首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.  相似文献   

2.
An epitope-based vaccine is a promising option for treating Helicobacter pylori (H. pylori) infection. Epitope mapping is the first step in designing an epitope-based vaccine. A pivotal role of CD4+ T cells in protection against H. pylori has been accepted, but few Th epitopes have been identified. In this study, two novel UreB CD4+ T cell epitopes were identified using PBMCs obtained from two H. pylori infected subjects. We determined the restriction molecules by antibody blocking and used various Epstein–Barr virus-transformed B lymphocyte cell lines (BLCLs) with different HLA alleles as APCs to present peptides to CD4+ T cells. These epitopes were DRB1*1404-restricted UreB373–385 and DRB1*0803-restricted UreB438–452. The T cells specific to these epitopes not only recognized autologous DCs loaded with recombinant UreB but also those pulsed with H. pylori whole cell lysates, suggesting that these epitope peptides are naturally processed. These epitopes have important value for designing an effective H. pylori vaccine.  相似文献   

3.
Liu KY  Shi Y  Luo P  Yu S  Chen L  Zhao Z  Mao XH  Guo G  Wu C  Zou QM 《Vaccine》2011,29(38):6679-6685
Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. In the present study, attenuated Salmonella vector vaccines were constructed that expressed fusion proteins complexed with H. pylori CagA, VacA and UreB in different arrangements, and their therapeutic efficacy was evaluated in H. pylori-infected mice. Oral therapeutic immunization with attenuated Salmonella, which expressed the fused protein CVU, significantly decreased H. pylori colonization in the stomach; protection was related to specific CD4+ T cell Th1 type responses and serum IgG and mucosal sIgA antibody responses. These findings suggested that therapeutic efficacy was related to the arrangement of the fusion protein. It is possible that arrangement decides the expression of recombinant antigen in mice, and the latter results in different therapeutic efficacy. The attenuated Salmonella vector vaccine, which expressed the fused protein arrangement CVU, is superior to others, and could be a candidate vaccine against H. pylori.  相似文献   

4.
《Vaccine》2018,36(41):6223-6230
Mucosal vaccines against Helicobacter pylori consisting of either whole cell bacteria or recombinant antigens can induce immune protection against challenge in mice only when co-administrated with a strong mucosal adjuvant such as cholera toxin (CT) or Escherichia coli heat labile enterotoxin (LT). The strong enterotoxicity of these adjuvants however preclude their use in human vaccines. The recently developed multiple mutant CT (mmCT) is a strong, yet practically non-toxic novel mucosal adjuvant which here was admixed with a formalin-inactivated H. pylori whole cell vaccine (WCV) as a potential vaccine candidate against H. pylori infection. We report that intragastric immunizations with H. pylori WCV together with mmCT, similar to immunization with WCV together with CT, resulted in 50–125-fold reduction in colonization of H. pylori in the stomach of mice associated with rises in both serum IgG and intestinal-mucosal IgA anti-H. pylori antibody responses and strong T cell and IFNγ and IL-17A cytokine responses. Data presented in this study also supports that the proposed vaccine can be grown in a bioreactor and would be effective against infection caused by a multitude of pathogenic H. pylori strains isolated from patients from various continents. The results warrant immunization studies in humans to evaluate the safety, immunogenicity and efficacy of the proposed H. pylori WCV and mmCT.  相似文献   

5.
Liu Y  Luo X  Yang C  Yu S  Xu H 《Vaccine》2011,29(34):5778-5784
Synthetic oligodeoxynucleotides containing unmethylated CpG-dinucleotides (CpG-ODNs) are immunostimulatory in a broad spectrum of species. Extensive studies provide evidence that CpG-ODNs are effective as immunotherapeutics and vaccine adjuvants in various clinical settings. Three major classes of immunostimulatory CpG-ODNs are well characterized according to their in vitro activities and chemical compositions. However, it remains largely unclear whether and how these differences translate in vivo and in particular when used as vaccine adjuvants. In the present study, a panel of CpG-ODNs, including four representative sequences respectively from each class, was used to characterize their adjuvant activities in mice. The results demonstrated that three CpG-ODN classes can differentially affect antigen-specific humoral and cellular immune responses. Specifically, the B- and C-class CpG-ODNs induce a potent Th1-biased immunity with comparable antibody levels as well as CD4+ and CD8+ T cell responses. In contrast, although the A-class CpG-ODNs can weakly enhance antibody titers and CD8+ T cell response regarding cytotoxic activity, they are not able to change the IgG1/IgG2a ratio or elicit antigen-specific, IFN-γ-secreting CD4+ and CD8+ T cells. Consistent with this, three CpG-ODN classes provide differential antigen-specific protection against Listeria monocytogenes, an intracellular bacterial infection. In conclusion, our study provides not only better knowledge about the adjuvant activities of three CpG-ODN classes but also implications for the rational design of CpG-ODN adjuvants.  相似文献   

6.
Mucosal immunization with a killed whole-cell pneumococcal vaccine, given with enterotoxin-related adjuvants, has been shown to confer multi-serotype protection against colonization of the nasopharynx and middle ear in mice. However, because novel mucosal immunization strategies may be difficult to implement, here we evaluated subcutaneous injection. Strain RM200 was engineered to be capsule-negative, autolysin-negative, and to express a non-toxic mutant pneumolysoid. Liter-scale and 60-l Good Manufacturing Practice (GMP) cultures were grown in bovine-free soy-based medium, killed with chloroform or beta-propiolactone, and injected into C57Bl/6 mice without or with aluminum adjuvant. The adjuvant Al(OH)3 strongly increased responses, particularly if pre-treated with phosphate. Protection was found in several tested model infections: nasal colonization with a serotype 6B strain and fatal aspiration-sepsis with strains of serotype 3 and 5. Protection against colonization was mechanistically dependent on the presence of CD4+ T cells at the time of challenge; in contrast, in the type 3 aspiration-sepsis model, CD4+ T cells were not required for protection at the time of challenge, suggesting that antibody alone was sufficient to protect against death in this model. Rabbits receiving sequential intramuscular injections in a pilot toxicity study displayed local reactogenicity at injection sites but no clinical signs. The rabbit antiserum thus produced was active in an in vitro phagocytic killing assay and passively protected mice in the type 3 aspiration-sepsis model. Approval is being sought for human trials of this vaccine.  相似文献   

7.
Epitope-based DNA vaccines designed to induce T cell responses specific for Mycobacterium tuberculosis (M. tb) are being developed as a means of addressing vaccine potency. In this study, we predicted 4 T cell epitopes from ESAT-6, Ag85A/B and CFP-10 antigens and constructed an ECANS (epitopes casted in a natural structure) DNA vaccine by inserting the epitope DNA segments separately into the gene backbone of M. tb-derived HSP65 (heat shock protein 65) carrier. The immunogenicity and protective efficacy of pECANS DNA vaccine were assessed in BALB/c mice after intramuscular immunization with 4 doses of 50 μg ECANS DNA and followed by mycobaterial challenge 4 weeks after the last immunization. Compared to plasmid encoding HSP65, pECANS DNA immunization elicited remarkably higher levels of IFN-γ production by both CD4+ and CD8+ T cells, which were coupled with higher frequencies of antigen-specific T cells and higher CTL activity. Significantly enhanced levels of Th1 cytokines (IFN-γ and IL-12) and increased serum IgG2a/IgG1 ratio were also noted, indicating a predominant Th1 immune response achieved by pECANS DNA immunization. In the consequence, a better protection against Mycobacterium bovis BCG challenge was achieved which was evidenced by reduced bacterial loads in lungs and spleens and profound attenuation of lung inflammation and injury. Our results suggested that multi-T cell-epitope based ECANS gene vaccine induced T cell response to multiple T cell epitopes and led to enhanced protection against mycobacterial challenge. This strategy might be a useful platform to design multi-T cell epitope-based vaccine against M. tb infection.  相似文献   

8.

Background

The development of a vaccine against the human gastric pathogen Helicobacter pylori, the main causative agent of gastric adenocarcinoma, has been hampered by a number of issues, including the lack of a mucosal adjuvant for use in humans. Heat shock proteins (Hsp), highly conserved molecules expressed by both bacteria and mammalian species, possess a range of functions, including acting as chaperones for cellular proteins and the ability to activate innate immune receptors. Hsp complex (HspC) vaccines, containing Hsp derived from pathogenic bacteria, are immunostimulatory without addition of an exogenous adjuvant and can induce immunity against their chaperoned proteins. In this study we explored in mice the potential utility of a H. pylori HspC vaccine.

Results

Vaccination with H. pylori HspC, by either the subcutaneous or respiratory mucosal route, induced a strong antibody response, elevated gastric cytokine levels and significant protection against subsequent live challenge with this pathogen. The level of protection induced by non-adjuvanted HspC vaccine was equivalent to that which resulted from vaccination with adjuvanted vaccines. While protection induced by immunisation with adjuvanted vaccines was associated with the development of a moderate to severe atrophic gastritis, that induced by H. pylori HspC only resulted in a mild inflammatory response, despite an increase in pro-inflammatory gastric cytokines. This reduced gastritis correlated with an increase in IL-10 and IL-13 levels in the gastric tissues of HspC vaccinated, H. pylori challenged mice.

Conclusions

H. pylori HspC vaccines have the potential to overcome some of the issues preventing the development of a human vaccine against this pathogen: HspC induced protective immunity against H. pylori without addition of an adjuvant and without the induction of a severe inflammatory response. However, complete protection was not obtained so further optimisation of this technology is needed if a human vaccine is to become a reality.  相似文献   

9.
Wang S  Goguen JD  Li F  Lu S 《Vaccine》2011,29(39):6802-6809
Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans.  相似文献   

10.
Helicobacter pylori (H. pylori) infection is associated with incidents of gastrointestinal diseases in half of the human population. However, management of its infection remains a challenge. Hence, it is necessary to develop an efficient vaccine to fight against this pathogen. In the present study, a novel vaccine based on the production of attenuated Salmonella typhimurium bacterial ghost (SL7207-BG), delivering H. pylori outer inflammatory protein gene (oipA) encoded DNA vaccine was developed, and the efficiency was evaluated in C57BL/6 mice. Significant higher levels of IgG2a/IgG1 antibodies and IFN-γ/IL-4 cytokines were detected after mice were oral administered with oipA DNA vaccine loaded SL7207-BG, indicating that a mixed Th1/Th2 immune response was elicited. When challenged with infective doses H. pylori strain SS1, the ghost based vaccine was capable of reducing bacterium colonization in the vaccinated mice. In addition, codon-optimized oipA plasmid loaded SL7207-BG significantly eliminates H. pylori colonization density in mice model. Thus, it has been demonstrated that this novel bacterial ghost based DNA vaccine could be used as a promising vaccine candidate for the control of H. pylori infection.  相似文献   

11.
Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-γ, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.  相似文献   

12.
Some plant polysaccharides (PPSs) had been used as the adjuvants for systemic vaccination. In this study, we investigated whether PPSs could exhibit adjuvant effect at the mucosa. Groups of mice were intranasally immunized with Epimedium Polysaccharide (EPS), Trollius chinensis polysaccharide (TCPS), Siberian solomonseal rhizome polysaccharide (SSRPS) and Astragalus polysaccharides (APS) together with ovalbumin (OVA). Significantly higher levels of OVA-specific IgG in serum and secretory IgA in saliva, vaginal wash and intestinal lavage fluid were induced after immunization with OVA plus one of the four PPSs compared to OVA alone. Antigen absorption and TLR2 (Toll-like receptor 2) activation may be related to their mucosal adjuvant effect. Of note, when APS used as an adjuvant, intranasally vaccination with recombination UreB (rUreB, Urease subunit B) conferred more robust protection against Helicobacter pylori (H. pylori). Immunized with rUreB in combination APS resulted in mixed specific Th1 and Th17 immune response, which may contribute to the inhibition of H. pylori colonization. Though specific Th2-dominant responses were elicited when the other three PPS intranasally immunized with rUreB, no significant difference in the protective effect were found between those groups and rUreb alone group. Taken together, the four PPSs may be promising candidates for mucosal adjuvant, and APS could enhance rUreB-specific protective immunity against H. pylori infection.  相似文献   

13.
《Vaccine》2018,36(50):7689-7699
Vaccines formulated with adjuvant have been effective against numerous infectious diseases, almost always due to induction of functional antibodies that recognizes the pathogen of interest. There is an unmet clinical need for vaccine adjuvants that induce T cells responses to potentially enhance protection against malignancies and intracellular pathogens, where a humoral response, alone, may not be adequate for protection. In this study, we demonstrate that a TLR2 ligand-based adjuvant, meningococcal PorB, has broad immunostimulatory activity with the ability to induce a robust and diverse vaccine antigen specific T cell response. We demonstrate that a vaccine formulated with PorB admixed with ovalbumin induces a wide variety of antigen specific antibody subclasses and effector molecules (MIG, MCP-1, IP-10, MIP-1α, KC & IL-2) with known roles for inducing T cell responses, along with elevated levels of Th1 and Th2 type cytokines upon antigen stimulation. We confirmed production of these cytokines by examining the antigen-specific T cells induced by PorB in vivo. After two immunizations with vaccine formulated with PorB/OVA, antigen-specific CD4 and CD8 T cells were significantly increased in numbers and produced IL-4 or IFN-γ upon ex vivo antigen re-stimulation. Finally, in a Listeria mouse infection model, vaccine formulated with PorB significantly reduced the bacterial burden upon a low dose infection and increased survival upon a high dose infection with recombinant Listeria monocytogenes engineered to express OVA (rLmOVA), a pathogen that requires OVA-antigen specific cytotoxic CD8 T cells for clearance. In summary, PorB is able to induce antigen specific broad B and T cell responses, illustrating its potential as a potent and new vaccine adjuvant.  相似文献   

14.
《Vaccine》2019,37(26):3426-3434
Incorporation of membrane-anchored flagellin molecules into the surfaces of influenza virus-like particles (VLP) was previously reported to promote T helper (Th) 1-biased IgG antibody production and protective efficacy of co-presented vaccine antigens. Herein, we investigated the potential adjuvant effects and mechanisms of flagellin-expressing VLP (FliC-VLP) as an independent component on influenza vaccination in wild-type and mutant mouse models. FliC-VLP adjuvanted influenza vaccination was highly effective in promoting the induction of Th1-biased IgG isotype switched antibodies, enhanced protection, and long-lasting IgG antibody responses in both wild-type and CD4-knockout mice. In contrast, the adjuvant effects of soluble flagellin were Th2-biased and required CD4 T helper cells. The adjuvant effects of FliC-VLP were less dependent on CD4 T cells and flagellin-mediated innate immune signaling pathways. The results suggest that FliC-VLP might play an effective adjuvant role in an immune competent condition as well as in a defect of CD4 T cells.  相似文献   

15.
《Vaccine》2018,36(23):3331-3339
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4+ T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine.  相似文献   

16.
Influenza is one of the most common infectious diseases endangering the health of humans, especially young children and the elderly. Although vaccination is the most effective means of protection against influenza, frequent mutations in viral surface antigens, low protective efficacy of the influenza vaccine in the elderly, slow production process and the potential of vaccine supply shortage during a pandemic are significant limitations of current vaccines. Adjuvants have been used to enhance the efficacy of a variety of vaccines; however, no adjuvant is included in current influenza vaccines approved in the United States. In this study, we found that a novel adjuvant, rOv-ASP-1, co-administrated with inactivated influenza vaccine using an aqueous formulation, substantially improved the influenza-specific antibody response and protection against lethal infection in a mouse model. rOv-ASP-1 enhanced the magnitude of the specific antibody response after immunization with low doses of influenza vaccine, allowing antigen-sparring by 10-fold. The rOv-ASP-1 formulated vaccine induced a more rapid response and a stronger Th1-associated antibody response compared to vaccine alone and to the vaccine formulated with the adjuvant alum. Importantly, rOv-ASP-1 significantly enhanced cross-reactive antibody responses and protection against challenge with an antigenically distinct strain. These results demonstrate that rOv-ASP-1 is an effective adjuvant that: (1) accelerates and enhances the specific antibody response induced by influenza vaccine; (2) allows for antigen sparing; and (3) augments a Th1-biased and cross-reactive antibody response that confers protection against an antigenically distinct strain.  相似文献   

17.
Orally administered recombinant Mycobacterium smegmatis (rM. smegmatis) vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, in the present study, we evaluated the capacity of the outer membrane protein 26 kDa antigen (Omp26) of Helicobacter pylori (H. pylori) to induce therapeutic protection against H. pylori infection in mice. Omp26 was cloned and expressed in M. smegmatis mc2155 as a fusion with the Mycobacterium fortuitum β-lactamase protein under the control of the up-regulated M. fortuitum β-lactamase promoter, pBlaF*. The rM. smegmatis strain was shown to be relatively stable in vitro in terms of plasmid stability and bacterial persistence. We found that oral immunization of H. pylori-infected mice with rM. smegmatis-Omp26 induced protection, i.e., significant reduction in bacterial colonization in the stomach. The protection was strongly related to serum specific antibodies with a Th1 and Th2 profile as well as to local cytokines in the stomach and spleen. These findings suggest that Omp26 is a promising vaccine candidate antigen for use in a therapeutic vaccine against H. pylori. The rM. smegmatis expressing Omp26 antigen could constitute an effective, low-cost combined vaccine against H. pylori.  相似文献   

18.
The outbreak of the novel swine-origin H1N1 influenza in the spring of 2009 took epidemiologists, immunologists, and vaccinologists by surprise and galvanized a massive worldwide effort to produce millions of vaccine doses to protect against this single virus strain. Of particular concern was the apparent lack of pre-existing antibody capable of eliciting cross-protective immunity against this novel virus, which fueled fears this strain would trigger a particularly far-reaching and lethal pandemic. Given that disease caused by the swine-origin virus was far less severe than expected, we hypothesized cellular immunity to cross-conserved T cell epitopes might have played a significant role in protecting against the pandemic H1N1 in the absence of cross-reactive humoral immunity. In a published study, we used an immunoinformatics approach to predict a number of CD4+ T cell epitopes are conserved between the 2008-2009 seasonal H1N1 vaccine strain and pandemic H1N1 (A/California/04/2009) hemagglutinin proteins. Here, we provide results from biological studies using PBMCs from human donors not exposed to the pandemic virus to demonstrate that pre-existing CD4+ T cells can elicit cross-reactive effector responses against the pandemic H1N1 virus. As well, we show our computational tools were 80-90% accurate in predicting CD4+ T cell epitopes and their HLA-DRB1-dependent response profiles in donors that were chosen at random for HLA haplotype. Combined, these results confirm the power of coupling immunoinformatics to define broadly reactive CD4+ T cell epitopes with highly sensitive in vitro biological assays to verify these in silico predictions as a means to understand human cellular immunity, including cross-protective responses, and to define CD4+ T cell epitopes for potential vaccination efforts against future influenza viruses and other pathogens.  相似文献   

19.
《Vaccine》2015,33(35):4247-4254
Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice.  相似文献   

20.
The Plasmodium falciparum antigen 332 (Pf332) is a conserved blood-stage antigen, which has been suggested to play a role in parasite invasion. In the present study, we have investigated the immunogenicity of the Duffy-binding like (DBL)-domain of the Pf332 molecule in combination with different adjuvants in four animal species. Three of the adjuvants are applicable for human use (Montanide ISA 720, alum and levamisole), whilst Freund's adjuvant served as a positive control adjuvant. Montanide ISA 720 was able to generate a significant and Th2-biased IgG response in BALB/c and C57BL/6 mice. Alum was a strong inducer of a Th2-type immune response only in BALB/c mice, whereas it was a poor adjuvant together with Pf332-DBL in C57BL/6 mice, rabbits and rats. Levamisole did not show any obvious adjuvant effect in any of the immunized animals. Thus in the case with Pf332-DBL, Montanide ISA 720 may be an adjuvant to further explore in the development of a vaccine against malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号