首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon‐13 magnetic resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1‐13C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1‐13C] pyruvate into [1‐13C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the cardiometabolic effects of hypoxia in disease.  相似文献   

2.
Hyperpolarized 13C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl‐coenzyme A (acetyl‐CoA). [1‐13C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in 13C‐bicarbonate production after dichloroacetate (DCA) administration. With [1‐13C]pyruvate, the 13C label is released as 13CO2/13C‐bicarbonate, and, hence, does not allow us to follow the fate of acetyl‐CoA. Pyruvate labeled in the C2 position has been used to track the 13C label into the TCA (tricarboxylic acid) cycle and measure [5‐13C]glutamate as well as study changes in [1‐13C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl‐CoA in response to metabolic interventions of DCA‐induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the 13C labeling of [5‐13C]glutamate, and a considerable increase in [1‐13C]acetylcarnitine and [1,3‐13C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2‐13C]lactate, [2‐13C]alanine and [5‐13C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC‐mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Hyperpolarized [1‐13C] pyruvate MRS can measure cardiac pyruvate dehydrogenase (PDH) flux in vivo through 13C‐label incorporation into bicarbonate. Using this technology, substrate availability as well as pathology have been shown to modulate PDH flux. Clinical protocols attempt to standardize PDH flux with oral glucose loading prior to scanning, while rodents in preclinical studies are usually scanned in the fed state. We aimed to establish which strategy was optimal to maximize PDH flux and minimize its variability in both control and Type II diabetic rats, without affecting the pathological variation being assessed. We found similar variances in the bicarbonate to pyruvate ratio, reflecting PDH flux, in fed and fasted/glucose‐loaded animals, which showed no statistically significant differences. Furthermore, fasting/glucose loading did not alter the low PDH flux seen in Type II diabetic rats. Overall this suggests that preclinical cardiac hyperpolarized magnetic resonance studies could be performed either in the fed or in the fasted/glucose‐loaded state. Centres planning to start new clinical studies with cardiac hyperpolarized magnetic resonance in man may find it beneficial to run small proof‐of‐concept trials to determine whether metabolic standardizations by oral or intravenous glucose load are beneficial compared with scanning patients in the fed state.  相似文献   

4.
Isoflurane is a frequently used anesthetic in small‐animal dissolution dynamic nuclear polarization‐magnetic resonance imaging (DNP‐MRI) studies. Although the literature suggests interactions with mitochondrial metabolism, the influence of the compound on cardiac metabolism has not been assessed systematically to date. In the present study, the impact of low versus high isoflurane concentration was examined in a crossover experiment in healthy rats. The results revealed that cardiac metabolism is modulated by isoflurane concentration, showing increased [1‐13C]lactate and reduced [13C]bicarbonate production during high isoflurane relative to low isoflurane dose [average differences: +16% [1‐13C]lactate/total myocardial carbon, –22% [13C]bicarbonate/total myocardial carbon; +51% [1‐13C]lactate/[13C]bicarbonate]. These findings emphasize that reproducible anesthesia is important when studying cardiac metabolism. As the depth of anesthesia is difficult to control in an experimental animal setting, careful study design is required to exclude confounding factors.  相似文献   

5.
MRS of hyperpolarized (13) C-labeled compounds represents a promising technique for in vivo metabolic studies. However, robust quantification and metabolic modeling are still important areas of investigation. In particular, time and spatial resolution constraints may lead to the analysis of MRS signals with low signal-to-noise ratio (SNR). The relationship between SNR and the precision of quantitative analysis for the evaluation of the in vivo kinetic behavior of metabolites is unknown. In this article, this topic is addressed by Monte Carlo simulations, covering the problem of MRS signal model parameter estimation, with strong emphasis on the peak amplitude and kinetic model parameters. The results of Monte Carlo simulation were confirmed by in vivo experiments on medium-sized animals injected with hyperpolarized [1-(13) C]pyruvate. The results of this study may be useful for the establishment of experimental planning and for the optimization of kinetic model estimation as a function of the SNR value.  相似文献   

6.
In addition to cancer imaging, 13C‐MRS of hyperpolarized pyruvate has also demonstrated utility for the investigation of cardiac metabolism and ischemic heart disease. Although no adverse effects have yet been reported for doses commonly used in vivo, high substrate concentrations have lead to supraphysiological pyruvate levels that can affect the underlying metabolism and should be considered when interpreting results. With lactate serving as an important energy source for the heart and physiological lactate levels one to two orders of magnitude higher than for pyruvate, hyperpolarized lactate could potentially be used as an alternative to pyruvate for probing cardiac metabolism. In this study, hyperpolarized [1‐13C]lactate was used to acquire time‐resolved spectra from the healthy rat heart in vivo and to measure dichloroacetate (DCA)‐modulated changes in flux through pyruvate dehydrogenase (PDH). Both primary oxidation of lactate to pyruvate and subsequent conversion of pyruvate to alanine and bicarbonate could reliably be detected. Since DCA stimulates the activity of PDH through inhibition of PDH kinase, a more than 2.5‐fold increase in bicarbonate‐to‐substrate ratio was found after administration of DCA, similar to the effect when using [1‐13C]pyruvate as the substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Hyperpolarized [1‐13C]pyruvate ([1‐13C]Pyr) has been used to assess metabolism in healthy and diseased states, focusing on the downstream labeling of lactate (Lac), bicarbonate and alanine. Although hyperpolarized [2‐13C]Pyr, which retains the labeled carbon when Pyr is converted to acetyl‐coenzyme A, has been used successfully to assess mitochondrial metabolism in the heart, the application of [2‐13C]Pyr in the study of brain metabolism has been limited to date, with Lac being the only downstream metabolic product reported previously. In this study, single‐time‐point chemical shift imaging data were acquired from rat brain in vivo. [5‐13C]Glutamate, [1‐13C]acetylcarnitine and [1‐13C]citrate were detected in addition to resonances from [2‐13C]Pyr and [2‐13C]Lac. Brain metabolism was further investigated by infusing dichloroacetate, which upregulates Pyr flux to acetyl‐coenzyme A. After dichloroacetate administration, a 40% increase in [5‐13C]glutamate from 0.014 ± 0.004 to 0.020 ± 0.006 (p = 0.02), primarily from brain, and a trend to higher citrate (0.002 ± 0.001 to 0.004 ± 0.002) were detected, whereas [1‐13C]acetylcarnitine was increased in peripheral tissues. This study demonstrates, for the first time, that hyperpolarized [2‐13C]Pyr can be used for the in vivo investigation of mitochondrial function and tricarboxylic acid cycle metabolism in brain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Hyperpolarized 129Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129Xe chemical exchange saturation transfer (Hyper‐CEST) is another method for quantifying the exchange information of hyperpolarized 129Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.  相似文献   

9.
Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than 1 year following diagnosis. Most patients with HCC are diagnosed at an advanced stage, and no efficient marker exists for the prediction of prognosis and/or response(s) to therapy. We have reported previously a high level of [1‐13C]alanine in an orthotopic HCC using single‐voxel hyperpolarized [1‐13C]pyruvate MRS. In the present study, we implemented a three‐dimensional MRSI sequence to investigate this potential hallmark of cellular metabolism in rat livers bearing HCC (n = 7 buffalo rats). In addition, quantitative real‐time polymerase chain reaction was used to determine the mRNA levels of lactate dehydrogenase A, nicotinamide adenine (phosphate) dinucleotide dehydrogenase quinone 1 and alanine transaminase. The enzyme levels were significantly higher in tumor than in normal liver tissues within each rat, and were associated with the in vivo MRSI signal of [1‐13C]alanine and [1‐13C]lactate after a bolus intravenous injection of [1‐13C]pyruvate. Histopathological analysis of these tumors confirmed the successful growth of HCC as a nodule in buffalo rat livers, revealing malignancy and hypervascular architecture. More importantly, the results demonstrated that the metabolic fate of [1‐13C]pyruvate conversion to [1‐13C]alanine significantly superseded that of [1‐13C]pyruvate conversion to [1‐13C]lactate, potentially serving as a marker of HCC tumors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Experimental autoimmune myocarditis (EAM) in rodents is an accepted model of myocarditis and dilated cardiomyopathy (DCM). Altered metabolism is thought to play an important role in the pathogenesis of DCM and heart failure (HF). Study of the metabolism may provide new diagnostic information and insights into the mechanisms of myocarditis and HF. Proton MRS (1H‐MRS) has not yet been used to study the changes occurring in myocarditis and subsequent HF. We aimed to explore the changes in creatine metabolism using this model and compare them with the findings in healthy animals. Myocardial function of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short‐axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle spinning MRS (1H‐MAS‐MRS). Myocarditis was confirmed histologically by the presence of an inflammatory cellular infiltrate and CD68 positive staining. A significant increase in the metabolic ratio of Tau/tCr (taurine/total creatine) obtained by 1H‐MAS‐MRS was observed in myocarditis compared with healthy controls (21 d acute EAM, 4.38 (±0.23); 21 d control, 2.84 (±0.08); 35 d chronic EAM, 4.47 (±0.83); 35 d control, 2.59 (±0.38); P < 0.001). LVEF was reduced in diseased animals (EAM, 55.2% (±11.3%); control, 72.6% (±3.8%); P < 0.01) and correlated with Tau/tCr ratio (R = 0.937, P < 0.001). Metabolic alterations occur acutely with the development of myocarditis. Myocardial Tau/tCr ratio as detected by 1H‐MRS correlates with LVEF and is able to differentiate between healthy myocardium and myocardium from rats with EAM. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A single‐voxel Carr‐Purcell‐Meibloom‐Gill sequence was developed to measure localized T2 relaxation times of 13C‐labeled metabolites in vivo for the first time. Following hyperpolarized [1‐13C]pyruvate injections, pyruvate and its metabolic products, alanine and lactate, were observed in the liver of five rats with hepatocellular carcinoma and five healthy control rats. The T2 relaxation times of alanine and lactate were both significantly longer in HCC tumors than in normal livers (p < 0.002). The HCC tumors also showed significantly higher alanine signal relative to the total 13C signal than normal livers (p < 0.006). The intra‐ and inter‐subject variations of the alanine T2 relaxation time were 11% and 13%, respectively. The intra‐ and inter‐subject variations of the lactate T2 relaxation time were 6% and 7%, respectively. The intra‐subject variability of alanine to total carbon ratio was 16% and the inter‐subject variability 28%. The intra‐subject variability of lactate to total carbon ratio was 14% and the inter‐subject variability 20%. The study results show that the signal level and relaxivity of [1‐13C]alanine may be promising biomarkers for HCC tumors. Its diagnostic values in HCC staging and treatment monitoring are yet to be explored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
During the measurement of hyperpolarized 129Xe magnetic resonance imaging (MRI), the diffusion‐weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath‐holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion‐weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath‐hold. Compared with sequential single‐breath schemes (namely the ‘CSSR + DWI’ scheme and the ‘DWI + CSSR’ scheme), the DWCSSR scheme is able to significantly shorten the breath‐hold time, as well as to obtain high signal‐to‐noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath‐hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.  相似文献   

13.
Inflammatory bowel disease is a common group of inflammation conditions that can affect the colon and the rectum. These pathologies require a careful follow‐up of patients to prevent the development of colorectal cancer. Currently, conventional endoscopy is used to depict alterations of the intestinal walls, and biopsies are performed on suspicious lesions for further analysis (histology). MRS enables the in vivo analysis of biochemical content of tissues (i.e. without removing any samples). Combined with dedicated endorectal coils (ERCs), MRS provides new ways of characterizing alterations of tissues. An MRS in vivo protocol was specifically set up on healthy mice and on mice chemically treated to induce colitis. Acquisitions were performed on a 4.7 T system using a linear volume birdcage coil for the transmission of the B1 magnetic field, and a dedicated ERC was used for signal reception. Colon‐wall complex, lumen and visceral fat were assessed on healthy and treated mice with voxel sizes ranging from 0.125 μL to 2 μL while keeping acquisition times below 3 min. The acquired spectra show various biochemical contents such as α‐ and β‐methylene but also glycerol backbone and diacyl. Choline was detected in tumoral regions. Visceral fat regions display a high lipid content with no water, whereas colon‐wall complex exhibits both high lipid and high water contents. To the best of our knowledge, this is the first time that in vivo MRS using an ERC has been performed in the assessment of colon walls and surrounding structures. It provides keys for the in vivo characterization of small local suspicious lesions and offers complementary solutions to biopsies.  相似文献   

14.
15.
Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

16.
The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin‐induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N‐acetylaspartate, glutamate, γ‐aminobutyric acid, taurine and choline‐containing compound levels. Nevertheless, myo‐inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes.  相似文献   

17.
Objectives: Despite tumor necrosis factor alpha (TNFα) has been shown to be a prognostic marker in patients with heart failure and previous preclinical study with TNFα-antagonist has been demonstrated to improve cardiac function in acute heart failure, recent clinical trials using TNFα-antagonist in patients with chronic severe heart failure have been disappointing. The aim was to study why TNFα-antagonist may not work during long-term treatment in chronic heart failure (CHF) in experimental model.

Methods: 49 rats were used at the age of 26 weeks: healthy Whistar Kyoto rats (WKY, n = 26) and diabetic (WKY+D, n = 23). Rats in each group received either a 12-week treatment with TNFα-antagonist (Etanercept) or NaCl injections.

Results: In diabetic rats, there were increased plasma glucose level and blood pressure. By use of echocardiography diabetic rats displayed not only enlarged and thinned left ventricles but also decreased both systolic and diastolic functions. Moreover, there are increased interleukin-6 (IL6) mRNA levels. However, TNFα-antagonist, etanercept, does not improve either cardiac remodelling or cardiac function. IL6 mRNA level remained unchanged after treatment of etanercept.

Conclusion: Chronic treatment of TNFα-antagonist has no favourable effect on either cardiac remodelling or cardiac function. It is therefore inappropriate to use TNFα-antagonist in CHF in diabetes as underlying cause.  相似文献   

18.
The combination of hyperpolarized MRS with diffusion weighting (dw) allows for determination of the apparent diffusion coefficient (ADC), which is indicative of the intra‐ or extracellular localization of the metabolite. Here, a slice‐selective pulsed‐gradient spin echo sequence was implemented to acquire a series of dw spectra from rat muscle in vivo to determine the ADCs of multiple metabolites after a single injection of hyperpolarized [1‐13C]pyruvate. An optimal control optimized universal‐rotation pulse was used for refocusing to minimize signal loss caused by B1 imperfections. Non‐dw spectra were acquired interleaved with the dw spectra and these were used to correct for signal decay during the acquisition as a result of T1 decay, pulse imperfections, flow etc. The data showed that the ADC values for [1‐13C]lactate (0.4–0.7 µm2/ms) and [1‐13C]alanine (0.4–0.9 µm2/ms) were about a factor of two lower than the ADC of [1‐13C]pyruvate (1.1–1.5 µm2/ms). This indicates a more restricted diffusion space for the former two metabolites consistent with lactate and alanine being intracellular. The higher ADC for pyruvate (similar to the proton ADC) reflected that the injected substance was not confined inside the muscle cells but also present extracellular. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Rapid volumetric imaging of hyperpolarized (13) C compounds allows the real-time measurement of metabolic activity and can be useful in distinguishing between normal and diseased tissues. This work extends a fast two-dimensional undersampled spiral MRSI sequence to provide volumetric coverage, acquiring a 16 × 16 × 12 matrix with a nominal isotropic resolution of 5 mm in 4.5 s. The rapid acquisition enables a high temporal resolution for dynamic imaging. This dynamic three-dimensional MRSI method was used to investigate hyperpolarized [1-(13) C]pyruvate metabolism modulated by the administration of ethanol in rat liver. A significant increase in the pyruvate to lactate conversion was observed in the liver as a result of the greater availability of NADH (nicotinamide adenine dinucleotide, reduced form) from ethanol metabolism.  相似文献   

20.
(13)C MR spectroscopy studies performed on hearts ex vivo and in vivo following perfusion of prepolarized [1-(13)C]pyruvate have shown that changes in pyruvate dehydrogenase (PDH) flux may be monitored non-invasively. However, to allow investigation of Krebs cycle metabolism, the (13)C label must be placed on the C2 position of pyruvate. Thus, the utilization of either C1 or C2 labeled prepolarized pyruvate as a tracer can only afford a partial view of cardiac pyruvate metabolism in health and disease. If the prepolarized pyruvate molecules were labeled at both C1 and C2 positions, then it would be possible to observe the downstream metabolites that were the results of both PDH flux ((13)CO(2) and H(13)CO(3)(-)) and Krebs cycle flux ([5-(13)C]glutamate) with a single dose of the agent. Cardiac pH could also be monitored in the same experiment, but adequate SNR of the (13)CO(2) resonance may be difficult to obtain in vivo. Using an interleaved selective RF pulse acquisition scheme to improve (13)CO(2) detection, the feasibility of using dual-labeled hyperpolarized [1,2-(13)C(2)]pyruvate as a substrate for dynamic cardiac metabolic MRS studies to allow simultaneous investigation of PDH flux, Krebs cycle flux and pH, was demonstrated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号