首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental tumors growing in irradiated tissue have been used to study the biological differences characteristic of locally recurrent tumors. Animal tumors were early generation isotransplants of a spontaneous fibrosarcoma in a C3Hf/Sed mouse, designated FSa-II. Since the hypoxic cell fraction of tumors growing in irradiated tissue is increased, these tumors are assumed to be metabolically deprived with hypoperfusion and acidosis. In this study we directly measured the oxygen partial pressure (pO2) distribution, metabolic state, and pH of tumors growing in an irradiated tumor bed using oxygen sensitive electrodes and 31P-NMR. The results confirmed a three-fold increase in the number of pO2 readings less than or equal to 2.5 mmHg and also showed increased acidosis with a 0.17 unit decrease in pHNMR. When tumors growing in pre-irradiated tissue reached approximately 100 mm3 in volume, a high frequency of gross and microscopic necrosis and hemorrhage was already observed. Consistent with these observations, the phosphocreatine/inorganic phosphate (PCr/Pi) and nucleoside triphosphate/inorganic phosphate (NTP/Pi) ratios were significantly lower in the tumors in a pre-irradiated bed compared to tumors in a non-irradiated bed (PCr/Pi: 0.51 vs 0.79, p less than 0.05; and NTP/Pi: 0.64 vs 0.93, p less than 0.05). The longitudinal relaxation time (T1) of Pi was numerically shorter in control tumors (consistent with the better tissue oxygenation), but this did not reach statistical significance (2.09 +/- .11 sec vs 2.25 +/- .16 sec).  相似文献   

2.
Tumor tissue contains viable hypoxic regions that are radioresistant and often chemoresistant and may therefore be responsible for some treatment failures. A subject of general interest has been the development of non-invasive means of monitoring tissue oxygen. Pulse Fourier transform 31P NMR spectroscopy can be used to estimate intracellular nucleotide triphosphates (NTP), phosphocreatinine (PCr), inorganic phosphate (Pi) and pH. We have obtained 31P NMR spectra as an indirect estimate of tissue oxygen and metabolic status in a C3H mouse fibrosarcoma FSaII. Sequential spectra were studied during tumor growth in a cohort of animals and peak area ratios for several metabolites were computed digitally by computer. During growth, tumors showed a progressive loss of PCr with increasing Pi, and most tumors greater than 250 mm3 in volume had little or no measurable PCr. The smallest tumors (38 mm3 average volume) had PCr/Pi ratios of 1.03 +/- .24, whereas tumors 250 mm3 or more had an average PCr/Pi ratio of 0.15 +/- .04. Similarly derived NTP/Pi ratios decreased with tumor size, but this change was not significant (p = .17). Radiobiologic hypoxic cell fractions were estimated using the radiation dose required to control tumor in 50% of animals (TCD50) or by the lung colony technique. Tumors less than 100 mm3 had a hypoxic cell fraction of 4% (TCD50) while tumors 250 mm3 had a 40% hypoxic cell fraction (lung colony assay). These hypoxic fraction determinations correlated well with the depletion of PCr and decline in NTP/Pi ratios seen at 250 mm3 tumor volumes. Tumor spectral changes with acute ischemia were studied after ligation of the tumor bearing limb and were similar to changes seen with tumor growth. PCr was lost within 7 minutes, with concurrent increase in Pi and loss of NTP. Complete loss of all high energy phosphates occurred by 40 minutes of occlusion. In vivo tumor 31P NMR spectroscopy can be used to estimate tissue metabolic status and may be useful in non-invasive prediction of hypoxic cell fraction, reoxygenation, and radiation treatment response.  相似文献   

3.
Hypoxia is considered to be a major cause of tumor radioresistance. Reoxygenation of previously hypoxic areas after a priming dose of radiation is associated with an increase in tumor radiosensitivity. In a study of a hypoxic mammary carcinoma, 31P nuclear magnetic resonance spectra showed statistically significant increases in metabolite ratios (phosphocreatine/Pi and nucleotide triphosphate/Pi) after 65 and 32 Gy. The maximum changes in metabolite ratios after 32 Gy occurred at 48 h, although significant changes were detected at 24 h. A corresponding increase in the mean tumor pO2 (polarographic microelectrode measurements) and a decrease in hypoxic cell fraction [changes in paired (clamped versus unclamped) tumor control dose for 50% of tumors] were also shown to occur 48 h after a priming dose of 32 Gy. A significant increase in the mean tumor pO2, phosphocreatine/Pi, and nucleotide triphosphate/Pi, compared to initial values, was noted at 24, 48, and 96 h post 65-Gy radiation. An increase in the downfield component of the phosphomonoester peak relative to the upfield component (phosphoethanolamine), is also noted after doses of 65 and 32 Gy. These are likely to be due to cell kill and/or decreased cell proliferation. In this tumor model, 31P nuclear magnetic resonance spectroscopic changes postradiation are temporally coincident with and may be indicative of tumor reoxygenation as measured by the tumor control dose for 50% of tumors and oxygen-sensitive microelectrodes.  相似文献   

4.
The effect of 100% inspired oxygen on in vivo tumor metabolism was examined using phosphorus-31 (31P) NMR spectroscopy. Isotransplants of two murine tumor histologies, designated MCaIV (C3H mammary adenocarcinoma) and FSaII (C3H fibrosarcoma), were used in syngeneic mice. Tumor volumes ranged from 30 to 1,800 mm3. Both tumor histologies are known to have a high hypoxic cell fraction when tumor volumes exceed 250 mm3. 31P nuclear magnetic resonance (NMR) spectra were obtained at 145.587 MHz, and the signal was detected using a 1.4 cm diameter, single loop coil designed to localize the signal from only the tumor. Spectral parameters for optimal signal-to-noise ratio (SNR) included a 60 degrees pulse and a 2-second recycle delay. Tumors were implanted in the hindfoot dorsum to assure that all detected mobile phosphates were of tumor origin. Phosphocreatine/inorganic phosphate (PCr/Pi) ratios of large tumors (greater than 250 mm3) were reduced compared with small tumors (less than 250 mm3) of the same histology. The increased PCr/Pi response to 100% inspired oxygen was greater for large tumors and for tumors with lower baseline PCr/Pi ratios. When host animals were given 10% oxygen for respiration, there was an increase in Pi and a decrease in both PCr and ATP. The response to 10% oxygen was observed in both large and small tumors of both tumor histologies studied. Resting skeletal muscle exhibited no alteration in the NMR spectrum during either 100 or 10% oxygen breathing. We conclude that the fractional increase in PCr/Pi ratio that occurs after 100% oxygen breathing is a sensitive, noninvasive method of detecting tumor hypoxia.  相似文献   

5.
Phosphorus metabolite levels were measured non-invasively using 31P magnetic resonance spectroscopy (MRS) in SCCVII/SF tumors, subcutaneously transplanted into the legs of unanesthetized C3Hf/Sed mice. Shortly after MRS measurements, tumors were irradiated with a single dose of 20 Gy, and cell survival and radiobiologic hypoxic fraction were determined with an in vitro cloning assay. Significant correlations were found between tumor size and surviving fraction, hypoxic fraction, pH, and phosphorus metabolite ratios. With increase of tumor size, surviving fraction and hypoxic fraction both increased, the ratios of inorganic phosphate and phosphomonoesters to nucleoside triphosphates (Pi/NTP and PME/NTP, respectively) and inorganic phosphate to phosphocreatine (Pi/PCr) increased and pH decreased. However, considerable heterogeneity of MRS spectral parameters, even in tumors of similar size, precluded accurate prediction of hypoxic fraction and cell survival after radiotherapy.  相似文献   

6.
This study has evaluated the effect of breathing 100% oxygen, carbogen and carbon monoxide (at 660 p.p.m.) on the bioenergetic and oxygenation status and the radiation response of 200-mm3 C3H mammary carcinomas grown in the feet of CDF mice. Bioenergetic status was assessed by 31P magnetic resonance spectroscopy (MRS) using a 7-tesla spectrometer with both short (2 s) and long (6 s) pulse repetition times. Tumour partial pressure of oxygen (PO2) was measured with an Eppendorf polarographic electrode; the oxygenation parameters were the median pO2 and fraction of pO2 values < or = 2.5 mmHg. The radiation response was estimated using a tumour growth delay assay (time to grow three times treatment volume). Carbon monoxide breathing decreased tumour pO2 and compromised the radiation response, but the beta-nucleoside triphosphate (NTP)/Pi ratio was unchanged. Both carbogen and oxygen (100%) increased tumour pO2 and beta-NTP/Pi and enhanced the radiation response, the effects being similar under the two gassing conditions and dependent on the gas breathing time. Thus, in this tumour model, 31P-MRS can detect hyperoxic changes, but because cells can remain metabolically active even at low oxygen tensions the beta-NTP/Pi did not correlate with low tissue oxygenation. An analysis of variance showed that gas breathing time induced a significant systematic effect on beta-NTP/Pi, the MRS pulse repetition time had a significant effect on beta-NTP/Pi change under hypoxic but not under hyperoxic conditions and the type of gas that was inhaled had a significant effect on beta-NTP/Pi.  相似文献   

7.
Relationships between tumor bioenergetic status on the one hand and intracapillary oxyhemoglobin (HbO2) saturation status and fraction of radiobiologically hypoxic cells on the other were studied using two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI). Tumor energy metabolism was studied in vivo by 31P nuclear magnetic resonance (NMR) spectroscopy and the resonance area ratio (PCr + NTP beta)/Pi was used as parameter for bioenergetic status. Intracapillary HbO2 saturation status reflects the oxygen supply conditions in tumors and was measured in vitro using a cryospectrophotometric method. The KHT, RIF-1, and MLS lines showed decreasing bioenergetic status, i.e., decreasing PCr and NTP beta resonances and an increasing Pi resonance, with increasing tumor volume, whereas the OWI line showed no changes in these resonances during tumor growth. The volume-dependence of the HbO2 saturation status differed similarly among the tumor lines; HbO2 saturation status decreased with increasing tumor volume for the KHT, RIF-1, and MLS lines and was independent of tumor volume for the OWI line. Moreover, linear correlations were found between bioenergetic status and HbO2 saturation status for individual tumors of the KHT, RIF-1, and MLS lines. These observations together indicated a direct relationship between 31P-NMR spectral parameters and tumor oxygen supply conditions. However, this relationship was not identical for the different tumor lines, suggesting that it was influenced by intrinsic properties of the tumor cells such as rate of respiration and ability to survive under hypoxia. Similarly, there was no correlation between bioenergetic status and fraction of radiobiologically hypoxic cells across the four tumor lines. This indicates that 31P-NMR spectroscopy data have to be supplemented with other data, e.g., rate of oxygen consumption, cell survival time under hypoxic stress, and/or fraction of metabolically active, nonclonogenic hypoxic cells, to be useful in quantitative determination of tumor hypoxia and hence prediction of tumor radioresistance caused by hypoxia.  相似文献   

8.
Phosphorus-31 magnetic resonance spectra were obtained from the RIF-1 tumor in C3H mice before and up to 2 days after various doses of X rays. Parallel studies were performed to measure relative changes in tumor blood perfusion using [14C]iodo-antipyrine and changes in % tumor necrosis using Chalkley's method. Tumor ratios of phosphocreatine to inorganic phosphate (PCr/Pi) and nucleotide triphosphates to inorganic phosphate (NTP/Pi) as well as pH as measured by 31P-MRS increased significantly at most time points after irradiation with doses of 5, 10, and 20 Gy. Tumor blood perfusion was found to significantly improve after a dose of 20 Gy but not after a dose of 2 Gy. Percent tumor necrosis increased to about 3 times its control level at 1 day after a dose of 20 Gy and then declined to about twice its control value at 2 days. The magnitude of the changes in the 31P-MRS parameters makes it unlikely that any of them are entirely due to radiation-induced changes in the radiobiologically hypoxic fraction of these tumors. Changes in the necrotic fraction did not appear to influence the tumor spectra. However, the observed improvement in tumor blood perfusion may have resulted in an increase in oxidative phosphorylation of the whole tumor population as well as a clearance of inorganic phosphate and acid metabolites, so that 31P-MRS changes may indirectly reflect changes in tumor blood perfusion.  相似文献   

9.
The effects of hydralazine on tumor energy metabolism and on some cardiovascular parameters were measured. Tumor energy metabolism was studied in C3Hf/Sed mice with isotransplants of a spontaneous murine fibrosarcoma (FSaII, congruent to 100 mm3 in volume) and 31P-NMR. Cardiovascular parameters were measured in anesthetized C3Hf/Sed mice via intracarotid catheter. Hydralazine doses of 0.25 mg/kg given ip caused an increase of the phosphocreatine to inorganic phosphate ratio (PCr: Pi) in 5 of 6 animals. These doses had minimal effects on mean arterial blood pressure, though there may have been an increased cardiac output due to a decreased afterload. Hydralazine doses greater than or equal to 2.0 mg/kg given ip were associated with a decrease in PCr, nucleotide triphosphate, and pH, and an increase in Pi (P less than .01 for control vs. 10 mg hydralazine/kg). This substantial decrease in high-energy phosphates was associated with a pronounced decrement in mean arterial blood pressure. These findings provide a rational basis for the study in experimental systems of hydralazine-induced enhancement of cell killing by hyperthermia and by agents toxic to hypoxic cells. Further, these results can be taken as a sign that hydralazine should be used with care in patients undergoing radiation treatment.  相似文献   

10.
The relationship between energy status and hypoxia was examined in two murine tumors with substantially different hypoxic cell fractions in situ and in cells derived from these tumors in vitro. Parameters of tumor energy status were NTP/Pi and PCr/Pi obtained by 31P-NMR spectroscopy and adenylate energy charge and energy status obtained by high-pressure liquid chromatographic analysis of tumor extracts. Adenylate energy charge and rates of high-energy phosphate degradation were determined on cells obtained from both tumor types (MCaIV and FSaII) under identical nutrient and oxygen conditions, that is, air and nitrogen for various durations (0-6 hr). No consistent or substantial differences were noted in the various parameters of tumor energy status obtained by nuclear magnetic resonance analysis or analysis of tumor extracts, even though the MCaIV contains a substantially larger hypoxic fraction (49% vs 12%). Under in vitro conditions, the two cell lines exhibited different responses to oxygen deprivation, the MCaIV being substantially more refractory to energy changes secondary to hypoxia. Noting with caution that this study is based on only two tumor types, our results suggest that differences in cellular capacity for energy maintenance preclude quantitative inferences regarding tumor oxygen status from energy status between tumor types.  相似文献   

11.
Energy metabolism of murine FSaII foot tumors was studied by in vivo 31P-MRS in C3Hf/Sed mice. Spectroscopy was performed following exposure to escalating doses of hydralazine (HYD) ip. At 0.25 mg/kg, HYD caused a 20% increase in PCr/Pi and had no significant effect on mean arterial blood pressure. HYD doses greater than or equal to 2 mg/kg lead to hypotension which was associated with a decrease in PCr, NTP, pH, and an increase in Pi (p less than 0.01 for control vs 10 mg/kg HYD). When mice were given ip injections of HYD (0.25, 1, 2 and 10 mg/kg) 10 min prior to whole body irradiation, spleen stem cell survival after 6 Gy was increased (2.19 colonies in control animals vs 6.74 colonies per spleen in animals treated with greater than or equal to 2 mg/kg HYD), as was the LD50/30 dose (6.49 Gy [control] vs 9.00 Gy [10 mg/kg HYD]). The data provide evidence that PCr/Pi is a useful indicator of perfusion efficiency (and indirectly of hypoxic cell fraction) in FSaII tumors. These observations suggest that HYD may be a useful adjuvant for hyperthermic treatment of tumors and for potentiation of agents specifically toxic to hypoxic or nutrient-deprived cancer cells. HYD should be used with care in patients receiving radiation treatments or other therapies for which hypoxia can unfavorably affect treatment outcome.  相似文献   

12.
BACKGROUND AND PURPOSE: In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. MATERIALS AND METHODS: The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. RESULTS: At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. CONCLUSION: Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.  相似文献   

13.
31P magnetic resonance spectroscopy has been used to compare the effects of the vasoactive agents hydralazine and flunarizine on the oxygenation of the transplantable tumors, SCCVII/Ha and 16C, and a range of spontaneous mammary tumors arising in the breeding stock in the Genetics Division at the Radiobiology Unit. The vasodilator hydralazine, previously shown to increase the radiobiological hypoxic fraction of transplantable murine tumors, increased inorganic phosphate to total phosphate (Pi/total) in SCCVII/Ha and 16C tumors. However, only two spontaneous tumors responded to this agent (2/12). The calcium antagonist flunarizine, which sensitizes the SCCVII tumor to X rays, consistent with a reduction in hypoxic fraction, reduced Pi/total in this and the 16C tumor. Further, most spontaneous tumors tested (8/10) responded to this agent, as measured by a reduction in Pi/total. These results point to fundamental differences between transplantable and spontaneously arising tumors in mice in their response to vasoactive agents.  相似文献   

14.
In Vivo 31P NMR spectroscopy was used to study changes in phosphate metabolism that occur after irradiation of the C3H fibrosarcoma, FSaII. Previously, we have shown that small FSaII tumors (less than 250 mm3) have a greater phosphocreatinine/inorganic phosphate (PCr/Pi) ratio and a lower hypoxic cell fraction (HCF) than large FSaII tumors (greater than 250 mm3). Six small tumors (113 +/- 26 mm3) were treated with radiation doses chosen to induce local control in greater than 50% of animals, (70-100 Gy, single fraction). Minimal changes in the tumor 31P NMR spectrum were seen over eight days of monitoring. During this interval, tumor regression began a minimum of 36 hours after radiation. This contrasted with large tumors (650-1000 mm3) wherein a significant increase in the Pcr/Pi ratio was seen 44 hr after irradiation. In tumors of this size range, a tumor growth delay of 4 to 7 days is obtained after a single 70 Gy fraction of radiation. Since small FSaII tumors have a minimal HCF (approximately equal to 4%), radiation induced reoxygenation would not be expected to have a large effect on their average cellular metabolism. Large tumors of this histology have a high HCF (greater than or equal to 40%), and may therefore be expected to have a significant average change in tumor cell metabolism with reoxygenation. The 31P NMR observations of small and large tumors after irradiation are compatible with radiation induced reoxygenation in the larger tumors.  相似文献   

15.
BACKGROUND AND PURPOSE: Inadequate tumor reoxygenation during radiation therapy may cause local treatment failure. This study was aimed at investigating the potential usefulness of 31P-MRS in monitoring tumor reoxygenation following radiation treatment. MATERIALS AND METHODS: Tumors of two human melanoma xenograft lines (BEX-t and HUX-t) were exposed to 15.0 Gy, and then the fraction of radiobiologically hypoxic cells, measured by using the paired survival curve method, or tumor bioenergetic status, measured by 31P-MRS as the (PCr + NTPbeta)/Pi resonance ratio, was determined versus time after the radiation exposure. RESULTS: Untreated BEX-t and HUX-t tumors showed similar fractions of radiobiologically hypoxic cells and similar bioenergetic status, whereas both parameters differed substantially between the lines in irradiated tumors. A close association was found between radiation-induced changes in tumor bioenergetic status and radiation-induced changes in the fraction of radiobiologically hypoxic cells. CONCLUSION: 31P-MRS is a potentially useful method for monitoring tumor reoxygenation following radiation treatment.  相似文献   

16.
PURPOSE: Tumor hypoxia has been purported to be an important biologic factor in the failure of radical radiotherapy to achieve local control in many tumor types. This study was designed to evaluate the effect of breathing high oxygen content gas mixtures (oxygen with 0%, 2.5%, or 5% carbon dioxide) on tumor oxygenation measured using the Eppendorf polarographic oxygen electrode and the comet assay in accessible, hypoxic human tumors. METHODS AND MATERIALS: Using Eppendorf pO2 histography to identify hypoxic tumors (median pO2 < or = 10 mmHg), eligible patients were systematically allocated either 100% oxygen (O2) or oxygen with 2.5% or 5% carbon dioxide (CO2). Tumors were treated with 6-10 Gy during which two fine needle aspirates (FNA) were obtained from different regions of the lesion, one at midway and the other at completion of the radiation exposure. Gas breathing was initiated 4 min before radiation was commenced. A 10-min interval was specified between the first and second halves of the radiation exposure to allow near maximal DNA repair prior to the second half of the radiation treatment. FNAs were performed within 2 min of cessation of radiation and the cells immediately suspended in buffered saline at 4 degrees C for analyses of hypoxic fraction using the comet assay. RESULTS: Fifteen evaluations were performed in 13 patients with hypoxic tumors (median O2 tension 2.75 mmHg) treated with a median dose of 8 Gy. The median hypoxic fraction determined using the comet assay fell from 0.36 to 0.13 (p = 0.001, Wilcoxon signed rank test) due to the addition of high oxygen content gases. CONCLUSIONS: In tumors defined as hypoxic using Eppendorf pO2 histography, a statistically significant reduction in the hypoxic fraction with the comet assay was found following administration of high oxygen content gases. These preliminary findings reveal a trend suggesting that 5% carbogen may reduce the hypoxic fraction by a greater margin than either 100% oxygen or 2.5% carbogen.  相似文献   

17.
Oxygen distribution was measured in 31 fixed lymph node metastases (mean diameter 4.4 cm +/- 0.8 cm) from squamous cell carcinoma of the head and neck by passing a needle electrode through each tumor under CT guidance. Thirteen tumors had uniform oxygen distribution with all measurements under 10 mm Hg. Six tumors had uniform oxygen distribution with all measurements above 10 mm Hg, and twelve tumors had variable oxygen distribution with measurements higher in the periphery than in the center. Response to radiation therapy was judged by changes in tumor volume 90 days following completion of therapy compared to pre-therapy volume. Eighteen tumors were considered complete responders (CR); eleven, non-responders (NR); two, partial responders (PR). No statistically significant difference in radiation dose or tumor size was seen in the PR and CR groups. Mean pO2 was 20.6 (+/- 4.4) mm Hg in the CR group and 4.7 (+/- 3.0) mm Hg in the NR group (p less than 0.001). Normalized pO2 content defined as the total tumor oxygen content normalized by dividing by the volume was 37.4 (+/- 8.2) mm Hg in the CR group and 8.2 (+/- 5.1) mm Hg in the NR group (p less than 0.001). The volume and oxygen levels of each tumor were tabulated and analyzed. Twelve tumors had greater than 26% of their volume containing a pO2 less than 8 mm Hg. Eleven of these were NR and one PR. Nineteen tumors had less than 26% of their volume containing a pO2 less than 8 mm Hg. Eighteen were CR and one PR (p less than 0.001). These data suggest that oxygen plays a significant role in human tumor response to radiation therapy. Oxygen measurements appear to allow separation of subgroups of patients with a poor prognosis who would most benefit from maneuvers to circumvent the hypoxic effect.  相似文献   

18.
PURPOSE: The objectives of this study were to evaluate effects of hyperthermia on tumor oxygenation, extracellular pH (pHe), and blood flow in 13 dogs with spontaneous soft tissue sarcomas prior to and after local hyperthermia. METHODS AND MATERIALS: Tumor pO2 was measured using an Eppendorf polarographic device, pHe using interstitial electrodes, and blood flow using contrast-enhanced magnetic resonance imaging (MRI). RESULTS: There was an overall improvement in tumor oxygenation observed as an increase in median pO2 and decrease in hypoxic fraction (% of pO2 measurements <5 mm Hg) at 24-h post hyperthermia. These changes were most pronounced when the median temperature (T50) during hyperthermia treatment was less than 44 degrees C. Tumors with T50 > 44 degrees C were characterized by a decrease in median PO2 and an increase in hypoxic fraction. Similar thermal dose-related changes were observed in tumor perfusion. Perfusion was significantly higher after hyperthermia. Increases in perfusion were most evident in tumors with T50 < 44 degrees C. With T50 > 44 degrees C, there was no change in perfusion after hyperthermia. On average, pHe values declined in all animals after hyperthermia, with the greatest reduction seen for larger T50 values. CONCLUSION: This study suggests that hyperthermia has biphasic effects on tumor physiologic parameters. Lower temperatures tend to favor improved perfusion and oxygenation, whereas higher temperatures are more likely to cause vascular damage, thus leading to greater hypoxia. While it has long been recognized that such effects occur in rodent tumors, this is the first report to tie such changes to temperatures achieved during hyperthermia in the clinical setting. Furthermore, it suggests that the thermal threshold for vascular damage is higher in spontaneous tumors than in more rapidly growing rodent tumors.  相似文献   

19.
The aim of this study was to search for possible relationships between the fraction of radiobiologically hypoxic cells in tumors and their 31P NMR spectral parameters and intracapillary HbO2 saturations. Four different tumor lines, two murine sarcomas (KHT, RIF-1) and two human ovarian carcinoma xenografts (MLS, OWI), were used. When tumor volume increased from about 200 mm3 to about 2000 mm3, hypoxic fraction increased from 12 to 23% for the KHT line, from 0.9 to 1.7% for the RIF-1 line, and from 9 to 28% for the MLS line. The OWI line showed similar hypoxic fractions at 200 (17%) and 2000 mm3 (15%). Tumor bioenergetic status decreased, that is, the inorganic phosphate (Pi) resonance increased and the phosphocreatine (PCr) and nucleoside triphosphate beta (NTP beta) resonances decreased, with increasing tumor volume for the KHT, RIF-1, and MLS lines, whereas the OWI line did not show any changes in the 31P NMR spectral parameters during tumor growth. Similarly, tumor HbO2 saturation status, that is, the fraction of vessels with HbO2 saturation above 30%, decreased with increasing tumor volume for the KHT, RIF-1, and MLS lines, but remained unchanged during tumor growth for the OWI line. Although the data indicated a relationship between hypoxic fraction and tumor bioenergetic status as well as tumor HbO2 saturation status within a specific line during tumor growth, there was no correlation between hypoxic fraction and tumor bioenergetic status or tumor HbO2 saturation status across the four tumor lines. This may have occurred because cell survival time under hypoxic stress as well as fraction of non-clonogenic, but metabolically active hypoxic cells differed among the tumor lines. This indicates that 31P NMR spectroscopy and HbO2 cryospectrophotometry data have to be supplemented with other data to be useful in prediction of tumor radioresistance caused by hypoxia.  相似文献   

20.
PURPOSE: A large number of studies have demonstrated that tumors are heterogeneous in oxygen tension (pO(2)) and may develop regions with chronically or acutely hypoxic cells during growth. In the present study, it was investigated whether experimental tumors of different lines may show characteristic pO(2) fluctuation patterns and hence may differ with respect to the kinetics of acute hypoxia. METHODS AND MATERIALS: A total of 70 xenografted tumors of two human melanoma lines (A-07 and R-18) were included in the study. Tissue pO(2) was measured simultaneously in two positions in each tumor for periods of at least 60 min using a two-channel fiberoptic oxygen-sensing device (OxyLite 2000, Oxford Optronix, Oxford, UK). RESULTS: The mean pO(2) was calculated for each pO(2) trace, and this parameter was significantly greater in A-07 than in R-18 tumors (p <0.000001). Fluctuations in pO(2) around 3, 5, or 10 mm Hg were seen in a large fraction of the tumors of both lines. The pO(2) fluctuation frequency differed among individual traces from 0 to 20/h (A-07) and from 0 to 12/h (R-18) and was significantly greater in A-07 than in R-18 tumors (p = 0.0026). The absolute amplitude of the pO(2) fluctuations ranged from 1 to 16 mm Hg (A-07) and 1 to 33 mm Hg (R-18) and did not differ between the tumor lines. The relative amplitude was significantly higher in R-18 than in A-07 tumors (p <0.000001). The pO(2) values recorded simultaneously in the same tumor were in general not temporally coordinated. CONCLUSION: Experimental tumors of different lines may show individual and characteristic pO(2) fluctuation patterns. The pO(2) fluctuations may result in regions with acutely hypoxic cells. The kinetics of the acute hypoxia may differ among tumors of different lines, individual tumors of the same line, and different regions within the same tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号