首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Does the central nervous system (CNS) independently control roll and pitch movements of the human body during balance corrections? To help provide an answer to this question, we perturbed the balance of 16 young healthy subjects using multi-directional rotations of the support surface. All rotations had pitch and roll components, for which either the roll (DR) or the pitch (DP) component were delayed by 150 ms or not at all (ND). The outcome measures were the biomechanical responses of the body and surface EMG activity of several muscles. Across all perturbation directions, DR caused equally delayed shifts (150 ms) in peak lateral centre of mass (COM) velocity. Across directions, DP did not cause equally delayed shifts in anterior–posterior COM velocity. After 300 ms however, the vector direction of COM velocity was similar to the ND directions. Trunk, arm and knee joint rotations followed this roll compared to pitch pattern, but were different from ND rotation synergies after 300 ms, suggesting an intersegmental compensation for the delay effects. Balance correcting responses of muscles demonstrated both roll and pitch directed components regardless of axial alignment. We categorised muscles into three groups: pitch oriented, roll oriented and mixed based on their responses to DR and DP. Lower leg muscles were pitch oriented, trunk muscles were roll oriented, and knee and arm muscles were mixed. The results of this study suggest that roll, but not pitch components, of balance correcting movement strategies and muscle synergies are separately programmed by the CNS. Reliance on differentially activated arm and knee muscles to correct roll perturbations reveals a dependence of the pitch response on that of roll, possibly due to biomechanical constraints, and accounts for the failure of DP to be transmitted equally in time across all limbs segments. Thus it appears the CNS preferentially programs the roll response of the body and then adjusts the pitch response accordingly.  相似文献   

2.
Triggering of balance corrections may depend on both leg and trunk proprioceptive inputs. To study this issue and to determine how a total proprioceptive loss in the legs (ToLPL) would affect postural reactions in different directions, we investigated the postural control of a patient with a long-standing dorsal root ganglionopathy. This patient had absent stretch reflexes at the ankle and knee joints, delayed reflexes at the hips, but normal muscle strength. Postural control was probed with support-surface movements driven by two different experimental protocols. The first protocol concentrated on leg muscle responses by varying ankle inputs during pitch plane perturbations. The second protocol focussed on the directional sensitivity of upper body responses using combined roll and pitch tilt perturbations. For both protocols, identical techniques were used to record ankle torques, angular velocities of the upper legs and trunk, and surface EMG from leg, hip and trunk muscles. For the first protocol, pitch plane stance perturbations with three different ankle inputs were imposed by a movable support surface. A simultaneous 4-cm rearward translation and 4-deg toe-up rotation produced an 80-deg/s "enhanced ankle input", a simple toe-up rotation gave a 40-deg/s "normal" ankle input and a simultaneous 4-cm rearward translation and 4-deg "toe-down" rotation yielding a 0-deg/s "nulled ankle input". Responses in the ToLPL patient were compared to those of healthy controls and those of patients with lower-leg proprioceptive loss (LLPL). Following normal and enhanced ankle input perturbations, stretch reflexes were absent in ankle and knee joint muscles of the ToLPL patient. Balance correcting responses in the lower legs were diminished and delayed by some 45 ms. In quadriceps, balance-correcting responses were larger than normal, peaked earlier and were not delayed. During the nulled ankle input condition, the ankle muscle responses in the ToLPL patient were again diminished and delayed by 40 ms with respect to both normal subjects and LLPL patients. However, the ToLPL patient again generated an earlier, larger, balance correcting response in quadriceps. For the second protocol, combinations of roll and pitch perturbations were also delivered by a moving support surface. The amplitude was 7.5 deg at 50 deg/s. Eight different directions were applied randomly (pure "toes down", pure "toes up" and directions at 45-deg intervals of roll). As with the first protocol pre-stimulus background muscle activity was excessive in all trunk and most leg muscles. Responses to roll tilt produced several striking changes from normal in the ToLPL patient. First reflexes in gluteus medius were delayed. Second, the trunk roll which commences around 30 ms in normals was in the opposite direction. This roll was accompanied by oppositely directed stretch reflexes in paraspinal muscles. Third, directional sensitivity of balance corrections was far more roll oriented in leg and trunk muscles. Fourth, some tilt directions caused a deactivation response of background activity. This "deactivation strategy" strongly contrasted with the strategy of controls who had low pre-stimulus background activity and activated responses around 100 ms to correct postural instability. These findings provide new insights into the generation of pitch and roll plane directed balance corrections based on the interaction of proprioceptive trigger signals from the ankles, knees and hips. Without proprioceptive input from the ankle and knee, ankle muscle responses are delayed but not absent. Upper leg and trunk responses are not delayed. This suggests that most, if not all, lower leg balance correcting responses are triggered by hip and, possibly, trunk proprioceptive inputs. When leg proprioceptive input is absent, balance correcting responses lose pitch plane sensitivity. The solution used by the patient to overcome these deficits was to markedly raise background muscle activity levels, presumably to provide a stiffer body structure. The lack of trunk flexibility and lateral instability this produced for roll tilts was offset by the ability to compensate by using a hitherto not described "deactivation response" strategy. The patient had a clinical picture usually described as "deafferented"; yet our roll tilt perturbations revealed delayed reflex responses in hip muscles. With vestibulospinal and neck-proprioceptive inputs, these responses may have helped with the development of compensation processes for the total leg proprioceptive deficit.  相似文献   

3.
Positive effects on lateral center of mass (CoM) shifts during balance recovery have been seen with voluntarily unilateral arm raising but not with voluntarily bilateral knee flexion. To determine whether unilateral voluntary knee movements can be effectively incorporated into balance corrections we perturbed the balance of 30 young healthy subjects using multi-directional rotations of the support surface while they simultaneously executed unilateral knee flexion. Combined pitch and roll rotations (7.5° and 60°/s) were presented randomly in six different directions. Subjects were tested in four stance conditions: balance perturbation only (PO); cued flexion of one knee only (KO); combined support surface rotation and cued (at rotation onset) flexion of the uphill knee, contralateral to tilt (CONT), or of the downhill knee, ipsilateral to tilt (IPS). Outcome measures were CoM motion and biomechanical and electromyography (EMG) responses of the legs, arms and trunk. Predicted measures (PO+KO) were compared with combined measures (CONT or IPS). Unilateral knee flexion of the uphill knee (CONT) provided considerable benefit in balance recovery. Subjects rotated their pelvis more to the uphill side than predicted. Downhill knee bending (IPS) also had a positive effect on CoM motion because of a greater than predicted simultaneous lateral shift of the pelvis uphill. KO leg muscle activity showed anticipatory postural activity (APA) with similar profiles to early balance correcting responses. Onsets of muscle responses and knee velocities were earlier for PO, CONT, and IPS compared to KO conditions. EMG response amplitudes for CONT and IPS conditions were generally not different from the PO condition and therefore smaller than predicted. Later stabilizing responses at 400 ms had activation amplitudes generally equal to those predicted from the PO+KO conditions. Our results suggest that because EMG patterns of anticipatory postural activity of voluntary unilateral knee flexion and early balance corrections have similar profiles, the CNS is easily able to incorporate voluntary activation associated with unilateral knee flexion into automatic postural responses. Furthermore, the effect on movement strategies appears to be non-linear. These findings may have important implications for the rehabilitation of balance deficits.  相似文献   

4.
The present study examined the influence of bilateral peripheral vestibular loss (BVL) in humans on postural responses to multidirectional surface rotations in the pitch and roll planes. Specifically, we examined the effects of vestibular loss on the directional sensitivity, timing, and amplitude of early stretch, balance correcting, and stabilizing reactions in postural leg and trunk muscles as well as changes in ankle torque and trunk angular velocity following multidirectional rotational perturbations of the support surface. Fourteen normal healthy adults and five BVL patients stood on a dual axis rotating platform which rotated 7.5° at 50°/s through eight different directions of pitch and roll combinations separated by 45°. Directions were randomized within a series of 44 perturbation trials which were presented first with eyes open, followed by a second series of trials with eyes closed. Vestibular loss did not influence the range of activation or direction of maximum sensitivity for balance correcting responses (120–220 ms). Response onsets at approximately 120 ms were normal in tibialis anterior (TA), soleus (SOL), paraspinals (PARAS), or quadriceps muscles. Only SOL muscle activity demonstrated a 38- to 45-ms delay for combinations of forward (toe-down) and roll perturbations in BVL patients. The amplitude of balance correcting responses in leg muscles between 120 and 220 ms was, with one exception, severely reduced in BVL patients for eyes open and eyes closed conditions. SOL responses were decreased bilaterally for toe-up and toe-down perturbations, but more significantly reduced in the downhill (load-bearing) leg for combined roll and pitch perturbations. TA was significantly reduced bilaterally for toe-up perturbations, and in the downhill leg for backward roll perturbations. Forward perturbations, however, elicited significantly larger TA activity in BVL between 120 and 220 ms compared to normals, which would act to further destabilize the body. As a result of these changes in response amplitudes, BVL patients had reduced balance correcting ankle torque between 160 and 260 ms and increased torque between 280 and 380 ms compared to normals. There were no differences in the orientation of the resultant ankle torque vectors between BVL and normals, both of which were oriented primarily along the pitch plane. For combinations of backward (toe-up) and roll perturbations BVL patients had larger balance correcting and stabilizing reactions (between 350 and 700 ms) in PARAS than normals and these corresponded to excessive trunk pitch and roll velocities. During roll perturbations, trunk velocities in BVL subjects after 200 ms were directed along directions different from those of normals. Furthermore, roll instabilities appeared later than those of pitch particularly for backward roll perturbations. The results of the study show that combinations of roll and pitch surface rotations yield important spatiotemporal information, especially with respect to trunk response strategies changed by BVL which are not revealed by pitch plane perturbations alone. Our results indicate that vestibular influences are earlier for the pitch plane and are directed to leg muscles, whereas roll control is later and focused on trunk muscles. Electronic Publication  相似文献   

5.
This study was designed to provide evidence for the hypothesis that human balance corrections in response to pitch perturbations are controlled by muscle action mainly about the ankle and knee joints, whereas balance corrections for roll perturbations are controlled predominantly by motion about the hip and lumbro-sacral joints. A dual-axis rotating support surface delivered unexpected random perturbations to the stance of 19 healthy young adults through eight different directions in the pitch and the roll planes and three delays between pitch and roll directions. Roll delays with respect to pitch were no delay, a short 50-ms delay of roll with respect to pitch movements, (chosen to correspond to the onset time of leg muscle stretch reflexes), and a long 150-ms delay between roll and pitch movements (chosen to shift the time when trunk roll velocity peaks to the time when trunk peak pitch velocity normally occurs). Delays of stimulus roll with respect to pitch resulted in delayed roll responses of the legs, trunk, arms, and head consistent with stimulus delay without any changes in roll velocity amplitude. Delayed roll perturbations induced only small changes in the pitch motion of the legs and trunk; however, major changes were seen in the time when roll motion of the trunk was arrested. Amplitudes and directional sensitivity of short-latency (SL) stretch reflexes in ankle muscles were not altered with increasing roll delay. Small changes to balance correcting responses in ankle muscles were observed. SL stretch reflexes in hip and trunk muscles were delayed, and balance-correcting responses in trunk muscles became split into two distinct responses with delayed roll. The first of these responses was small and had a directional responsiveness aligned more along the pitch plane. The main, larger, response occurred with an onset and time-to-peak consistent with the delay in trunk roll displacement and its directional responsiveness was roll oriented. The sum of the amplitudes of these two types of balance-correcting responses remained constant with roll delay. These results support the hypothesis that corrections of the body's pitch and roll motion are programmed separately by neural command signals and provide insights into possible triggering mechanisms. The evidence that lower leg muscle balance-correcting activity is hardly changed by delayed trunk roll also indicates that lower leg muscle activity is not predominant in correcting roll motion of the body. Lower leg and trunk muscle activity appears to have a dual action in balance corrections. In trunk muscles the main action is to correct for roll perturbations and the lesser action may be an anticipatory stabilizing reaction for pitch perturbations. Likewise, the small changes in lower leg muscle activity may result from a generalized stabilizing reaction to roll perturbations, but the main action is to correct for pitch perturbations.  相似文献   

6.
One of the signatures of balance deficits observed in vestibular loss subjects is the greater instability in the roll compared to pitch planes. Directional differences in the timing and strengths of vestibular and proprioceptive sensory signals between roll and pitch may lead to a greater miscalculation of roll than pitch motion of the body in space when vestibular input is absent. For this reason, we compared the timing and amplitude of vestibular information, (observable in stimulus-induced head accelerations when subjects are tilted in different directions), with that of proprioceptive information caused by stimulus induced rotations of ankle and hip joints [observable as short latency (SL) stretch responses in leg and trunk muscle EMG activity]. We attempted to link the possible mode of sensory interaction with the deficits in balance control. Six subjects with bilaterally absent vestibular function and 12 age-matched controls were perturbed, while standing, in 8 directions of pitch and roll support surface rotation in random order. Body segment movements were recorded with a motion analysis system, head accelerations with accelerometers, and muscle activity with surface EMG. Information on stimulus pitch motion was available sequentially. Pitch movements of the support surface were best coded in amplitude by ankle rotation velocity, and by head vertical linear acceleration, which started at 13 ms after the onset of ankle rotation. EMG SL reflex responses in soleus with onsets at 46 ms provided a distal proprioceptive correlate to the pitch motion. Roll information on the stimulus was available simultaneously. Hip adduction and lumbo-sacral angular velocity were represented neurally as directionally specific short latency stretch and unloading reflexes in the bilateral gluteus medius muscles and paraspinal muscles with onsets at 28 ms. Roll angular accelerations of the head coded roll amplitude and direction at the same time (31 ms). Significant differences in amplitude coding between vestibular loss subjects and controls were only observed as a weaker coding between stimulus motion and head roll and head lateral linear accelerations. The absence of vestibular inputs in vestibular loss subjects led to characteristic larger trunk in motion in roll in the direction of tilt compared to pitch with respect to controls. This was preceded by less uphill flexion and no downhill extension of the legs in vestibular loss subjects. Downhill arm abduction responses were also greater. These results suggest that in man vestibular inputs provide critical information necessary for the appropriate modulation of roll balance-correcting responses in the form of stabilising knee and arm movements. The simultaneous arrival of roll sensory information in controls may indicate that proprioceptive and vestibular signals can only be interpreted correctly when both are present. Thus, roll proprioceptive information may be interpreted inaccurately in vestibular loss subjects, leading to an incorrect perception of body tilt and insufficient uphill knee flexion, especially as cervico-collic signals appear less reliable in these subjects as an alternative sensory input.  相似文献   

7.
Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20–34 years of age) while they wore one of two types of corset or no corset at all. One type, the half-corset, only increased hip stiffness, and the other, the full-corset, increased stiffness of the hips and trunk. The perturbations consisted of combined roll and pitch rotations of the support surface (7.5 deg, 60 deg/s) in one of six different directions. Outcome measures were biomechanical responses of the legs, trunk, arms and head, and electromyographic (EMG) responses from leg, trunk, and upper arm muscles. With the full-corset, a decrease in forward stabilising trunk pitch rotation compared to the no-corset condition occurred for backward pitch tilts of the support surface. In contrast, the half-corset condition yielded increased forward trunk motion. Trunk backward pitch motion after forwards support-surface perturbations was the same for all corset conditions. Ankle torques and lower leg angle changes in the pitch direction were decreased for both corset conditions for forward pitch tilts of the support-surface but unaltered for backward tilts. Changes in trunk roll motion with increased stiffness were profound. After onset of a roll support-surface perturbation, the trunk rolled in the opposite direction to the support-surface tilt for the no-corset and half-corset conditions, but in the same direction as the tilt for the full-corset condition. Initial head roll angular accelerations (at 100 ms) were larger for the full-corset condition but in the same direction (opposite platform tilt) for all conditions. Arm roll movements were initially in the same direction as trunk movements, and were followed by large compensatory arm movements only for the full-corset condition. Leg muscle (soleus, peroneus longus, but not tibialis anterior) balance-correcting responses were reduced for roll and pitch tilts under both corset conditions. Responses in paraspinals were also reduced. These results indicate that young healthy normals cannot rapidly modify movement strategies sufficiently to account for changes in link flexibility following increases in hip and trunk stiffness. The changes in leg and trunk muscle responses failed to achieve a normal roll or pitch trunk end position at 700 ms (except for forward tilt rotations), even though head accelerations and trunk joint proprioception seemed to provide information on changed trunk movement profiles over the first 300 ms following the perturbation. The major adaptation to stiffness involved increased use of arm movements to regain stability. The major differences in trunk motion for the no-corset, half-corset and full-corset conditions support the concept of a multi-link pendulum with different control dynamics in the pitch and roll planes as a model of human stance. Stiffening of the hip and trunk increases the likelihood of a loss of balance laterally and/or backwards. Thus, these results may have implications for the elderly and others, with and without disease states, who stiffen for a variety of reasons.  相似文献   

8.
Hypersensitivity of the flexor reflex pathways to input from force-sensitive muscle afferents may contribute to the prevalence and severity of muscle spasms in patients with spinal cord injury (SCI). In this study, we triggered flexor reflexes with constant velocity knee movements in 15 subjects with SCI. Ramp and hold knee extension perturbations were imposed on one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Knee, ankle and hip torque responses and electromyograms from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. During the movement into knee extension, a velocity-dependent stretch reflex, represented by a progressively increasing knee flexion torque, was observed. In addition, another type of reflex that resembled a flexor reflex (flexion of the hip and ankle) was also triggered by the imposed knee extension. The magnitude of the ankle dorsiflexion torque responses was significantly correlated to the stretch reflex torque at the knee in 9 of the 15 subjects. We concluded that stretch reflexes initiate a muscle contraction that then can contribute to a flexor reflex response, possibly through muscle group III/IV afferent pathways. These results suggest that spasticity in SCI consists of a myriad of complex reflex responses that extend beyond stretch reflexes.  相似文献   

9.
The goal of this study was to investigate how voluntarily abducting one arm, 90° at onset of a rotational perturbation of the support surface, influences the recovery of upright stance. Young adults were tested under four stance conditions: abducting one arm to the horizontal only (AO); perturbation of stance using a support surface rotation only (PO); combined support surface rotation and abduction of the downhill arm, ipsilateral to tilt (IPS); and fourth abduction of the uphill, contralateral arm (CON). Simultaneous auditory and visual trigger cues were used for arm raising. Perturbations consisted of six directions of combined support surface roll and pitch rotation (7.5° and 60°/s). Outcome measures were whole body centre of mass (COM) movements and body segment angular displacements recorded with a motion analysis system, as well as leg, trunk, and arm EMG responses. Arm raises contralateral and ipsilateral to the direction of support surface roll were more rapid than in the AO condition and significantly reduced or increased, respectively, COM lateral displacements relative to the PO condition. The changes in COM displacements and velocities during combined CON arm raise and perturbation were greater than expected from the sum of displacements for AO and PO conditions alone, but less for the IPS condition. Arm raising increased trunk roll in a direction opposite arm raising was more than for the AO and PO conditions. Robust effects were also observed for hip abduction but not for leg flexion. Early balance correcting activity was enhanced on the side opposite arm raising and later stabilising activity reduced bilaterally in lower trunk muscles compared to summed activity for the AO and PO conditions. Similar effects were observed in gluteus medius muscles but effects were weak in ankle muscles. EMG onsets in muscles of the raised arm were earlier than in the AO conditions. We conclude that triggered arm abduction, contralateral to the direction of support surface rotation, had significant stabilization benefits for young adults and ipsilateral arm movements had destabilizing effects. The arm raises could be simultaneously executed with balance corrections. These results provide insights into the integration of balance corrections and voluntary commands into one automatic reaction that may be useful in training fall avoidance.  相似文献   

10.
Stabilising shifts of the centre of mass (COM) are observed during balance recovery when subjects simultaneously execute voluntary unilateral knee flexion or unilateral arm raising. Here, we examined whether voluntary lateral trunk bending provided more beneficial stabilising effects, and how motor programs of balance corrections are combined with those of the focal voluntary action. The upright balance of 24 healthy young subjects (19–33 years of age) was perturbed using multi-directional rotations of the support-surface. The perturbations consisted of combined pitch and roll rotations (7.5° and 60°/s) presented randomly in six different directions. Three conditions were tested: perturbation of stance only (PO); combined balance perturbation and cued uphill bending of the trunk (CONT); and combined perturbation and cued downhill bending of the trunk (IPS). For comparison, subjects were required to perform trunk bending alone (TO). Outcome measures were biomechanical responses and surface EMG activity of several muscles. Calculated predicted outcomes (PO + TO) were compared with combined measures (CONT or IPS). CONT trunk bending uphill showed two phases of benefit in balance recovery for laterally but, in contrast to voluntary knee bending, not for posterior directed components of the perturbations. IPS trunk bending had negative effects on balance. Early balance correcting muscle responses were marginally greater than PO responses. Prominent secondary balance correcting responses, having a similar timing as voluntary responses observed under TO conditions, were seen under CONT only in trunk muscles. These, and later stabilising, responses had amplitudes as expected from PO + TO conditions being significantly greater than PO responses. The ability with which different muscle synergies for balance corrections and voluntary trunk bending were integrated into one indicates a flexible adjustment of the CNS programs to the demands of both tasks.  相似文献   

11.
Knee movements play a critical role in most balance corrections. Loss of knee flexibility may cause postural instability. Conversely, trained voluntary knee flexions executed during balance corrections might help to overcome balance deficits. We examined whether bilateral knee flexion could be added to automatic balance corrections generated by sudden balance perturbations. We investigated how this could be achieved and whether it improved or worsened balance control. Twenty-four healthy subjects participated in three different test conditions, in which they had to flex their knees following an auditory cue (VOLUNTARY condition), had to restore their balance in response to multidirectional rotations of a support surface (REACTIVE condition), or the combination of these two (COMBINED condition). A new variable set (PREDICTED), calculated as the mathematical sum of VOLUNTARY and REACTIVE, was compared with the COMBINED variable set. COMBINED responses following forward rotations were close to PREDICTED, or greater, suggesting adequate integration of knee flexion into the automatic balance reactions. For backward rotations, the COMBINED condition resulted in several near-falls, and this was generally associated with smaller knee flexion and smaller EMG responses. Subjects compensated by using greater trunk flexion and arm movements. Activity in several muscles displayed earlier onsets for the COMBINED condition following backward rotations. We conclude that healthy adults can incorporate voluntary knee flexion into their automatic balance corrections and that this depends on the direction of the postural perturbation. These findings highlight the flexibility of the human balance repertoire and underscore both the advantages and limitations of using trained voluntary movements to aid balance corrections in man.  相似文献   

12.
The interaction between primary movements and associated postural adjustments was studied during trunk extension movements in standing man. Six healthy male subjects performed one series of six consecutive fast trunk extensions. Movements were recorded with an optoelectronic system (Selspot). Angular displacements, velocities and accelerations at the ankle, knee, hip and trunk were calculated. Trunk inclination was measured as the sum of pelvic tilt and spine flexion. The spatial and temporal coordination patterns chosen by the subjects to complete the task were compared. The self-selected trunk movement amplitude ranged 14-30 degrees for all subjects. The individual amplitude was maintained within 4-7 degrees over the six consecutive trials. Peak velocity of the primary trunk movement was highly correlated with movement amplitude (r = 0.73, P less than 0.01), whereas peak acceleration was not. Trunk extension, was the result of a simultaneous backward pelvic tilt and spine extension, together with hip extension and knee flexion. Knee flexion became increasingly important at larger movement amplitudes since hip extension as well as spine extension was limited. Associated postural adjustments occurred mainly as ankle flexion. In conclusion, individuals can accurately reproduce the multi-joint co-ordination pattern seen during a voluntary trunk extension movement. Movements at the ankle appear to be controlled to counteract the backward shift of the centre of gravity caused by the primary movement. Knee and ankle movements seem to be independently controlled in the preparatory phase, whereas they are closely linked later during the primary movement. It is suggested that the interaction between knee and ankle movements is necessary for optimal equilibrium control during trunk extension movements in standing.  相似文献   

13.
Muscle weakness is consistently associated with falls in the elderly people, typically when present along with other risk factors. However, it remains unknown whether and how muscle weakness alone affects balance. This hampers development of more effective fall prevention strategies. Clinical observations suggest that the amount and distribution of muscle weakness influences balance control. We therefore investigated balance corrections in patients with either predominantly proximal (limb girdle muscular dystrophy (LGMD); n=8) or distal (distal spinal muscular atrophy; n=5) leg weakness, and 27 matched healthy controls. Balance was perturbed using surface tilt rotations that were delivered randomly in eight directions. Balance measures were full body kinematics and surface electromyographic activity (EMG) of leg, arm, and trunk muscles. Both patient groups were more unstable than controls, as reflected by greater excursions of the centre of mass (COM), especially in the pitch (anterior–posterior (AP)) plane. COM displacements were greater in distal weakness patients. Patients with distal weakness had excessive and unstable trunk, knee and ankle movements, and this was present following both forward and backward directed balance perturbations, possibly reflecting the greater use of distal leg muscles in these directions. In contrast, the less weak proximal weakness patients demonstrated unstable trunk and ankle movements only for backward directed balance perturbations. Both patient groups used arm movements to compensate for their instability. We conclude that primarily distal but also proximal muscle weakness leads to significant postural instability. This observation, together with the retained ability of patients to use compensatory arm movements, provides targets that may be amenable to improvement with therapeutic intervention.  相似文献   

14.
A large body of evidence has been collected which describes the response parameters associated with automatic balance corrections in man to perturbations in the pitch plane. However, perturbations to human stance can be expected from multiple directions. The purpose of the present study was to describe the directional sensitivities of muscle responses re-establishing disturbed stance equilibrium in normal subjects. The contributions of stretch reflex and automatic balance-correcting responses to balance control, and concomitant biomechanical reactions, were examined for combinations of pitch and roll perturbations of the support surface. More specifically, muscle responses, initial head accelerations and trunk velocities were analyzed with the intention of identifying possible origins of directionally specific triggering signals and to examine how sensory information is used to modulate triggered balance corrections with respect to direction. Fourteen healthy adults were required to stand on a dual-axis rotating platform capable of delivering rotational perturbations with constant amplitude (7.5°) and velocity (50°/s) through multiple directions in the pitch and roll planes. Each subject was randomly presented with 44 support surface rotations through 16 different directions separated by 22.5° first under eyes-open, and then, for a second identical set of rotations, under eyes-closed conditions. Bilateral muscle activities from tibialis anterior, soleus, lateral quadriceps and paraspinals were recorded, averaged across direction, and areas calculated over intervals with significant bursts of activity. Trunk angular velocity and ankle torque data were averaged over intervals corresponding to significant biomechanical events. Stretch reflex (intervals of 40–100, 80–120 ms) and automatic balance-correcting responses (120–220, 240–340 ms) in the same muscle were sensitive to distinctly different directions. The directions of the maximum amplitude of balance-correcting activity in leg muscles were oriented along the pitch plane, approximately 180° from the maximum amplitude of stretch responses. Ankle torques for almost all perturbation directions were also aligned along the pitch plane. Stretch reflexes in paraspinal muscles were tuned along the 45° plane but at 90° to automatic balance corrections and 180° to unloading responses in the same muscle. Stretch reflex onsets in paraspinal muscles were observed at 60 ms, as early as those of soleus muscles. In contrast, unloading reflexes in released paraspinal muscles were observed at 40 ms for perturbations which caused roll of the trunk towards the recorded muscle. Onsets of trunk roll velocities were earlier and more rapid than those observed for pitch velocities. Trunk pitch occurred for pure roll directions but not vice versa. When considered together, early stretch and unloading of paraspinals, and concomitant roll and pitch velocities of the trunk requiring a roll-and-pitch-based hip torque strategy, bring into question previous hypotheses of an ankle-based trigger signal or ankle-based movement strategies for postural balance reactions. These findings are compatible with the hypothesis that stretch-, force- and joint-related proprioceptive receptors at the level of the trunk provide a directionally sensitive triggering mechanism underlying a, minimally, two-stage (pitch-based leg and pitch-and-roll-based trunk) balance-correcting strategy. Accelerometer recordings from the head identified large vertical linear accelerations only for pitch movements and angular roll accelerations only during roll perturbations with latencies as early as 15 ms. Thus, it appears that balance corrections in leg and trunk muscles may receive strong, receptor-dependent (otolith or vertical canal) and directionally sensitive amplitude-modulating input from vestibulospinal signals. Received: 4 September 1998 / Accepted: 30 April 1999  相似文献   

15.
It is unknown to what extent automatic postural responses are triggered by lower leg proprioception. This issue was addressed by studying postural control in five carefully selected patients with subtle diabetic polyneuropathy (restricted to the lower legs) and 15 healthy subjects. All patients had bilaterally absent Achilles tendon reflexes and weak or absent patella tendon reflexes, but muscle strength was fully preserved. Subjects were tested while standing on a supporting, movable force-plate. The contribution of lower leg proprioception to automatic postural responses was investigated by randomly exposing the subjects to either a 4 degrees 'toe-up' rotational perturbation ('normal ankle input'), a simultaneous 4-cm rearward translation and 4 degrees toe-up rotation ('enhanced ankle input'), or a simultaneous 4-cm rearward translation and 4 degrees 'toe-down' rotation ('nulled ankle input'). We recorded surface EMG (stretch reflexes and balance-correcting responses) from leg and trunk muscles, ankle torque and angular velocities of the upper and lower legs and trunk. We argued that automatic postural responses that have abnormally small amplitudes in patients and are modulated in controls with the velocity of different types of ankle rotations must receive a major input from lower leg proprioception. Conversely, automatic postural responses that are weakly modified in amplitude or onset by different ankle perturbations and are present despite nulled ankle inputs and, finally, are unaffected in patients with distal polyneuropathy must be triggered or modulated by inputs other than from lower leg proprioception. Normal postural synergies and strategies were maintained in patients, although within a given synergy the timing and amplitude of some automatic postural responses were abnormal. A few automatic postural responses appeared to be triggered or modulated by lower leg proprioception. Thus, early stretch reflexes in soleus and medial gastrocnemius were severely diminished in patients, while in controls these stretch reflexes were modulated by different ankle perturbations. Furthermore, balance-correcting responses in tibialis anterior were diminished and delayed in patients, while in controls these balance-correcting responses were modulated by different ankle perturbations. Other automatic postural responses were apparently not triggered or modulated by lower leg proprioception, but likely received a major input from more proximal sensory systems. Thus, in both groups prominent balance-correcting responses were present in several muscles (soleus, gastrocnemius, quadriceps, paraspinals and trapezius) during the 'nulled ankle input' condition, where ankle position was stabilised over the first 250 ms. During the 'enhanced ankle input' condition, where prominent ankle dorsiflexion occurred during the first 200 ms, amplitudes of balance-correcting responses were only marginally weaker in patients than in controls. We analysed body segment displacements to unveil the potential nature of proximal triggers for automatic postural responses. As opposed to the 'inverted pendulum' concept of postural control, early movement occurred in the knees, hips and trunk well before the onset of automatic postural responses. For example, during the 'nulled ankle input' condition, the lower leg moved forward with early knee flexion, followed by knee extension. The trunk extended backwards at 80 ms, which was followed by forward flexion. The absent stretch reflex and weaker balance-correcting responses in patients produced changed trunk velocity profiles (mainly a reduced initial backward motion of the trunk), but lower-body segment movements showed no consistent differences between the two groups. Considering these body segment displacements, any automatic postural response with an onset within the first 200 ms could well be triggered by receptors located at the knee, hip or trunk. (ABSTRACT TRUNCATED)  相似文献   

16.
We characterized upper trunk and pelvis motion in normal subjects and in subjects with vestibular or proprioceptive loss, to document upper body movement modes in the pitch and roll planes during quiet stance. Six bilateral vestibular loss (VL), six bilateral lower-leg proprioceptive loss (PL) and 28 healthy subjects performed four stance tasks: standing on firm or foam surface with eyes open or closed. Motion of the upper body was measured using two pairs of body-worn gyroscopes, one mounted at the pelvis and the other pair at the shoulders. Pitch and roll angular velocities recorded from the gyroscopes were analyzed separately for low-frequency (<0.7 Hz) and high-frequency (>3 Hz) motion. Low-frequency pitch motion was similar for all groups, consisting of in-phase pelvis and shoulder motion. High-frequency pitch motion in controls and VL subjects was dominated by pelvis motion with little shoulder motion, but vice versa in PL subjects. Low-frequency roll motion changed for all groups from mainly shoulder and little pelvis motion to in-phase pelvis and shoulder motion after moving from a firm to foam surface. In contrast, high-frequency roll motion changed from mainly shoulder motion to mainly pelvis motion with the change to a foam surface, except for PL subjects with eyes closed. Coherent low-frequency sway between pelvis and shoulder was only pronounced in VL patients. These results indicate that relative motion between the pelvis and shoulder depends on the support surface, the type of sensory loss, and whether the motion is in roll or pitch plane. Furthermore, relative motion between the pelvis and upper trunk is an integral part of movement modes used to control quiet stance. Vestibular loss patients showed very similar movement modes as controls, with larger amplitudes. Proprioceptive loss patients, however, used more shoulder motion and stabilized the pelvis for the high-frequency mode. We conclude that there is relative motion between the upper trunk and pelvis during quiet stance and suggest that it may contribute to balance control.  相似文献   

17.
Extensor spasms, which are a significant component of spasticity in spinal cord injury (SCI), are still incompletely understood. In this study, contributions of knee proprioceptors to the origination of extensor spasms were examined in fifteen subjects with SCI. Ramp and hold knee extension perturbations were imposed to one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Isometric joint torques of knee, ankle and hip, and electromyograms (EMGs) from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. A stereotypical torque response consisting of hip flexion, knee extension, and ankle plantar flexion was observed following knee perturbations, although not all components were demonstrated in every subject. During the hold periods with the knee extended, EMG activity recorded from the vastus medialis, medial gastrocnemius and rectus femoris demonstrated patterns consistent with clinical observations of extensor spasms. Furthermore, larger responses were observed with the hip in the extended vs. flexed position (p<0.05). Such behaviors emphasize the role of knee and hip proprioceptors in the initiation of extensor spasms in human SCI. This knowledge may be especially helpful in identifying rehabilitation strategies for producing functional movements in human SCI.  相似文献   

18.
The central nervous system (CNS) must routinely compensate for unpredictable perturbations that occur during postural tasks. Such compensations could take the form of feedforward or feedback control. This study investigated whether the CNS, when faced with a potential postural perturbation, employs feedforward adjustments to reduce the near-term and overall likelihood of balance loss. Slips were induced, using bilateral low-friction platforms, during a sit-to-stand task in 60 safety-harnessed young adults. Subjects underwent a block of slipping trials, a block of nonslipping trials, then a mixed block of trials. After the first novel and unexpected slip, subjects were aware that a slip "may or may not occur." The state (horizontal position and velocity) of the body center of mass (COM) at seat-off and the direction of balance loss (forward, no loss, backward) were determined for each trial. Feedforward adjustments were identified as between-trial changes in COM state at seat-off. Effects of these adjustments on the likelihood of balance loss were quantified using logistic regression. Results indicated that the likelihood of balance loss in each direction (forward, backward) under each condition (slipping, nonslipping) was significantly related to the COM state at seat-off. When faced with the potential perturbation, the CNS made near-term feedforward adjustments to reduce the likelihood of balance loss under the conditions last experienced; exposure to slipping and nonslipping conditions resulted in adjustments that reduced the likelihood of backward and forward balance losses, respectively. Subjects adapted their performance over the longer-term in a manner that significantly decreased their overall likelihood of balance loss in either direction under either condition. The CNS thus adapted to acquire an "optimal" movement strategy that reduced the reliance on reactive responses to maintain balance in an uncertain environment.  相似文献   

19.
背景:临床对于膝骨关节炎患者可以实施全膝关节置换治疗,为提高修复效果,促进功能恢复,要采取有效措施改善置换过程中的关节间隙以及置换后的关节活动度。 目的:探讨全膝关节置换后行关节后方复合松解的有效性及可行性。 方法:从两家三甲医院2009年12月至2013年12月收治的行单侧全膝关节置换的膝骨关节炎患者中选择118例进行研究,随机分为对照组和观察组,每组59例。在患者全膝关节置换过程中完成截骨之后,对照组行常规后髁增生骨清理,观察组行关节后方复合松解。观察两组患者置换后伸、屈膝间隙情况和主动屈膝90°和120°所需时间,记录3个月随访时的膝关节功能美国纽约特种外科医院评分以及最大屈膝角度,并进行比较。 结果与结论:经统计和比较,两组患者在屈膝间隙方面差异无显著性意义(P > 0.05);但在伸膝间隙、主动屈膝90°、120°所需时间以及最大屈膝角度方面,两组差异均有显著性意义,观察组优于对照组(P均< 0.05)。比较置换后3个月两组患者的膝关节功能美国纽约特种外科医院评分,可得观察组的各项指标得分以及总分均显著高于对照组,差异均有显著性意义(P均 < 0.05)。表明全膝关节置换后行关节后方复合松解具有一定的有效性和可行性,可以有效改善置换过程中伸膝间隙以及置换后膝关节活动度,但对置换过程中屈膝间隙方面无明显影响。中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程  相似文献   

20.
Movement patterns were studied during fast voluntary forward flexions of the trunk from an erect standing position. Three healthy subjects performed three series of six consecutive trunk flexions at maximum velocity and with successively increasing amplitude, covering a major part of the range of motion (range for all subjects: 13-97 degrees). Angular displacements of the trunk, hip, knee and ankle were measured together with the tilt of the pelvis and the flexion of the spine using a Selspot optoelectronic system. Trunk flexion was the result of a simultaneous forward pelvic tilt and flexion of the spine. For trunk movements up to 55 degrees, spine flexion dominated the movement, whereas for larger movements a major part of the amplitude was caused by pelvic tilt. During flexion of the trunk a simultaneous hip flexion and ankle extension was seen. At the knee there was an initial flexion and a subsequent extension. The net amplitude of the knee flexion showed a negative correlation with net trunk flexion amplitude for movements up to 50 degrees, whereas for larger amplitudes the correlation was positive. Time from onset of the trunk movement to peak knee flexion showed a weak correlation to net trunk flexion amplitude (r = 0.34) whereas the corresponding correlation was higher for pelvic tilt, spine flexion, hip flexion, ankle extension, and knee extension (r = 0.60-0.91). Each successive trial during a series of trunk movements was started from an increasing degree of knee flexion. This gradual adaptation was also present when successive trunk flexions were performed with constant movement amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号