首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medicinal chemistry of multidrug resistance (MDR) reversing drugs   总被引:14,自引:0,他引:14  
Multidrug resistance (MDR) is a kind of resistance of cancer cells to multiple classes of chemotherapic drugs that can be structurally and mechanistically unrelated. Classical MDR regards altered membrane transport that results in lower cell concentrations of cytotoxic drug and is related to the over expression of a variety of proteins that act as ATP-dependent extrusion pumps. P-glycoprotein (Pgp) and multidrug resistance protein (MRP1) are the most important and widely studied members of the family that belongs to the ABC superfamily of transporters. It is apparent that, besides their role in cancer cell resistance, these proteins have multiple physiological functions as well, since they are expressed also in many important non-tumoural tissues and are largely present in prokaryotic organisms. A number of drugs have been identified which are able to reverse the effects of Pgp, MRPI and sister proteins, on multidrug resistance. The first MDR modulators discovered and studied in clinical trials were endowed with definite pharmacological actions so that the doses required to overcome MDR were associated with unacceptably high side effects. As a consequence, much attention has been focused on developing more potent and selective modulators with proper potency, selectivity and pharmacokinetics that can be used at lower doses. Several novel MDR reversing agents (also known as chemosensitisers) are currently undergoing clinical evaluation for the treatment of resistant tumours. This review is concerned with the medicinal chemistry of MDR reversers, with particular attention to the drugs that are presently in development.  相似文献   

2.
Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. One important mechanism of MDR involves the multidrug transporter, P-glycoprotein (Pgp), which confers upon cancer cells the ability to resist lethal doses of certain cytotoxic drugs by pumping the drugs out of the cells and thus reducing their cytotoxicity. Pgp belongs to the ATP-binding cassette (ABC) family of transporter molecules which require hydrolysis of ATP to run the transport mechanism. The substrates of Pgp may be endogenous (steroid hormones, cytokines) or exogenous (cytostatic drugs). A number of studies have demonstrated a negative correlation between Pgp expression levels and chemosensitivity or survival in a range of human malignancies. In principle, Pgp mediated drug resistance can be circumvented by treatment regimens that either exclude Pgp substrate drugs or include Pgp inhibitory agents. Experimental studies have demonstrated that certain structural modifications of anthracyclines confer the ability to escape Pgp transport. The therapeutic benefit of Pgp inhibitors as chemosensitizers is currently being explored in phase III clinical trials, and the first promising results have already been reported. Another therapeutic option for Pgp inhibitors has recently evolved as several Pgp inhibitors, many of which are generally low-toxic substances, by themselves constrain proliferation and cause cell death by apoptosis in certain MDR cancer cell lines. The dual effect of Pgp inhibitors, targeting MDR cancer cells selectively, may translate into improved efficacy of cancer chemotherapy and perhaps new and less toxic drug treatment strategies in human MDR cancer.  相似文献   

3.
《General pharmacology》1997,28(5):639-645
  • 1.1. Multidrug resistance (MDR) is a phenomenon originally seen in cultured tumor cells that, following selection for resistance to a single anticancer agent, become resistant to a range of chemically diverse anticancer agents. These MDR cells show a decrease in intracellular drug accumulation due to active efflux by transporter proteins. The transporter best characterized is P-glycoprotein (Pgp). This protein has been identified in many cancers and has been the target for agents able to inhibit its action, thereby reversing resistance.
  • 2.2. More recently, another transporter, multidrug resistance-associated protein (MRP) has been identified in a number of MDR human tumor cell lines that do not apparently express Pgp. The presence of MRP at the cell surface of these cells is associated with alterations in drug accumulation and distribution.
  • 3.3. The gene-encoding MRP has been cloned and sequenced and shown by transfection studies to be able to confer resistance and changes in drug accumulation in sensitive tumor cells. The profile of anticancer drugs expelled in the presence of MRP is similar, but not identical, to that of Pgp.
  • 4.4. MRP has been identified in a number of different types of cancers, but it is not yet clear to what extent it is involved with clinical resistance. Furthermore, resistance modulators useful against Pgp are less effective in reversing MRP-mediated resistance.
  • 5.5. It is not fully understood how MRP brings about drug efflux, but it is clear that the underlying mechanisms are different from those responsible for Pgp-mediated drug efflux. In particular, glutathione (GSH) is required for the effective expulsion of the anticancer agents.
  • 6.6. Unlike Pgp, MRP is able to transport metallic oxyanions and glutathione and other conjugates, including peptidyl leukotrienes. Agents that inhibit organic anion transport, such as probenecid, can block MRP activity.
  • 7.7. Like Pgp, MRP is expressed not only in resistant tumor cells, but also in normal human tissues. These include the epithelial cells lining the airways and the gastrointestinal tract. In cells in normal tissues, MRP appears to be located within the cytoplasm, which may mean that it functions here in a manner slightly different to that in malignant cells. It is now also recognized in cells and tissues from other species, such as the rat and mouse.
  相似文献   

4.
Multidrug resistance protein 7 (MRP7, ABCC10) is a recently identified member of the ATP-binding cassette (ABC) transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC) compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L) significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.KEY WORDS: PD173074, ABCC10, Fibroblast growth factor receptor, Multidrug resistance, Tyrosine kinase inhibitorAbbreviations: ABC, ATP binding cassette; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; HEK293, human embryonic kidney 293; MDR, multidrug resistance; MRP7, multidrug resistance protein 7; MSDs, membrane-spanning domains; NBDs, nucleotide-binding domains; NSCLC, non-small cell lung carcinomas; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor  相似文献   

5.
It is assumed that proteins from the ABC family (i.e., glycoprotein P (Pgp)) and a multidrug resistance associated protein (MRP) play a main role in the occurrence of multidrug resistance (MDR) in tumour cells. Other factors that influence the rise of MDR are mechanisms connected with change in the effectiveness of the glutathione cycle and with decrease in expression of topoisomerases I and II. The aim of this review is to characterize drugs applied in anti-tumour therapy and to describe the present state of knowledge concerning the mechanisms of MDR occurrence, as well as the pharmacological agents applied in reducing this phenomenon.  相似文献   

6.
Zhang H  Fu LW 《药学学报》2011,46(5):479-486
多药耐药(multidrug resistance,MDR)是导致肿瘤患者化疗失败的主要原因。介导多药耐药的重要机制之一是多药耐药相关蛋白(multidrug resistance-associated proteins,MRPs)的表达增加。MRPs是一类ATP能量依赖型跨膜转运蛋白,是具有选择性和特异性的药物外排泵。本文主要针对MRPs的生理特征、结构特点、耐药谱特征及其逆转进行综述。  相似文献   

7.
A significant problem in the clinical treatment of cancer relates to the development of tumor resistance to many chemotherapeutic agents. Acquired drug resistance is often mediated through overexpression of membrane transport proteins that effectively efflux anticancer agents. Two of the best-studied transporters, P-glycoprotein (Pgp) and MRP1, have pharmacological properties that only partially overlap. In our search for improved drug-resistance antagonists, we have identified a family of substituted quinoxalines that selectively antagonizes Pgp over MRP1. Consequently, a focused library of congeners was designed and synthesized starting with a parent bromomethylquinoxalinone. This parent quinoxalinone was then condensed with a series of phenols to yield a family of substituted phenoxymethylquinoxalinones. These compounds were evaluated for their toxicity toward drug-sensitive MCF-7 breast carcinoma cells and for their abilities to antagonize Pgp and MRP1 in drug-resistant cell lines (NCI/ADR and MCF-7/VP, respectively). The results of this structure-activity study indicate that compounds with carbonyl substitutions of the phenoxy group (ester, amide, or ketone moieties) demonstrate excellent antagonism of Pgp while having relatively low toxicity toward drug-sensitive cells. Importantly, none of these compounds antagonized MRP1. Because of their transporter selectivity, we predict that substituted quinoxalinones may be more effective MDR modulators in vivo than are nonselective transporter antagonists.  相似文献   

8.
Transport mechanisms for the exclusion of toxic xenobiotics and their metabolites from cellular environment are crucial for living organisms. Accumulation of these toxins may affect a number of regulatory and other functions, ultimately leading to cell death. This trafficking of toxins and their metabolites is an energy dependent, primary active process, involving the hydrolysis of nucleotide triphosphates (ATP or GTP), while transferring substrate molecules across the cell membrane, against a concentration gradient of the substrate. Therefore, specific membrane associated proteins, known as efflux pumps, are required to remove these undesirable molecules from the cellular environment. These transport proteins have diverse structural characteristics with molecular weights ranging from 28 kDa to 190 kDa and a broad substrate specificity ranging from anionic to weakly cationic compounds. While these transport mechanisms constitute an important part of the cellular defense machinery, they also pose a formidable threat to the efficacy of chemotherapy against pathogenic bacteria and cancer cells. In cancer cells, the over expression of these proteins may confer a multidrug resistance (MDR) phenotype. This problem of MDR in cancer cells has so far been attributed to the two major families of efflux pumps, P-glycoprotein (Pgp) and multidrug resistance associated proteins (MRP), which belong to the ATP-binding cassette (ABC) super family. However, the existence of these pumps has not been able to explain all types of acquired MDR. Therefore, the importance of transport mechanisms other than these ABC-transporters cannot be ruled out. One such transporter is DNP-SG ATPase, whose identity has recently been established with RLIP76, a Ral binding GTPase activating protein known to be involved in the Ras-Rho-Ral mediated signaling mechanism. In the present article, we review the comparative functional, structural, and molecular characteristics of some transporters and discuss their role in xenobiotic transport and multidrug resistance.  相似文献   

9.
Several of the ATP-binding cassette (ABC) transporters confer resistance to anticancer agents and/or antiviral agents when overexpressed in drug-sensitive cells. Recently a MRP1 (ABCC1) tricyclic isoxazole inhibitor, LY475776 was shown to be a glutathione-dependent photoaffinity label of human MRP1 and showed poor labeling of murine mrp1, an ortholog that does not confer anthracycline resistance. In the present study, the specificity of LY475776 was examined for its ability to modulate or photolabel orthologs of MRP1 and several other drug efflux transporters of the ABC transporter family. LY475776 modulated MRP1 and Pgp-mediated resistance (MDR, ABCB1) in, respectively, HeLa-T5 and CEM/VLB(100) cells to both vincristine and doxorubicin. LY475776 photolabeled 170kDa Pgp and was inhibited by the potent Pgp inhibitor LY335979 (Zosuquidar.3HCl). The labeling of the 190kDa MRP1 protein in membranes of HeLa-T5 cells was inhibited by substrates of MRP1 such as leukotriene C(4), vincrisine, and doxorubicin and by the inhibitor, MK571. LY475776 did not photolabel human MRP2 (ABCC2), MRP3 (ABCC3), MRP5 (ABCC5) or breast cancer resistance protein (ABCG2). Because LY475776 photolabels murine mrp1 less well than human MRP1 and binds to a region believed important for anthracycline binding, studies were conducted with monkey and canine MRP1 which also show a reduced ability to confer resistance to anthracyclines. Unlike murine mrp1, both orthologs were photolabeled well by LY475776. These studies indicate that the specificity of LY475776 is fairly limited to Pgp and MRP1 and further studies will help to define the binding regions.  相似文献   

10.
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.  相似文献   

11.
Multidrug resistance (MDR1) P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and breast cancer resistance protein (BCRP/MXR/ABCP) are members of the ATP-binding-cassette (ABC) superfamily of membrane transporters and are thought to function as energy-dependent efflux pumps of a variety of structurally diverse chemotherapeutic agents. We herein report the characterization of (99m)Tc-Tetrofosmin, a candidate radiopharmaceutical substrate of ABC transporters. (99m)Tc-Tetrofosmin showed high membrane potential-dependent accumulation in drug-sensitive KB 3-1 cells and low antagonist-reversible accumulation in MDR KB 8-5 and KB 8-5-11 cells in proportion to levels of MDR1 Pgp expression. In KB 8-5 cells, EC(50) values of the potent MDR antagonists N-(4-[2-(1,2,3, 4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9, 10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), (2R)-anti-5-?3-[4-(10, 11-difluoromethanodibenzo-suber-5-yl)piperazin-1-yl]-2 -hydroxypropoxy ?quinoline trihydrochloride (LY335979), and (3'-keto-Bmt')-[Val(2)]-cyclosporin A (PSC 833) were 40, 66, and 986 nM, respectively. Furthermore, only baculoviruses carrying human MDR1, but not MDR3, conferred both a decrease in accumulation of (99m)Tc-Tetrofosmin in host Spodoptera frugiperda (Sf9) cells and a GF120918-induced enhancement. Transport studies with a variety of stably transfected and drug-selected tumor cell lines were performed with (99m)Tc-Tetrofosmin and compared with (99m)Tc-Sestamibi, a previously validated MDR imaging agent. MDR1 Pgp readily transported each agent. To a lesser extent, MRP1 also transported each agent, likely as co-transport substrates with GSH; neither agent was a substrate for the BCRP/MXR/ABCP half-transporter. In mdr1a(-/-) and mdr1a/1b(-/-) mice, (99m)Tc-Tetrofosmin showed approximately 3. 5-fold greater brain uptake and retention compared with wild-type, with no net change in blood pharmacokinetics, consistent with transport in vivo by Pgp expressed at the capillary blood-brain barrier. Molecular imaging of the functional transport activity of ABC transporters in vivo with (99m)Tc-Tetrofosmin and related radiopharmaceuticals may enable non-invasive monitoring of chemotherapeutic and MDR gene therapy protocols.  相似文献   

12.
13.
Cellular expression of ATP-binding cassette (ABC) transport proteins, such as P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), or ABCG2, is known to confer a drug-resistant phenotype. Thus, the development of effective transporter inhibitors could be of value to cancer treatment. CBT-1 is a bisbenzylisoquinoline plant alkyloid currently in development as a Pgp inhibitor. We characterized its interactions with the three major ABC transporters associated with drug resistance - Pgp, MRP1 and ABCG2 - and compared it to other known inhibitors. CBT-1 completely inhibited rhodamine 123 transport from Pgp-overexpressing cells at a concentration of 1muM. Additionally, 1 microM completely reversed Pgp-mediated resistance to vinblastine, paclitaxel and depsipeptide in SW620 Ad20 cells. CBT-1 was found to compete [(125)I]-IAAP labeling of Pgp with an IC(50) of 0.14 microM, and low concentrations of CBT-1 (<1 microM) stimulated Pgp-mediated ATP hydrolysis. In MRP1-overexpressing cells, 10 microM CBT-1 was found to completely inhibit MRP1-mediated calcein transport. CBT-1 at 25 microM did not have a significant effect on ABCG2-mediated pheophorbide a transport. Serum levels of CBT-1 in samples obtained from eight patients receiving CBT-1 increased intracellular rhodamine 123 levels in CD56+ cells 2.1- to 5.7-fold in an ex vivo assay. CBT-1 is able to inhibit the ABC transporters Pgp and MRP1, making it an attractive candidate for clinical trials in cancers where Pgp and/or MRP1 might be overexpressed. Further clinical studies with CBT-1 are warranted.  相似文献   

14.
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting that it is possible to overcome drug resistance by regulating NR. This review discusses the progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic approach to overcome drug resistance during cancer therapy.  相似文献   

15.
Overexpression of P-glycoprotein (Pgp) and multidrug resistance protein 1 (MRP1) by tumors results in multidrug resistance (MDR) to structurally unrelated anti-tumor agents. HZ08, a chiral compound, was a newly synthesized tetraisohydroquinoline derivative to reverse Pgp and MRP1 mediated MDR. In present studies, R, S-HZ08 and their racemate reversed the resistance to adriamycin and vincristine of adriamycin-selected human leukemia (K562/ADM) cells that overexpress Pgp. R, S-HZ08 and their racemate modulated adriamycin cytotoxicity when R, S-HZ08 and their racemate were removed 12 h prior to the cytotoxicity assay. In addition, R, S-HZ08 and their racemate increased intracellular accumulation of Rhodamine123 in Caco-2 cells that overexpress Pgp. Furthermore, using a DNA content analysis and an annexin V binding assay, R, S-HZ08 and their racemate effectively reversed the resistance to adriamycin-induced apoptosis in K562/ADM cells. R, S-HZ08 and their racemate also moderately reversed the resistance to adriamycin and vincristine of MCF-7/ADM cells that overexpress MRP1. However, R, S-HZ08 and their racemate hardly affected intracellular glutathione (GSH) levels and glutathione S-transferase (GST) activities in MCF-7/ADM cells. The result showed that R, S-HZ08 and their racemate possibly reverse MDR1 mediated multidrug resistance by a direct interaction with MRP1, not interaction with MRP1 via GSH. Thus, R, S-HZ08 and their racemate should be useful for treating patients with tumors that overexpress both Pgp and MRP1.  相似文献   

16.
多药耐药(MDR)是肿瘤化疗失败的主要原因之一。MDR的产生主要由ATP结合盒(ABC)转运蛋白超家族的跨膜蛋白所引起,其中P-糖蛋白及其编码基因mdr1的过表达是MDR产生的最主要机制。研究MDR的产生机制,寻找诱发mdr1表达的诱因并阻断其表达,是克服肿瘤多药耐药性行之有效的方法。近来研究发现,孕烷X受体(PXR)可介导mdr1的表达,活化的PXR诱导MDR1的表达。因此,特异性地阻断PXR的活化可抑制mdr1的表达,从而克服多药耐药性。现已发现多种物质可作为PXR抑制剂或拮抗剂。本文即对核受体PXR与MDR、PXR抑制剂及拮抗剂的研究现状做一介绍,以期为克服肿瘤多药耐药提供参考。  相似文献   

17.
We have synthesized a set of bis-pyranobenzoquinones through a direct and highly efficient approach based on a double intramolecular domino Knoevenagel hetero Diels-Alder reaction. These bis-pyranobenzoquinone derivatives are compounds whose skeletons have similarities to those of some anticancerous and leishmanicidal drugs. Considering that these drugs are substrates for some members of the ATP-binding cassette (ABC) family of proteins that confers a multidrug resistance (MDR) phenotype, we have carried out the biological evaluation of 20 bis-pyranobenzoquinones as modulators of the MDR phenotype in mammalian cell lines overexpressing P-glycoprotein, MRP1, or BCRP. Moreover, we also tested some of these compounds as potential MDR modulators in a Leishmania tropica line overexpressing a P-glycoprotein-like transporter. Compounds 9 and 10 are, in this work, the most promising reversal agents of MDR in human cancer cell lines, while compounds 4 and 20 showed potent reversal activity of MDR phenotype in the protozoan parasite Leishmania.  相似文献   

18.
ATP-binding cassette (ABC) transporters are involved in a variety of physiological processes such as lipid metabolism, ion homeostasis and immune functions. A large number of these proteins have been causatively linked to rare and common human genetic diseases including familial high-density lipoprotein deficiency, retinopathies, cystic fibrosis, diabetes and cardiomyopathies. Furthermore, genetic variations in ABC transporter genes and deregulated expression patterns significantly contribute to drug resistance in human cancer and pancreatic beta cells and alter the pharmacokinetic properties of a variety of drugs. Up-to-date 15 ABC transporters have been identified in human pancreatic beta cells, however only a few of them are identified to date as proteins/genes associated with multidrug resistance (MDR) in diabetes mellitus. Prominent members include the multidrug resistance protein 1 (MRP1/ABCC1), sulfonylurea receptor 1 (SUR1/ABCC8), the multi drug transporter TAP2 and member of the ATP-binding cassette transporter subfamily A (ABCA1). ABCC8 is a subunit of the pancreatic beta-cell K(ATP) channel and plays a key role in the regulation of glucose-induced insulin secretion. Although the physiological role of these transporters to MDR is not yet fully understood, they play an important role in the blood-membrane barrier in pancreatic beta cells. The aim of this article is to provide an overview and to present few examples of drug treatment in MDR in diabetes mellitus associated with function of ABC-transporters.  相似文献   

19.
Multidrug resistance in tumor cells may be caused by reduced drug accumulation resulting from expression of one or more proteins belonging to the ATP-binding cassette (ABC) transporter superfamily. In addition to their drug efflux properties, certain ABC proteins such as multidrug resistance protein 1 (MRP1) (ABCC1) mediate the ATP-dependent transport of a broad array of organic anions. The intrinsically photoreactive glutathione-conjugated cysteinyl leukotriene C4 (LTC4) is a high-affinity physiological substrate of MRP1 and is widely regarded as a model compound for evaluating the substrate binding and transport properties of wild-type and mutant forms of the transporter. In the present study, we have optimized high-level expression of recombinant human MRP1 in Pichia pastoris and developed a two-step purification scheme that results in purification of the transporter to >90% homogeneity. Peptide mapping by matrix-assisted laser desorption ionization/time of flight mass spectrometry of the peptides generated by in-gel protease digestions of purified underglycosylated MRP1 identified 96.7% of the MRP1 sequence with >98% coverage of its 17 transmembrane helices. Subsequent comparisons with mass spectra of MRP1 photolabeled with LTC4 identified six candidate LTC4-modified peptide fragments that are consistent with the conclusion that the intracellular juxtamembrane positions of transmembrane helices 6, 7, 10, 17, and a COOH-proximal portion of the cytoplasmic loop that links the first and second membrane spanning domains are part of the LTC4 binding site of the transporter. Our studies confirm the usefulness of mass spectrometry for analysis of mammalian polytopic membrane proteins and for identification of substrate binding sites of human MRP1.  相似文献   

20.
Overexpression of ATP-binding cassette (ABC) transporter and glutathione conjugates results in efflux of cytotoxic agent from tumor cells leading to multidrug resistance (MDR). Many MDR inhibitors have been identified but none of them have been proven clinically valuable without side effects. Efforts are continue to develop an ideal MDR inhibitor. Recently, herbal modulation of ABC transporter and glutathione conjugates by flavonoids is emerging as popular therapy in MDR. In this review, we have covered structure, function of different ABC transporters and glutathione-mediated MRP overexpression. This review also focuses on the problems with existing MDR inhibitors, modulation of ABC transporter and glutathione-S-transferase by flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号