首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The issue of p53 requirement for the caspase-mediated apoptosis induced by selenium in a cancer chemoprevention or chemotherapy context has not been critically addressed. We and others have shown that selenite induces apoptotic DNA laddering in the p53-mutant DU145 prostate cancer cells and the p53-null HL60 leukemia cells without the cleavage of poly(ADP-ribose) polymerase (PARP; i.e., caspase-independent apoptosis), whereas selenium compounds leading to the formation of methylselenol induce caspase-mediated apoptosis in these cells. Because selenite induces DNA single strand breaks, and because certain types of DNA damage activate p53, we investigated whether the human LNCaP prostate cancer cells, which contain a wild-type p53, execute selenite-induced apoptosis through caspase pathways. The results showed that exposure of LNCaP cells for 24 hours to lower micromolar concentrations of selenite led to DNA laddering, and to the cleavage of PARP and several pro-caspases. In contrast to this apoptosis sensitivity, LNCaP cells were rather resistant to similar concentrations of the methylselenol precursor methylseleninic acid. Selenite treatment led to a significant increase in p53 phosphorylation on Ser-15 (Ser15P). Time course experiments showed that p53 Ser15P occurred several hours before caspase activation and PARP cleavage. The general caspase inhibitor zVADfmk completely blocked PARP cleavage, and significantly decreased DNA laddering, but did not affect p53 Ser15P. An inhibitor for caspase-8 was equally as protective as that for caspase-9 against the selenite-induced apoptosis. Attenuating p53 by a chemical inhibitor pifithrin-alpha decreased the selenite-induced p53 Ser15P and led to concordant reductions of PARP cleavage and apoptosis. In summary, selenite-induced p53 Ser15P appeared to be important for activating the caspase-mediated apoptosis involving both the caspase-8 and the caspase-9 pathways in the LNCaP cells.  相似文献   

2.
Resveratrol, a naturally occurring stilbene with antitumor properties, caused mitogen-activated protein kinase [MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2)] activation, nuclear translocation of Ser15-phosphorylated p53, and p53-dependent apoptosis in hormone-insensitive DU145 prostate cancer cells. Exposure of these cells to epidermal growth factor (EGF) for up to 4 hours resulted in brief activation of MAPK followed by inhibition of resveratrol-induced signal transduction, p53 phosphorylation, and apoptosis. Resveratrol stimulated c-fos and c-jun expression in DU145 cells, an effect also suppressed by EGF. An inhibitor of protein kinase C (PKC)-alpha, -beta, and -gamma (CGP41251) enhanced Ser15 phosphorylation of p53 by resveratrol in the absence of EGF and blocked EGF inhibition of the resveratrol effect. EGF caused PKC-alpha/beta phosphorylation in DU145 cells, an effect reversed by CGP41251. Activation of PKC by phorbol ester (phorbol 12-myristate 13-acetate) enhanced EGF action on ERK1/2 phosphorylation without significantly altering p53 phosphorylation by resveratrol. DU145 cells transfected with a dominant-negative PKC-alpha construct showed resveratrol-induced ERK1/2 phosphorylation and Ser15 phosphorylation of p53 but were unresponsive to EGF. Thus, resveratrol and EGF activate MAPK by discrete mechanisms in DU145 cells. The stilbene promoted p53-dependent apoptosis, whereas EGF opposed induction of apoptosis by resveratrol via a PKC-alpha-mediated mechanism. Resveratrol also induced p53 phosphorylation in LNCaP prostate cancer cells, an effect also inhibited by EGF. Inhibition of PKC activation in LNCaP cells, however, resulted in a reduction, rather than increase, in p53 activation and apoptosis, suggesting that resveratrol-induced apoptosis in these two cell lines occurs through different PKC-mediated and MAPK-dependent pathways.  相似文献   

3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells through DR4 and DR5 death receptors, but not in normal prostate cells, which do not express these receptors. Therefore, TRAIL has excellent potential to be a selective prostate cancer therapeutic agent with minimal toxic side effects. However, prostate cancer cells, as many other cancer types, develop resistance to TRAIL, and the underlying molecular mechanisms require further investigation. We hypothesize that selenium may sensitize TRAIL-resistant cells to undergo caspase-mediated apoptosis and increase therapeutic efficacy. Here, we report that TRAIL signaling in LNCaP prostate cancer cells stalled at downstream of caspase-8 and BID cleavage, as indicated by the lack of Bax translocation into mitochondria, and no subsequent activation of the caspase-9 cascade. Selenite induced a rapid generation of superoxide and p53 Ser(15) phosphorylation and increased Bax abundance and translocation into the mitochondria. Selenite and TRAIL combined treatment led to synergistic increases of Bax abundance and translocation into mitochondria, loss of mitochondrial membrane potential, cytochrome c release, and cleavage activation of caspase-9 and caspase-3. Inactivating p53 with a dominant-negative mutant abolished apoptosis without affecting superoxide generation, whereas a superoxide dismutase mimetic agent blocked p53 activation, Bax translocation to mitochondria, cytochrome c release, and apoptosis induced by selenite/TRAIL. In support of Bax as a crucial target for cross-talk between selenite and TRAIL pathways, introduction of Bax into p53 mutant DU145 cells enabled selenite to sensitize these cells for TRAIL-induced apoptosis. Taken together, the results indicate that selenite induces a rapid superoxide burst and p53 activation, leading to Bax up-regulation and translocation into mitochondria, which restores the cross-talk with stalled TRAIL signaling for a synergistic caspase-9/3 cascade-mediated apoptosis execution.  相似文献   

4.
5.
Berberine, a naturally occurring isoquinoline alkaloid, has been shown to possess anti-inflammatory and antitumor properties in some in vitro systems. Here, we report that in vitro treatment of androgen-insensitive (DU145 and PC-3) and androgen-sensitive (LNCaP) prostate cancer cells with berberine inhibited cell proliferation and induced cell death in a dose-dependent (10-100 micromol/L) and time-dependent (24-72 hours) manner. Treatment of nonneoplastic human prostate epithelial cells (PWR-1E) with berberine under identical conditions did not significantly affect their viability. The berberine-induced inhibition of proliferation of DU145, PC-3, and LNCaP cells was associated with G1-phase arrest, which in DU145 cells was associated with inhibition of expression of cyclins D1, D2, and E and cyclin-dependent kinase (Cdk) 2, Cdk4, and Cdk6 proteins, increased expression of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27), and enhanced binding of Cdk inhibitors to Cdk. Berberine also significantly (P < 0.05-0.001) enhanced apoptosis of DU145 and LNCaP cells with induction of a higher ratio of Bax/Bcl-2 proteins, disruption of mitochondrial membrane potential, and activation of caspase-9, caspase-3, and poly(ADP-ribose) polymerase. Pretreatment with the pan-caspase inhibitor z-VAD-fmk partially, but significantly, blocked the berberine-induced apoptosis, as also confirmed by the comet assay analysis of DNA fragmentation, suggesting that berberine-induced apoptosis of human prostate cancer cells is mediated primarily through the caspase-dependent pathway. The effectiveness of berberine in checking the growth of androgen-insensitive, as well as androgen-sensitive, prostate cancer cells without affecting the growth of normal prostate epithelial cells indicates that it may be a promising candidate for prostate cancer therapy.  相似文献   

6.
Selenomethionine (SeMet) is the chemical form or major component of selenium used for cancer chemoprevention in several clinical trials. However, evidence from experimental studies indicates that SeMet has weaker anticancer effects than most other forms of selenium. Recent studies showed that the anticancer activity of SeMet can be enhanced by methioninase (METase), indicating that SeMet metabolites are responsible for its anticancer activity. In the present study, we showed that wild-type p53-expressing LNCaP human prostate cancer cells were more sensitive to cotreatment with SeMet and METase than p53-null PC3 human prostate cancer cells. SeMet and METase cotreatment significantly increased levels of superoxide and apoptosis in LNCaP cells. Cotreatment with SeMet and METase resulted in increased levels of phosphorylated p53 (Ser15), total p53, Bax, and p21(Waf1) proteins. LNCaP cells treated with SeMet and METase also showed p53 translocation to mitochondria, decreased mitochondrial membrane potential, cytochrome c release into the cytosol, and activation of caspase-9. The effects of SeMet and METase were suppressed by pretreatment with a synthetic superoxide dismutase mimic or by knockdown of p53 via RNA interference. Reexpression of wild-type p53 in PC3 cells resulted in increases in superoxide production, apoptosis, and caspase-9 activity and a decrease in mitochondrial membrane potential following cotreatment with SeMet and METase. Our study shows that apoptosis induced by SeMet plus METase is superoxide mediated and p53 dependent via mitochondrial pathway(s). These results suggest that superoxide and p53 may play a role in cancer chemoprevention by selenium.  相似文献   

7.
Prostate cancer is the second leading cause of cancer-related deaths in males in the United States. This warrants the development of novel mechanism-based strategies for the prevention and/or treatment of prostate cancer. Several studies have shown that plant-derived alkaloids possess remarkable anticancer effects. Sanguinarine, an alkaloid derived from the bloodroot plant Sanguinaria canadensis, has been shown to possess antimicrobial, anti-inflammatory, and antioxidant properties. Previously, we have shown that sanguinarine possesses strong antiproliferative and proapoptotic properties against human epidermoid carcinoma A431 cells and immortalized human HaCaT keratinocytes. Here, employing androgen-responsive human prostate carcinoma LNCaP cells and androgen-unresponsive human prostate carcinoma DU145 cells, we studied the antiproliferative properties of sanguinarine against prostate cancer. Sanguinarine (0.1-2 micromol/L) treatment of LNCaP and DU145 cells for 24 hours resulted in dose-dependent (1) inhibition of cell growth [as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], (2) arrest of cells in G0-G1 phase of the cell cycle (as assessed by DNA cell cycle analysis), and (3) induction of apoptosis (as evaluated by DNA ladder formation and flow cytometry). To define the mechanism of antiproliferative effects of sanguinarine against prostate cancer, we studied the effect of sanguinarine on critical molecular events known to regulate the cell cycle and the apoptotic machinery. Immunoblot analysis showed that sanguinarine treatment of both LNCaP and DU145 cells resulted in significant (1) induction of cyclin kinase inhibitors p21/WAF1 and p27/KIP1; (2) down-regulation of cyclin E, D1, and D2; and (3) down-regulation of cyclin-dependent kinase 2, 4, and 6. A highlight of this study was the fact that sanguinarine induced growth inhibitory and antiproliferative effects in human prostate carcinoma cells irrespective of their androgen status. To our knowledge, this is the first study showing the involvement of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery during cell cycle arrest and apoptosis of prostate cancer cells by sanguinarine. These results suggest that sanguinarine may be developed as an agent for the management of prostate cancer.  相似文献   

8.
Clinical trials have shown that chemotherapy with docetaxel combined with prednisone can improve survival of patients with androgen-independent prostate cancer. It is likely that the combination of docetaxel with other novel chemotherapeutic agents would also improve the survival of androgen-independent prostate cancer patients. We investigated whether the combination of docetaxel and flavopiridol, a broad cyclin-dependent kinase inhibitor, can increase apoptotic cell death in prostate cancer cells. Treatment of DU 145 prostate cancer cells with 500 nmol/L flavopiridol and 10 nmol/L docetaxel inhibited apoptosis probably because of their opposing effects on cyclin B1-dependent kinase activity. In contrast, when LNCaP prostate cancer cells were treated with flavopiridol for 24 hours followed by docetaxel for another 24 hours (FD), there was a maximal induction of apoptosis. However, there was greater induction of apoptosis in DU 145 cells when docetaxel was followed by flavopiridol or docetaxel. These findings indicate a heterogeneous response depending on the type of prostate cancer cell. Substantial decreases in X-linked inhibitor of apoptosis (XIAP) protein but not survivin, both being members of the IAP family, were required for FD enhanced apoptosis in LNCaP cells. Androgen ablation in androgen-independent LNCaP cells increased activated AKT and chemoresistance to apoptosis after treatment with FD. The proteasome inhibitor MG-132 blocked FD-mediated reduction of XIAP and AKT and antagonized apoptosis, suggesting that the activation of the proteasome pathway is one of the mechanisms involved. Overall, our data suggest that the docetaxel and flavopiridol combination requires a maximal effect on cyclin B1-dependent kinase activity and a reduction of XIAP and AKT prosurvival proteins for augmentation of apoptosis in LNCaP cells.  相似文献   

9.
Lycopene, the red pigment of the tomato, is under investigation for the chemoprevention of prostate cancer. Because dietary lycopene has been reported to concentrate in the human prostate, its uptake and subcellular localization were investigated in the controlled environment of cell culture using the human prostate cancer cell lines LNCaP, PC-3, and DU145. After 24 hours of incubation with 1.48 micromol/L lycopene, LNCaP cells accumulated 126.6 pmol lycopene/million cells, which was 2.5 times higher than PC-3 cells and 4.5 times higher than DU145 cells. Among these cell lines, only LNCaP cells express prostate-specific antigen and fully functional androgen receptor. Levels of prostate-specific antigen secreted into the incubation medium by LNCaP cells were reduced 55% as a result of lycopene treatment at 1.48 micromol/L. The binding of lycopene to the ligand-binding domain of the human androgen receptor was carried out, but lycopene was not found to be a ligand for this receptor. Next, subcellular fractionation of LNCaP cells exposed to lycopene was carried out using centrifugation and followed by liquid chromatography-tandem mass spectrometry quantitative analysis to determine the specific cellular locations of lycopene. The majority of lycopene (55%) was localized to the nuclear membranes, followed by 26% in nuclear matrix, and then 19% in microsomes. No lycopene was detected in the cytosol. These data suggest that the rapid uptake of lycopene by LNCaP cells might be facilitated by a receptor or binding protein and that lycopene is stored selectively in the nucleus of LNCaP cells.  相似文献   

10.
Prostate cancer is the second leading cancer diagnosed in elderly males in the Western world. Epidemiologic studies suggest that dietary modifications could be an effective approach in reducing various cancers, including prostate cancer, and accordingly cancer-preventive efficacy of dietary nutrients has gained increased attention in recent years. We have recently shown that grape seed extract (GSE) inhibits growth and induces apoptotic death of advanced human prostate cancer DU145 cells in culture and xenograft. Because prostate cancer is initially an androgen-dependent malignancy, here we used LNCaP human prostate cancer cells as a model to assess GSE efficacy and associated mechanisms. GSE treatment of cells led to their detachment within 12 hours, as occurs in anoikis, and caused a significant decrease in live cells mostly due to their apoptotic death. GSE-induced anoikis and apoptosis were accompanied by a strong decrease in focal adhesion kinase levels, but an increase in caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage; however, GSE caused both caspase-dependent and caspase-independent apoptosis as evidenced by cytochrome c and apoptosis-inducing factor release into cytosol. Additional studies revealed that GSE causes DNA damage-induced activation of ataxia telangiectasia mutated kinase and Chk2, as well as p53 Ser(15) phosphorylation and its translocation to mitochondria, suggesting this to be an additional mechanism for apoptosis induction. GSE-induced apoptosis, cell growth inhibition, and cell death were attenuated by pretreatment with N-acetylcysteine and involved reactive oxygen species generation. Together, these results show GSE effects in LNCaP cells and suggest additional in vivo efficacy studies in prostate cancer animal models.  相似文献   

11.
Selenium has been implicated as a promising chemopreventive agent for prostate cancer. Whereas the anticancer mechanisms have not been clearly defined, one hypothesis relates to selenium metabolites, especially the monomethyl selenium pool, generated under supranutritional selenium supplementation. To explore potential molecular targets for mediating the chemopreventive activity, we contrasted the effects of methylseleninic acid (MSeA), a novel precursor of methylselenol, versus sodium selenite, a representative of the hydrogen selenide metabolite pool, on apoptosis execution, cell cycle distribution, and selected protein kinases in DU145 human prostate cancer cells. Exposure of DU145 cells to 3 microM MSeA led to a profound G1 arrest at 24 h, and exposure to greater concentrations led to not only G1 arrest, but also to DNA fragmentation and caspase-mediated cleavage of poly(ADP-ribose) polymerase (PARP), two biochemical hallmarks of apoptosis. Immunobiot analyses indicated that G1 arrest induced by the subapoptogenic doses of MSeA was associated with increased expression of p27kip1 and p21cip1, but apoptosis was accompanied by dose-dependent decreases of phosphorylation of protein kinase AKT and extracellular signal-regulated kinase (ERK1/2) in the absence of any phosphorylation change in p38 mitogen-activated protein kinase (p38MAPK) and c-Jun NH2-terminal kinase (JNK1/2). In contrast, selenite exposure caused S-phase arrest and caspase-independent apoptotic DNA fragmentation, which were associated with decreased expression of p27kip1 and p21cip1 and increased phosphorylation of AKT, JNK1/2, and p38MAPK. Although apoptosis induction by MSeA exposure was not sensitive to superoxide dismutase added into the cell culture medium, cell detachment and DNA nucleosomal fragmentation induced by selenite exposure were greatly attenuated by this enzyme, supporting a chemical mediator role of superoxide for these processes. Despite a temporal relationship of AKT and ERK1/2 de-phosphorylation changes before the onset of PARP cleavage in MSeA-exposed cells, experiments with phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 did not show an enhancing effect of specific blocking of AKT on MSeA-induction of PARP cleavage. Taken together, exposure of DU145 cells to MSeA versus selenite induced differential patterns of cell cycle arrest and apoptosis execution as well as distinct patterns of effects on AKT, ERK1/2, JNK1/2, and p38MAPK phosphorylation and p27kip1 and p21cip1 expression. Multiple molecular pathways are likely differentially targeted by selenium metabolite pools to mediate cancer chemoprevention.  相似文献   

12.
Despite local and systemic therapies, the National Cancer Institute estimates that prostate cancer will cause over 30,000 deaths in 2006. This suggests that additional therapeutic approaches are needed. The chicken anemia viral protein Apoptin causes tumor-selective apoptosis in human tumor lines independent of p53 and Bcl-2 status. Tet-regulated expression of Apoptin from an adenoviral vector showed cytotoxicity in DU145, PC-3, and LNCaP tumor cells regardless of expression of p53, Bcl-2, Bcl-xL, Bax, survivin, FLIP(S), XIAP, or CIAP. Apoptin expression caused an increase in the tumor suppressor lipid ceramide, which regulates the cellular stress response. Interestingly, 10 of 15 primary prostate cancers examined by Western blotting overexpressed acid ceramidase (AC), suggesting that ceramide deacylation might serve to negate elevated levels of ceramide, creating a more antiapoptotic phenotype. This was confirmed in AC-overexpressing cells in which we observed decreased sensitivity to apoptosis following treatment with Apoptin. Addition of the AC inhibitor LCL204, in combination with Apoptin, augmented cell killing. This effect was also demonstrated in vivo in that Apoptin and LCL204 cotreatment significantly reduced tumor growth in DU145 xenografts (P<0.05). Taken together, our data demonstrated that Apoptin is a promising therapeutic agent for prostate cancer and that its function is improved when combined with acid ceramidase inhibitors.  相似文献   

13.
Maspin is a member of the serine protease inhibitors and the maspin gene, a tumor suppressor gene, is down-regulated in a large fraction of prostate cancers. We evaluated the use of adeno-associated virus (AAV, serotype 2) vector encoding maspin as a means for in vivo gene therapy for human prostate cancer. TUNEL assay of subcutaneously formed LNCaP or DU145 tumors in nude mice showed that intratumoral AAV-mediated maspin expression significantly upregulated the number of apoptotic cells compared with AAV-LacZ treatment. Immunofluorescence double staining for maspin protein and apoptosis in LNCaP tumors showed that the percentage of apoptotic cells in AAV-maspin-mediated maspin-expressing cells was significantly high compared with that in AAV-GFP-mediated GFP-expressing cells. Moreover, significantly fewer CD31-positive microvessels were observed in AAV-maspin-treated tumors compared with the control tumors. These therapeutic responses were highly correlated to persistent maspin expression in tumors, confirmed by Western blot analysis until at least day 56 after treatment. Finally, intratumoral delivery of AAV-maspin significantly suppressed growth of LNCaP and DU145 tumors and improved survival of mice. We conclude that AAV-mediated prolonged maspin expression efficiently suppresses human prostate tumor growth in vivo by apoptosis induction and inhibition of angiogenesis.  相似文献   

14.
15.
Histone deacetylase (HDAC) inhibitors are a new class of anticancer agents that act by inhibiting cancer cell proliferation and inducing apoptosis in various cancer cell lines. To investigate the anticancer effect of a novel histone deacetylase (HDAC) inhibitor MHY219, its efficacy was compared to that of suberoylanilide hydroxamic acid (SAHA) in human prostate cancer cells. The anticancer effects of MHY219 on cell viability, HDAC enzyme activity, cell cycle regulation, apoptosis and other biological assays were performed. MHY219 was shown to enhance the cytotoxicity on DU145 cells (IC50, 0.36 μM) when compared with LNCaP (IC50, 0.97 μM) and PC3 cells (IC50, 5.12 μM). MHY219 showed a potent inhibition of total HDAC activity when compared with SAHA. MHY219 increased histone H3 hyperacetylation and reduced the expression of class I HDACs (1, 2 and 3) in prostate cancer cells. MHY219 effectively increased the sub-G1 fraction of cells through p21 and p27 dependent pathways in DU145 cells. MHY219 significantly induced a G2/M phase arrest in DU145 and PC3 cells and arrested the cell cycle at G0/G1 phase in LNCaP cells. Furthermore, MHY219 effectively increased apoptosis in DU145 and LNCaP cells, but not PC3 cells, according to Annexin V/PI staining and Western blot analysis. These results indicate that MHY219 is a potent HDAC inhibitor that targets regulating multiple aspects of cancer cell death and might have preclinical value in human prostate cancer chemotherapy, warranting further investigation.  相似文献   

16.
目的研究在雄激素依赖性及雄激素非依赖性前列腺癌细胞系、组织和前列腺增生(BPH)组织中JKTBP的表达差异。方法应用RT-PCR和Westernblot比较雄激素依赖性前列腺癌(AD-PCa)细胞系LNCaP及雄激素非依赖性前列腺癌(AI-PCa)细胞系DU145JKTBPmR—NA和蛋白的表达差异;应用免疫组化方法比较BPH、AD-PCa和AI-PCa组织中JKTBP的表达差异。结果在LNCaP细胞系中JKTBPmRNA和蛋白的表达水平均较低,相反,在DU145细胞系中两者均呈高表达,两细胞系间mRNA和蛋白的表达差异具有统计学意义(P〈0.05)。JKTBP在20例BPH组织中均表达阴性;在20例AD-PCa组织中有4例弱阳性,2例阳性,14例阴性;而在6例AI-PCa组织中5例呈强阳性表达,1例弱阳性;三组之间表达差异具有统计学意义(P〈0.05)。结论JKTBP在AD/AI-PCa细胞系、组织和BPH组织中的表达存在差异,其可能参与了前列腺癌的进展过程,是前列腺癌进展的一个指标。  相似文献   

17.
目的研究mi R-30c在前列腺癌中的功能调控作用,获得其调控前列腺癌侵袭及转移的可靠证据,进而揭示其在前列腺癌中可能的调控机制。方法从mi RNA芯片检测结果中获得前列腺癌相关的差异表达的mi R-30c分子,进一步通过mi R-30c过表达质粒转染前列腺癌细胞,运用Transwell检测细胞侵袭变化,划痕实验检测细胞转移变化。结果 LNCa P/DU145转染质粒后,mi R-30c的表达水平显著高于阴性对照组(LNCa P:倍数=3.87,P<0.001;Du145:倍数=4.32,P<0.001)。Transwell侵袭实验表明,mi R-30c转染组的LNCa P/DU145细胞侵袭的数量显著低于对照组(LNCa P:67 vs.120个/视野,P<0.001;DU145:130 vs.220个/视野,P<0.001)。划痕实验结果发现mi R-30c转染后,LNCa P/DU145细胞实验组转移的数量显著低于对照组(LNCa P:241 vs.520个/视野,P<0.001;DU145:490 vs.660个/视野,P<0.001)。结论 mi R-30c可抑制前列腺癌细胞的侵袭及转移,这说明mi R-30c在前列腺中确实起着抑癌的作用,其可能通过KRAS-MAPK信号通路抑制前列腺癌的侵袭及转移。  相似文献   

18.
熊果酸对前列腺癌细胞作用的实验研究   总被引:1,自引:0,他引:1  
目的 探讨熊果酸对前列腺癌的治疗作用及机制.方法 MTT法检测熊果酸对体外培养的人前列腺癌细胞LNCaP和DUl45生长的影响.结果 熊果酸对不同浓度雄激素下的LNCaP细胞均呈浓度和时间依赖性生长抑制,熊果酸作用后,LNCaP细胞生长的最适雄激素浓度上升了10倍.DU145细胞对雄激素阻断剂氟他胺缺乏反应,熊果酸对DU145细胞具有浓度和时间依赖性抑制效应,熊果酸作用同时再应用氟他胺比单纯熊果酸的作用更明显,对细胞抑制率明显上升.结论 熊果酸能改善前列腺癌细胞对雄激素的反应性,使LNCaP细胞对雄激素的依赖性加强,并诱发了DUl45细胞对雄激素的反应性,延缓或者阻止了雄激素非依赖性的发生.  相似文献   

19.
Advanced and hormone-refractory prostate cancer has long been considered as a chemoresistant disease. Recently, it was found that 14-3-3sigma expression increases as prostate tumor progresses, and that 14-3-3sigma contributes significantly to drug resistance in breast cancers. We, thus, hypothesized that advanced and hormone-refractory prostate cancers may have an increased level of 14-3-3sigma, which in turn may contribute to drug resistance in advanced and hormone-refractory prostate cancers. In this study, we tested this hypothesis and found that, indeed, the expression level of 14-3-3sigma in androgen-independent prostate cancer cell lines DU145, PC3, and CWR22RV are much higher than that in the androgen-dependent cell line LNCaP, and that the androgen-independent cells are more resistant to mitoxantrone and Adriamycin than the androgen-dependent cells. Depleting 14-3-3sigma expression in DU145 and CWR22RV by RNA interference significantly sensitized these cells to mitoxantrone and Adriamycin by abrogating G2-M checkpoint and increasing apoptosis, whereas restoring 14-3-3sigma expression in LNCaP cells enhanced drug resistance. We also showed that 14-3-3sigma deficiency caused nuclear localization of Cdc2 and dephosphorylation of the Tyr15 residue upon DNA damage. Based on these studies, we propose that therapeutic intervention targeting 14-3-3sigma may be useful for sensitizing hormone-refractory prostate cancers to chemotherapy by both G2-M checkpoint abrogation and apoptosis enhancement.  相似文献   

20.
We studied the role of protein kinase C isoform PKCdelta in ceramide (Cer) formation, as well as in the mitochondrial apoptosis pathway induced by anticancer drugs in prostate cancer (PC) cells. Etoposide and paclitaxel induced Cer formation and apoptosis in PKCdelta-positive LNCaP and DU145 cells but not in PKCdelta-negative LN-TPA or PC-3 cells. In contrast, these drugs induced mitotic cell cycle arrest in all PC cell lines. Treatment with Rottlerin, a specific PKCdelta inhibitor, significantly inhibited drug-induced Cer formation and apoptosis in LNCaP cells, as did overexpression of dominant negative-type PKCdelta. Overexpression of wild-type PKCdelta had an opposite effect in PC-3 cells. Notably, etoposide induced biphasic Cer formation in LNCaP cells. The early and transient Cer increase resulted from de novo Cer synthesis, while the late and sustained Cer accumulation was derived from sphingomyelin hydrolysis by neutral sphingomyelinase (nSMase). Cer, in turn, induced mitochondrial translocation of PKCdelta and stimulated the activity of this kinase, promoting cytochrome c release and caspase-9 activation. Furthermore, the specific caspase-9 inhibitor LEHD-fmk significantly inhibited etoposide-induced nSMase activation, Cer accumulation, and PKCdelta mitochondrial translocation. These results indicate that PKCdelta plays a crucial role in activating anticancer drug-induced apoptosis signaling by amplifying the Cer-mediated mitochondrial amplification loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号