共查询到19条相似文献,搜索用时 78 毫秒
1.
背景:近年来,研究者将最先应用于工程领域的3D打印技术嫁接到组织工程学中,希冀利用3D生物打印技术进行体外组织、器官复制过程,并取得了一些令人惊喜的成果。
目的:从3D打印技术的原理、打印操作步骤、与组织工程学的关系、优势和难题、临床应用等方面对其目前的发展趋势做一概述。
方法:第一作者应用计算机检索2000年1月至2013年10月PubMed数据库、中国期刊全文数据库、维普中文期刊网有关3D生物打印技术在组织工程中应用的文章,英文检索词“three-dimensional bioprinting, tissue engineering, rapid prototyping technology, scaffold materials, selective laser sintering, fused deposition modeling, stereolithography ”,中文检索词“3D生物打印,组织工程学,快速成型技术,支架材料,选择性激光烧结,熔融沉积成型,立体光刻技术”,排除重复性研究。共检索到79篇相关文献,其中52篇文献符合纳入标准。
结果与结论:3D生物打印就是借助影像技术(CT、MRI)资料的辅助,应用计算机辅助设计技术虚拟出待构建体的三维结构,然后利用相应的材料,逐层创建出实体的一种组织工程学技术。其具有高精度、构建速度快,可实现按需制造等优势,但也面对力学、生物学等方面的难题,临床应用前景广阔。
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接: 相似文献
2.
背景:通过选用合适的生物墨水,3D打印技术可用以制造人体组织和器官的代替物,并在人体内发挥作用。近些年来3D打印技术发展迅速,在再生医学中有着巨大的应用潜力。目的:介绍3D打印用生物墨水的类型,并综述生物墨水的分类、应用、优缺点及未来愿景。方法:以“3D printing,Biological ink,Tissue engineering,hydrogel,Synthetic material,Cytoactive factor,3D打印、生物墨水、组织工程”为检索词,运用计算机检索2000-2022年以来发表在PubMed、CNKI数据库中的相关文献,最终纳入83篇进行综述。结果与结论:在过去的几十年里,生物3D打印技术发展迅速,在组织工程和生物医学等各个领域都受到了极大的关注。相对于传统生物支架制造方法在功能性及结构方面受到的限制,3D打印可以更好地模拟生物组织复杂的结构,并且具有合适的力学、流变学和生物学特性。生物墨水是3D打印中必不可少的一部分,通过生物材料制备的生物墨水,经打印后产生的生物支架在组织修复和再生医学等方面有着巨大的科研潜力及临床意义,其材料的研究本身也越来越受到... 相似文献
3.
心脏组织工程(CTE)是一种具有发展前景的心脏修复技术,为心脏组织的研究提供了平台,其主要应用于修复受损或无效的血管、心脏瓣膜和心肌。三维(3D)生物打印技术已经越来越多地用于医学的不同领域,包括心血管疾病(CVD)。文章就CTE的3D生物打印技术的最新进展作一综述,针对特定CVD患者的3D打印模型,重点介绍了3D打印模型在先天性心脏病、冠状动脉疾病及主动脉瓣疾病等CAD中的应用,以及生物打印过程中常用于生物墨水的海藻酸盐、明胶、纤维蛋白和胶原蛋白等生物材料,并分析了3D生物打印技术在CTE领域的应用前景及未来要面临的挑战。3D生物打印技术因能够将多个细胞整合到具有复杂3D结构的打印支架中而备受关注,为多种CAD患者提供更多治疗方案,增强了临床医生对复杂疾病的理解和对复杂手术的信心。随着3D打印技术的发展和打印材料的改进,3D打印技术将在CTE中应用会越来越广泛。 相似文献
4.
现代成像技术是生物医学领域中的一个重要组成部分。然而,由于传统的2D方法所具有的代表性,使得许多包含3D 重建的传统方法被限制。3D 打印,也被称作快速原形技术或者增材制造技术,它是通过电脑辅助,分层加工、逐层叠加的方式获得三维产品,曾经应用在工业与制造领域中。3D 成像分析会提供比2D 放射线照相技术更详细的信息,由于3D 打印的这些附加优点,因此它可以应用于术前计划以及再生治疗中。现如今,3D 打印技术已经被广泛的应用于医学领域。例如,3 D 打印技术的应用已经被延伸到组织或器官的生物细胞打印,组织工程中骨架的创造以及在多样的医学领域中的实际临床应用。本文就目前3D 打印技术在生物学中的应用及进展加以综述。 相似文献
5.
白云瑞韩玉川吴植文刘一然支鹏翔朱险峰 《国际生物医学工程杂志》2018,(5):450-454
3D打印技术在生物医学领域有着独特的优势与广阔的应用前景。近年来,细胞打印、组织打印、器官打印相继出现,药物打印、医疗器械打印等亦陆续实现。面对复杂手术病例,外科医生和科研人员探索了结合3D打印技术的手术方案,完成了包括案例讨论、手术模拟及植入手术等众多临床应用,促进了3D打印技术在医学领域的应用与发展。旨在从医学教学、骨科手术、口腔医学、生物打印、药物打印、医疗器械制造等方面描述3D打印技术在医学领域的应用研究现状,并对其未来发展提出了展望。 相似文献
6.
[摘要]近年来,随着3D打印技术的不断发展与成熟,其在医学领域的应用大有增长的趋势,国内外不少专家、学者正在进行大量尝试,试图充分应用该技术服务人类的医疗行业。文章就3D打印技术的基本原理、3D打印材料及该技术在医疗领域应用现状作简要描述与说明,使读者对3D打印技术及其在医疗领域的应用有初步了解。 相似文献
7.
背景:3D生物打印的应用愈加广泛,与之相关的生物墨水灭菌则非常重要,然而用于临床目的的生物墨水的灭菌问题尚未得到解决.目的:对用于3D生物打印的生物墨水灭菌技术的研究做一综述.方法:检索中国知网、万方数据、PubMed和Web of Science数据库中相关文献,中文检索词为"3D生物打印、组织工程、增材制造、生物墨... 相似文献
8.
针对泌尿系疾病导致的组织器官损伤和缺失,目前临床上的治疗方法存在局限性。组织工程通过对细胞、生物支架和生物相关分子的研究,提供了一种可替代或再生受损组织器官的治疗手段。三维(3D)生物打印技术作为新兴制造技术,能对载有细胞的生物材料精确控制,进一步推动着组织工程领域的发展。本文综述了3D生物打印技术在肾脏、输尿管、膀胱、尿道组织工程中的研究进展和应用,并讨论了目前面临的主要挑战和未来展望。 相似文献
9.
背景:长段气管病变主要由感染、创伤、恶性肿瘤等因素引起,至今其临床治愈情况仍然无法令人满意.组织工程气管结合生物打印技术可为气管长段损伤修复提供有效治疗途径.目的:综述生物打印技术在组织工程气管领域的应用与进展.方法:以"tracheal tissue engineering,3D printing,4D printi... 相似文献
10.
骨肿瘤的手术治疗包括肿瘤切除和功能重建两部分,传统手术方式往往存在各种局限性。3D打印技术作为一种新兴的技术,在术前规划、肿瘤切除和功能重建中发挥了重要作用,同时在多种骨科数字技术的辅助下,成功实现了骨肿瘤的精准化治疗。此外,3D生物打印也在骨肿瘤的治疗中展现了巨大潜力。本文总结回顾了3D打印技术在骨肿瘤治疗中的应用情况及研究进展,并分析了现有技术的优缺点,发现3D打印技术在临床治疗中具有独特的优势,在骨肿瘤精准化治疗中具有广泛的应用前景。 相似文献
11.
12.
《Biomaterials》2015
The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25–30% PU2 hydrogels (∼680–2400 Pa) had excellent proliferation and differentiation but not in 25–30% PU1 hydrogels. Moreover, NSC-laden 25–30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25–30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering. 相似文献
13.
近年来,随着3D打印技术的飞速发展,人们开始通过3D打印技术去不断完善适合不同需求的定制骨组织工程支架。由于组织工程制造的支架是需要植入生物体内的,这就对支架有着极为严苛的要求。3D打印技术作为一种新兴制备骨组织工程支架的技术,其最大的优点是可以依照需求来定制个性化形状、结构,良好的宏微观结构、润湿性、机械强度和细胞反应的新型骨组织工程支架。本文回顾了2014―2019年间对骨组织工程支架的研究,对3D打印骨组织工程支架进行了总结,并且介绍了在多功能骨组织工程支架设计与制作中的理念与研究。 相似文献
14.
XuanQi Zheng JinFeng Huang JiaLiang Lin DeJun Yang TianZhen Xu Dong Chen 《Journal of biomaterials science. Polymer edition》2013,24(13):1172-1187
AbstractThe repair of critical-size bone defect remains a challenge for orthopedic surgeons. With the advent of an aging society and their accompanying chronic diseases, it is becoming more difficult to treat bone defects, especially large segmental bone defects that are caused by trauma, tumors, infections, and congenital malformations. New materials and technologies need to be developed to address these conditions. 3D bioprinting is a novel technology that bridges the biomaterial and living cells and is an important method in tissue engineering projects. 3D bioprinting has the advantages of replacing or repairing damaged tissue and organs. The progress in material science and 3D printing devices make 3D bioprinting a technology which can be used to create various scaffolds with a large range of advanced material and cell types. However, in regard to the widespread use of bioprinting, biosafety, immunogenicity and rising costs are rising to be concerned. This article reviews the developments and applications of 3D bioprinting and highlights newly applied techniques and materials and the recent achievements in the orthopedic field. This paper also briefly reviews the difference between the methods of 3D bioprinting. The challenges are also elaborated with the aim to research materials, manufacture scaffolds, promote vascularization and maintain cell viability. 相似文献
15.
《生物医学工程学杂志》2020,(2):207-210
三维(3D)生物打印是近年来新兴的一项生物组织工程学技术,其发展有利于解决目前临床组织器官修复的问题。本文就3D生物打印和泌尿系统修复重建的临床与研究现状进行回顾,并展望3D生物打印应用于泌尿系统修复重建中的可行性与临床价值。 相似文献
16.
《Biomaterials》2015
This study offers a novel 3D bioprinting method based on hollow calcium alginate filaments by using a coaxial nozzle, in which high strength cell-laden hydrogel 3D structures with built-in microchannels can be fabricated by controlling the crosslinking time to realize fusion of adjacent hollow filaments. A 3D bioprinting system with a Z-shape platform was used to realize layer-by-layer fabrication of cell-laden hydrogel structures. Curving, straight, stretched or fractured filaments can be formed by changes to the filament extrusion speed or the platform movement speed. To print a 3D structure, we first adjusted the concentration and flow rate of the sodium alginate and calcium chloride solution in the crosslinking process to get partially crosslinked filaments. Next, a motorized XY stages with the coaxial nozzle attached was used to control adjacent hollow filament deposition in the precise location for fusion. Then the Z stage attached with a Z-shape platform moved down sequentially to print layers of structure. And the printing process always kept the top two layers fusing and the below layers solidifying. Finally, the Z stage moved down to keep the printed structure immersed in the CaCl2 solution for complete crosslinking. The mechanical properties of the resulting fused structures were investigated. High-strength structures can be formed using higher concentrations of sodium alginate solution with smaller distance between adjacent hollow filaments. In addition, cell viability of this method was investigated, and the findings show that the viability of L929 mouse fibroblasts in the hollow constructs was higher than that in alginate structures without built-in microchannels. Compared with other bioprinting methods, this study is an important technique to allow easy fabrication of lager-scale organs with built-in microchannels. 相似文献
17.
《Acta histochemica》2022,124(7):151932
3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields. 相似文献
18.
生长因子在组织工程中的应用 总被引:1,自引:0,他引:1
生长因子具有促进细胞增殖 ,组织或血管的修复和再生的作用 ,是组织工程的三个主要研究方面之一。本文对目前组织工程领域研究和应用的一些重要生长因子的主要作用以及近期的实验进展进行了综述 ,并指出了当前生长因子临床应用所面临的问题以及今后的研究方向 相似文献
19.
纳米材料在组织工程中的应用研究 总被引:2,自引:0,他引:2
组织工程研究领域中,支架材料与细胞的相互作用是主要的研究课题。支架材料表面的微观结构对细胞的生物调控作用更为重要。纳米材料因具有一些独特的效应,如体积效应和表面效应,有利于细胞的粘附、增殖和功能的增强,因而作为组织工程支架有良好的应用前景。目前用于组织工程研究的纳米材料主要有无机纳米材料、高分子纳米材料、复合纳米材料,仿生纳米材料的研究和利用将极大地促进组织工程学的发展。本文就近年来纳米材料的制备方法以及其在组织工程中的应用研究现状进行了综述。 相似文献