the different environments where vasculogenesis is believed to occur is the presence of a hypoxic stimulus. We have identified the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 as critical mediators for the ischemia-specific recruitment of circulating progenitor cells. We have found that the endothelial expression of SDF-1 acts as a signal indicating the presence of tissue ischemia, and that its expression is directly regulated by hypoxia-inducible factor-1. Stromal cell-derived factor 1 is the only chemokine family member known to be regulated in this manner. Later events, including proliferation, patterning, and assembly of recruited progenitors into functional blood vessels, are also influenced by tissue oxygen tension and hypoxia. Interestingly, both SDF-1 and hypoxia are present in the bone marrow niche, suggesting that hypoxia may be a fundamental requirement for progenitor cell trafficking and function. As such, ischemic tissue may represent a conditional stem cell niche, with recruitment and retention of circulating progenitors regulated by hypoxia through differential expression of SDF-1.  相似文献   

13.
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.  相似文献   

14.
Statins promote the proliferation, migration, and survival of endothelial cells and bone marrow-derived endothelial progenitor cells (angioblasts) by stimulating the serine/threonine protein kinase Akt (also known as protein kinase B) pathway. Like vascular endothelial growth factor (VEGF), the statins promote angiogenesis and vasculogenesis. Therefore, Akt activation may explain some of the beneficial effects of the statins, including postnatal neovascularization.  相似文献   

15.
万钧  王辰  王军 《国际呼吸杂志》2009,29(22):1393-1396
内皮祖细胞是成熟血管内皮细胞的前体细胞,属于干细胞群体,其在血管再生与修复方面的应用越来越受到关注.肺动脉高压作为一种致死性很高的肺血管疾病,其发病与血管内皮损伤密切相关.目前的研究证实,内皮祖细胞在肺动脉高压血管内皮修复中具有重要作用,内皮祖细胞移植有可能成为临床治疗肺动脉高压的一种有效手段.  相似文献   

16.
Migration of endothelial precursor cells (so-called "angioblasts" in embryos and "endothelial progenitor cells" in adults) during vasculogenesis is a requirement for the formation of a primary vascular plexus. The migration is initiated by the change of endothelial precursors to their migratory phenotype. The endothelial precursor cells are then guided to the position where the primary vascular plexus is formed. Migration is stopped by the reversion of the cells to their nonmigratory phenotype. A combination of regulatory mechanisms and factors controls this process. These include gradients of soluble factors, extracellular matrix-cell interaction and cell-cell interaction. In this review, we give an overview of the regulation of angioblast migration during embryonic vasculogenesis and its relationship to the migration of endothelial progenitors during postnatal vascular development.  相似文献   

17.
The discovery of endothelial progenitor cell (EPC) a decade ago has refuted the previous belief that vasculogenesis only occurs during embryogenesis. The reduced circulating concentration of EPCs is a surrogate marker of endothelial function and has been implicated in the pathogenesis of many vascular diseases. To date, the therapeutic benefit of neovascularization in ischaemic conditions in a non-diabetic setting has been demonstrated. This article aims to review the biology of EPCs in the diabetic setting with special emphasis on the effects of cardiovascular risk factor modification on EPC phenotype and methods to reverse or augment EPC dysfunction. The potential of the use of EPCs in the treatment of the diabetic vascular dysfunction will also be discussed.  相似文献   

18.
19.
Our limited ability to improve the survival of patients with heart failure is attributable, in part, to the inability of the mammalian heart to meaningfully regenerate itself. The recent identification of distinct families of multipotent cardiovascular progenitor cells from endogenous, as well as exogenous, sources, such as embryonic and induced pluripotent stem cells, has raised much hope that therapeutic manipulation of these cells may lead to regression of many forms of cardiovascular disease. Although the exact source and cell type remains to be clarified, our greater understanding of the scientific underpinning behind developmental cardiovascular progenitor cell biology has helped to clarify the origin and properties of diverse cells with putative cardiogenic potential. In this review, we highlight recent advances in the understanding of cardiovascular progenitor cell biology from embryogenesis to adulthood and their implications for therapeutic cardiac regeneration. We believe that a detailed understanding of cardiogenesis will inform future applications of cardiovascular progenitor cells in heart failure therapy and regenerative medicine.  相似文献   

20.
The loss of well-regulated endothelial cell functioning is followed by adverse changes in a variety of physiological systems, such as the expression of adhesion molecules, maintenance of adequate blood vessel tone and haemostasis. Therefore, a full understanding of endothelial cell biology is essential if the losses of normal function of these systems are to be avoided. The viewpoint presented in this paper suggests that a spectrum between endothelial cell health and disease can be drawn: midway between these two extremes is immunological activation (by, for example, cytokines), which is reversible. Endothelial cell damage or injury (which may be the result of chronic inflammatory activation, hypercholesterolaemia, and/or smoking) are invariably associated with clinical conditions such as hypertension and oedema (and, ultimately, thrombosis and infarction), and are more difficult to reverse. A better understanding of the events, including apoptosis, that lead to vascular dysfunction may be useful in developing our understanding of vascular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号