首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary. Neuromelanin is a dark-coloured pigment which forms in the dopamine neurons of the human midbrain. Here we describe the age-related development and regulation of neuromelanin within these dopamine neurons. 10 μm sections from formalin-fixed midbrain from 29 people spanning the ages of 24 weeks to 95 years old were either stained with a basic Nissl substance stain (0.5% cresyl violet), or processed unstained. After locating the substantia nigra using the stained sections, digital photos were taken of individual ventral substantia nigra neurons in the unstained sections, and the cellular area occupied by pigment, and optical density were measured using computer software. These measurements demonstrated three developmental phases. Neuromelanin was not present at birth and initiation of pigmentation began at approximately 3 years of age, followed by a period of increasing pigment granule number and increasing pigment granule colouration until age 20. In middle and later life the colour of the pigment granules continued to darken but was not associated with any substantial growth in pigment volume. The identification of three phases and changes in the rate of neuromelanin production over time suggests the regulation of neuromelanin production and turnover, possibly through enzymatic processes.  相似文献   

2.
Dopaminergic neurons of the substantia nigra selectively degenerate over the course of Parkinson’s disease. These neurons are also the most heavily pigmented cells of the brain, accumulating the dark pigment neuromelanin over a lifetime. The massive presence of neuromelanin in these brain areas has long been suspected as a key factor involved in the selective vulnerability of neurons. The high concentration of neuromelanin in substantia nigra neurons seems to be linked to the presence of considerable amounts of cytosolic dopamine that have not been sequestered into synaptic vesicles. Over the past few years, studies have uncovered a dual nature of neuromelanin. Intraneuronal neuromelanin can be a protective factor, shielding the cells from toxic effects of redox active metals, toxins, and excess of cytosolic catecholamines. In contrast, neuromelanin released by dying neurons can contribute to the activation of neuroglia triggering the neuroinflammation that characterizes Parkinson’s disease. This article reviews recent studies on the molecular aspects of neuromelanin of the human substantia nigra.  相似文献   

3.
The massive, early and relatively circumscribed death of the dopaminergic neurons of the substantia nigra in Parkinson's disease has not yet been adequately explained. The characteristic feature of this brain region is the presence of neuromelanin pigment within the vulnerable neurons. We suggest that neuromelanin in the Parkinson's disease brain differs to that in the normal brain. The interaction of neuromelanin with iron has been shown to differ in the parkinsonian brain in a manner consistent with an increase in oxidative stress. Further, we suggest an interaction between the lipoprotein alpha-synuclein and lipidated neuromelanin contributes to the aggregation of this protein and cell death in Parkinson's disease. The available data suggest that the melaninisation of the dopaminergic neurons of the substantia nigra is a critical factor to explain the vulnerability of this brain region to early and massive degeneration in Parkinson's disease.  相似文献   

4.
The classic motor symptoms of Parkinson's disease result from the progressive death of dopaminergic neurons within the substantia nigra. To date the relatively selective vulnerability of this brain region is not understood. The unique feature of dopaminergic neurons of the human substantia nigra pars compacta is the presence of the polymer pigment neuromelanin which gives this region its characteristic dark colour. In the healthy brain, neuromelanin appears to play a functional role to protect neurons from oxidative load but we have shown that in the Parkinson's disease brain the pigment undergoes structural changes and is associated with aggregation of α-synuclein protein, even early in the disease process. Further, the role of the pigment as a metal binder has also been suggested to underlie the relative vulnerability of these neurons, as changes in metal levels are suggested to be associated with neurodegenerative cascades in Parkinson's disease. While most research to date has focused on the role of iron in these pathways we have recently shown that changes in copper may contribute to neuronal vulnerability in this disorder.  相似文献   

5.
The presence or absence of melanin and neuromelanin in rodent brain was determined by means of light microscopic histochemistry. Melanin in melanocytes located in meninges and along cerebral capillaries occurred in abundance in C57 black mice and to a lesser extent in pigmented rats. Meningeal melanin bound cupric and ferrous ions, reduced ferricyanide, and appeared golden-brown in the bright field, light scattering in the dark field, and absorbant in the ultraviolet. Eleven aging albino rats were utilized to ascertain if the age related pigment, neuromelanin was present in neurons of the substantia nigra. Evidence of neuromelanin was not obtained as the cupric and ferrous ion uptake reactions were negative and neuromelanin could not be seen in the bright or dark field. Substantia nigra neurons did exhibit histochemical reactions for lipofuscin, however, as acid phosphatase positive, periodic acid-Schiff positive, and autofluorescent granules were demonstrated.  相似文献   

6.
7.
Catecholaminergic neurons of the primate substantia nigra (SN) pars compacta (SNc) and the locus coeruleus contain neuromelanin (NM) granules as characteristic structures underlying the pigmentation of these brain areas. Due to a phylogenetic appearance NM granules are absent in the rodent brain, but gradually become present in primates until they reach a maximal expression in humans. Although a possible mechanism of pigment formation may be autoxidation of the NM precursors dopamine or noradrenalin, several groups have suggested an enzymatic formation of NM mediated by tyrosinase or a related enzyme. Since tyrosinase mRNA is suggested to be expressed in the SN of mice and humans, we reinvestigated the expression of tyrosinase in the human SNc and the locus coeruleus at the protein level by immunohistochemistry and Western blot analysis, but could not detect tyrosinase in these brain regions.  相似文献   

8.
Neuromelanin is a dark brown pigment suspected of being involved in the pathogenesis of Parkinson's disease. This pigment can be isolated from normal human substantia nigra by a procedure that includes an extensive proteolytic treatment. In this study we used such a procedure to extract the neuromelanin pigment from a pool of substantia nigra from patients affected by Parkinson's disease. 13C Cross polarization magic angle spinning nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy were used to characterize the solid residue obtained from the extraction procedure. We found that the pigment extracted from the substantia nigra of parkinsonian patients was mainly composed of highly cross-linked, protease-resistant, lipo-proteic material, whereas the neuromelanin macromolecule appears to be only a minor component of this extract. A synthetic model of melanoprotein has been prepared by enzymatic oxidation of dopamine in the presence of albumin. Once it has undergone the same proteolytic treatment, this model system yields a 13C-NMR spectrum which is similar to that observed for the parkinsonian midbrain extract. These results are consistent with the view that oxidative stress has a relevant role in the pathogenesis of Parkinson's disease.  相似文献   

9.
Summary A number of hypotheses on the etiology of Parkinson's disease and other CNS disorders postulate a role of metal ions and/or neuromelanin. As part of an investigation of the interactions between neuromelanin and metal ions, we have studied the amount and type of metal ions in human neuromelanin in intact substantia nigra and in isolated neuromelanin using electron paramagnetic resonance (EPR), which selectively measures metal ions which are in valence states that have unpaired electrons and total reflection X-ray fluorescence (TXRF), which measures total metals. EPR also is a principal technique for studying the biophysics of melanins by analysis of its free radicals. The studies of substantia nigra with TXRF indicated the presence of substantial amounts of iron, zinc, lead, copper, maganese, and titanium at concentrations up to 4 times greater than those of non-pigmented brain tissue (basis pedunculi). The concentrations of metal ions in isolated neuromelanin were 5–260 times higher than in substantia nigra. The studies with EPR indicated that there were substantial amounts of paramagnetic metals ions, especially iron, bound to neuromelanin in intact substantia nigra, and the presence of these metal ions modified the EPR spectra of the free radicals of neuromelanin. We conclude: 1. Compared to other regions of the mid-brain, the substantia nigra contains increased amounts of many different metal ions; 2. Many of these metal ions are in paramagnetic valence states; 3. There are high concentrations of paramagnetic metal ions bound to neuromelanin. These results are consistent with the hypotheses that postulate a role of metal ions in promoting oxidative reactions in pigmented neurons.  相似文献   

10.
Summary. Pyrolysis combined with gas chromatography and mass spectrometry (Py-GC/MS) was applied for structural investigations of the human substantia nigra neuromelanin. Using synthetic neuromelanins, we have demonstrated that Py-GC/MS is suitable for identification and differentiation of both eumelanin (dopamine-derived) and pheomelanin (cysteinyldopamine-derived) component of the pigment. Structural information on melanin monomers was inferred from their pyrolytic markers. When the human neuromelanin was subjected to pyrolysis, none of the heterocyclic, sulfur-containing markers of pheomelanin component was detected among the thermal degradation products. We have concluded that nigral pigment isolated from normal brain tissue does not contain benzothiazine-type monomers, and that cysteinyldopamine-originated units may be incorporated into the polymer in uncyclized form. The most abundant pyrolysis product was identified as limonene, which indicates that nigral pigment is tightly associated with an isoprenoid-type compound. Pyrolysis in the presence of the methylating reagent allowed identification of high levels of saturated and monounsaturated straight-chain C14–C18 fatty acid species chemically bound to the pigment macromolecule.  相似文献   

11.
Multiple reports have documented an age-related loss, estimated at about 10% per decade, of the pigmented neurons in the substantia nigra. This is associated with motor dysfunction, including bradykinesia, stooped posture and gait disturbance. As microglia are activated by cell death and neuromelanin pigment, we hypothesized that there should be a significant microglial reaction in normal aging human substantia nigra. Sections of substantia nigra from elderly subjects (N = 15; mean 81.3; SD 7.0) and younger subjects (N = 7; mean 30.3; SD = 8.7), all of which had no specific neurologically or neuropathologically defined disorders, were stained immunohistochemically for MHC Class II and the area occupied by microglia was quantified in substantia nigra pars compacta. All elderly subjects showed a pronounced microglial reaction in the substantia nigra, with frequent, intensely stained hypertrophic microglia, while immunoreactive nigral microglia were much less frequent in the younger subjects. Quantification showed that in older subjects, the percentage of substantia nigra area occupied by microglial bodies and processes was significantly greater than for younger subjects (mean 19.6 vs. 3.6; P = 0.005). Extraneuronal neuromelanin deposits were present in all the older subjects but were absent or rare in the younger subjects. The neuromelanin deposit abundance score in the older subjects correlated significantly with the area occupied by immunoreactive microglia. The marked microglial reaction in normal aging human substantia nigra, together with the previously reported 35–80% pigmented neuron loss, indicates the presence of a powerful pathologic process that may be additive with specific age-related neurodegenerative diseases, including Parkinson’s disease.  相似文献   

12.
We carried out an investigation to identify neuromelanin-containing noradrenergic and dopaminergic neurons in the locus ceruleus and substantia nigra pars compacta of healthy volunteers and patients with Parkinson's disease using a newly developed magnetic resonance imaging technique that can demonstrate neuromelanin-related contrast. The high-resolution neuromelanin images obtained by a 3-T scanner revealed high signal areas in the brain stem and these corresponded well with the location of the locus ceruleus and substantia nigra pars compacta in gross specimens. In Parkinson's disease patients, the signal intensity in the locus ceruleus and substantia nigra pars compacta was greatly reduced, suggesting depletion of neuromelanin-containing neurons. We conclude that neuromelanin magnetic resonance imaging can be used for direct visualization of the locus ceruleus and substantia nigra pars compacta, and may help in detecting pathological changes in Parkinson's disease and related disorders.  相似文献   

13.
Depigmentation of the substantia nigra is a conspicuous pathological feature of Parkinson's disease and related to a loss of neuromelanin. Similar to melanin, neuromelanin has paramagnetic properties resulting in signal increase on specific T1‐weighted magnetic resonance imaging. The aim of this study was to assess signal changes in the substantia nigra in patients with Parkinson's disease using an optimized neuromelanin‐sensitive T1 scan. Ten patients with Parkinson's disease and 12 matched controls underwent high‐resolution T1‐weighted magnetic resonance imaging with magnetization transfer effect at 3T. The size and signal intensity of the substantia nigra pars compacta were determined as the number of pixels with signal intensity higher than background signal intensity + 3 standard deviations and regional contrast ratio. Patients were subclassified as early stage (n = 6) and late stage (n = 4) using the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr Parkinson's disease staging scale. The T1 hyperintense area in the substantia nigra was substantially smaller in patients compared with controls (?60%, P < .01), and contrast was reduced (?3%, P < .05). Size reduction was even more pronounced in more advanced disease (?78%) than in early‐stage disease (?47%). We present preliminary findings using a modified T1‐weighted magnetic resonance imaging technique showing stage‐dependent substantia nigra signal reduction in Parkinson's disease as a putative marker of neuromelanin loss. Our data suggest that reduction in the size of neuromelanin‐rich substantia nigra correlates well with postmortem observations of dopaminergic neuron loss. Further validation of our results could potentially lead to development of a new biomarker of disease progression in Parkinson's disease. © 2011 Movement Disorder Society  相似文献   

14.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). It has been suggested that microglial inflammation augments the progression of PD. Neuromelanin (NM), a complex polymer pigment found in catecholaminergic neurons, has sparked interest because of the suggestion that NM is involved in cell death in Parkinson's disease, possibly via microglia activation. To further investigate the possible role of NM in the pathogenesis of PD, we conducted in vivo experiments to find out whether microglial cells become activated after injection of human neuromelanin (NM) into (1) the cerebral cortex or (2) the substantia nigra to monitor in this PD-relevant model both microglial activation and possible neurodegeneration. In this study, adult male Wistar rats received an intracerebral injection of either NM, bacterial lipopolysaccharide (LPS, positive control), phosphate-buffered saline (PBS, negative control) or colloidal gold suspension (negative particular control). After different survival times (1, 8 or 12 weeks), brain slices from the cerebral cortex or substantia nigra (SN, 1 week) were stained with Iba-1 and/or GFAP antibody to monitor microglial and astrocytic reaction, and with tyrosine hydroxylase (TH) to monitor dopaminergic cell survival (SN group only). The injection of LPS induced a strong inflammatory response in the cortex as well in the substantia nigra. Similar results could be obtained after NM injection, while the injection of PBS or gold suspension showed only moderate or no glial activation. However, the inflammatory response declined during the time course. In the SN group, there was, apart from strong microglia activation, a significant dopaminergic cell loss after 1 week of survival time. Our findings clearly indicate that extracellular NM could be one of the key molecules leading to microglial activation and neuronal cell death in the substantia nigra. This may be highly relevant to the elucidation of therapeutic strategies in PD.  相似文献   

15.
The Laser Microprobe Mass Analyzer (LAMMA) is a sensitive instrument for identifying and localizing trace elements in tissue samples. Using LAMMA, we have examined melanin-containing neurons of the substantia nigra in patients with Parkinson's disease (PD) and controls. We found that iron significantly accumulates within neuromelanin granules of patients with PD compared to controls. Increased aluminum was found in the neuromelanin granules of 2 of 3 PD cases but in no controls. The accumulation of iron and aluminum, which are known to promote oxidant stress, may account for the selective degeneration of neuromelanin-containing neurons in PD.  相似文献   

16.
The dopaminergic neurons in the ventral substantia nigra (SN) are significantly more vulnerable to degeneration in Parkinson's disease (PD) than the dopaminergic neurons in the ventral tegmental area (VTA). The ventral SN neurons also contain significantly more neuromelanin pigment than the dopaminergic neurons in the VTA. In vitro data indicate that neuromelanin pigment is formed from the excess cytosolic catecholamine that is not accumulated into synaptic vesicles by the vesicular monoamine transporter-2 (VMAT2). By using quantitative immunohistochemical methods in human postmortem brain, we sought to examine the relative contents of VMAT2 within neurons that contain different amounts of neuromelanin pigment. The immunostaining intensity (ISI) was measured for VMAT2 and also for the rate-limiting enzyme for the synthesis of dopamine, tyrosine hydroxylase (TH). ISI measures were taken from the ventral SN region where neurons are most vulnerable to degeneration in PD, nigrosome-1 (N1); from the ventral SN region where cells are moderately vulnerable to degeneration in PD, the matrix (M); and from VTA neurons near the exit of the third nerve (subregion III). The data indicate that 1) subregion III neurons have significantly higher levels of VMAT2 ISI compared with N1 neurons (more than twofold) and M neurons (45%); 2) there is an inverse relationship between VMAT2 ISI and neuromelanin pigment in the N1 and III neurons; 3) there is an inverse relationship between VMAT2 ISI and the vulnerability to degeneration in PD in the N1, M, and III subregions; and 4) neurons with high VMAT2 ISI also have high TH ISI. These data support the hypothesis that midbrain dopaminergic neurons that synthesize greater amounts of dopamine have more vesicular storage capacity for action potential-induced release of transmitter and that the ventral SN neurons accumulate the most neuromelanin pigment, in part because they have the least VMAT2 protein.  相似文献   

17.
On the assumption that neuromelanin content might be a parameter indicating neuronal activity in the catecholaminergic system, neuromelanin was measured microspectrophotometrically in the substantia nigra and the locus ceruleus of 12 brains of patients who had undergone neuroleptic therapy. Neuromelanin increased with age in both regions of 40 control brains. Although no significant difference in melanin content between medicated and control brains was seen, a high negative correlation (r = -0.79) was noted in melanin content between the substantia nigra and the locus ceruleus only in each medicated brain, especially in cases of schizophrenia. The possibility of noradrenergic and dopaminergic interaction is discussed.  相似文献   

18.
Summary. Parkinson’s disease is characterized by the selective depletion of dopamine neurons in the substantia nigra, particular those containing neuromelanin. Involvement of neuromelanin in the pathogenesis may be either cytotoxic or protective. Recently we found that neuromelanin reduces the activity of 26S proteasome. In this paper, the detailed mechanisms behind the reduced activity were studied using neuromelanin isolated from the human brain. Neuromelanin increased the oxidative stress, but synthetic melanin did not. Superoxide dismutase and deferoxamine completely suppressed the increase, indicating that superoxide produced by an iron-mediated reaction plays a central role. Iron was shown to reduce in situ 26S proteasome activity in SH-SY5Y cells and the reduction was protected by antioxidants. These results suggest that iron released from neuromelanin increases oxidative stress in mitochondria, and then causes mitochondrial dysfunction and reduces proteasome function. The role of neuromelanin is discussed in relation to the selective vulnerability of dopamine neurons in Parkinson’s disease.  相似文献   

19.
B E Park  M G Netsky  W L Betsill 《Neurology》1975,25(12):1172-1178
In a case of Hallervorden-Spatz syndrome, neuromelanin was found in neurons and, extracellularly, in the globus pallidus and pars reticulata of the substantia nigra. Some cells of pars compacta contained Lewey bodies. We propose that neuromelanin is formed by a metal-catalyzed pseudoperoxidation of lipofuscin, involving increased amounts of iron and copper in the affected regions. A similar mechanism of spheroid formation, often associated with neuromelanin, may result from pathologic accumulations of lipid peroxides during fatty acid oxidation of myelin. We suggest that neuromelanin is a late stage in the metabolism on intraneuronal and extraneuronal lipopigments. Discrepancies among the histochemical features of the pigment in different cases may be explained by differences in amounts of lipofuscin, neuromelanin, and their precursors. We propose relation of peroxidation to the pathogenesis of some related degenerative diseases.  相似文献   

20.
Oxidation of dopamine to aminochrome seems to be a normal process leading to aminochrome polymerization to form neuromelanin, since normal individuals have this pigment in their dopaminergic neurons in the substantia nigra. The neurons lost in individuals with Parkinson’s disease are dopaminergic neurons containing neuromelanin. This raises two questions. First, why are those cells containing neuromelanin lost in this disease? Second, what is the identity of the neurotoxin that induces this cell death? We propose that aminochrome is the agent responsible for the death of dopaminergic neurons containing neuromelanin in individuals with Parkinson’s disease. The normal oxidative pathway of dopamine, in which aminochrome polymerizes to form neuromelanin, can be neurotoxic if DT-diaphorase is inhibited under certain conditions. Inhibition of DT-diaphorase allows two neurotoxic reactions to proceed: (i) the formation of aminochrome adducts with alpha-synuclein, which induce and stabilize the formation of neurotoxic protofibrils; and (ii) the one electron reduction of aminochrome to the neurotoxic leukoaminochrome o-semiquinone radical. Therefore, we propose that DT-diaphorase is an important neuroprotective enzyme in dopaminergic neurons containing neuromelanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号