首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Neonatal necrotizing enterocolitis (NEC) is a poorly understood life‐threatening illness afflicting premature infants. Research is hampered by the absence of a suitable method to monitor disease progression noninvasively. The primary goal of this research was to test in vivo MRI methods for the noninvasive early detection and staging of inflammation in the ileum of an infant rat model of NEC. Neonatal rats were delivered by cesarean section at embryonic stage of day 20 after the beginning of pregnancy and stressed with formula feeding, hypoxia and bacterial colonization to induce NEC. Naturally born and dam‐fed neonatal rats were used as healthy controls. In vivo MRI studies were performed using a Bruker 9.4‐T scanner to obtain high‐resolution anatomical MR images using both gradient echo and spin echo sequences, pixel‐by‐pixel T2 maps using a multi‐slice–multi‐echo sequence, and maps of the apparent diffusion coefficient (ADC) of water using a spin echo sequence, to assess the degree of ileal damage. Pups were sacrificed at the end of the MRI experiment on day 2 or 4 for histology. T2 measured by MRI was increased significantly in the ileal regions of pups with NEC by histology (106.3 ± 6.1 ms) compared with experimentally stressed pups without NEC (85.2 ± 6.8 ms) and nonstressed, control rat pups (64.9 ± 2.3 ms). ADC values measured by diffusion‐weighted MRI were also increased in the ileal regions of pups with NEC by histology [(1.98 ± 0.15) × 10–3 mm2/s] compared with experimentally stressed pups without NEC [(1.43 ± 0.16) × 10–3 mm2/s] and nonstressed control pups [(1.10 ± 0.06) × 10–3 mm2/s]. Both T2 and ADC values between these groups were found to be significantly different (p < 0.03). The correlation of MRI results with histologic images of the excised ileal tissue samples strongly suggests that MRI can noninvasively identify NEC and assess intestinal injury prior to clinical symptoms in a physiologic rat pup model of NEC. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this work was to explore the origin of oscillations of the T*2 decay curve of 39K observed in studies of 39K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin‐3/2 nuclei possess an electric quadrupole moment. Its interaction with non‐vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole‐body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer‐built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian‐shaped peaks is appropriate for 39K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank‐2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double‐quantum filtration with magic‐angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm3 was acquired with this filtering technique in 1:17 h. From the line width of the resonances, 39K transverse relaxation time constants T*2, fast = (0.51 ± 0.01) ms and T*2, slow = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T*2, fast = (1.56 ± 0.03) ms and T*2, fast = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T*2, slow = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non‐vanishing electrical field gradient interacting with 39K nuclei in the intracellular space of muscle tissue. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
4.
We report the three‐dimensional ultrashort‐TE (3D UTE) and adiabatic inversion recovery UTE (IR‐UTE) sequences employing a radial trajectory with conical view ordering for bi‐component T2* analysis of bound water (T2*BW) and pore water (T2*PW) in cortical bone. An interleaved dual‐echo 3D UTE acquisition scheme was developed for fast bi‐component analysis of bound and pore water in cortical bone. A 3D IR‐UTE acquisition scheme employing multiple spokes per IR was developed for bound water imaging. Two‐dimensional UTE (2D UTE) and IR‐UTE sequences were employed for comparison. The sequences were applied to bovine bone samples (n = 6) and volunteers (n = 6) using a 3‐T scanner. Bi‐component fitting of 3D UTE images of bovine samples showed a mean T2*BW of 0.26 ± 0.04 ms and T2*PW of 4.16 ± 0.35 ms, with fractions of 21.5 ± 3.6% and 78.5 ± 3.6%, respectively. The 3D IR‐UTE signal showed a single‐component decay with a mean T2*BW of 0.29 ± 0.05 ms, suggesting selective imaging of bound water. Similar results were achieved with the 2D UTE and IR‐UTE sequences. Bi‐component fitting of 3D UTE images of the tibial midshafts of healthy volunteers showed a mean T2*BW of 0.32 ± 0.08 ms and T2*PW of 5.78 ± 1.24 ms, with fractions of 34.2 ± 7.4% and 65.8 ± 7.4%, respectively. Single‐component fitting of 3D IR‐UTE images showed a mean T2*BW of 0.35 ± 0.09 ms. The 3D UTE and 3D IR‐UTE techniques allow fast volumetric mapping of bound and pore water in cortical bone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Murine radiation‐induced rectocolitis is considered to be a relevant animal model of gastrointestinal inflammation. The purpose of our study was to compare quantitative MRI and histopathological features in this gastrointestinal inflammation model. Radiation rectocolitis was induced by localized single‐dose radiation (27 Gy) in Sprague‐Dawley rats. T2‐weighted, T1‐weighted and diffusion‐weighted MRI was performed at 7 T in 16 rats between 2 and 4 weeks after irradiation and in 10 control rats. Rats were sacrificed and the histopathological inflammation score of the colorectal samples was assessed. The irradiated rats showed significant increase in colorectal wall thickness (2.1 ± 0.3 mm versus 0.8 ± 0.3 mm in control rats, P < 0.0001), normalized T2 signal intensity (4 ± 0.8 versus 2 ± 0.4 AU, P < 0.0001), normalized T1 signal intensity (1.4 ± 0.1 versus 1.1 ± 0.2 AU, P = 0.0009) and apparent and pure diffusion coefficients (ADC and D) (2.06 × 10?3 ± 0.34 versus 1.51 × 10?3 ± 0.23 mm2/s, P = 0.0004, and 1.97 × 10?3 ± 0.43 mm2/s versus 1.48 × 10?3 ± 0.29 mm2/s, P = 0.008, respectively). Colorectal wall thickness (r = 0.84, P < 0.0001), normalized T2 signal intensity (r = 0.85, P < 0.0001) and ADC (r = 0.80, P < 0.0001) were strongly correlated with the histopathological inflammation score, whereas normalized T1 signal intensity and D were moderately correlated (r = 0.64, P = 0.0006, and r = 0.65, P = 0.0003, respectively). High‐field MRI features of single‐dose radiation‐induced rectocolitis in rats differ significantly from those of control rats. Quantitative MRI characteristics, especially wall thickness, normalized T2 signal intensity, ADC and D, are potential markers of the histopathological inflammation score.  相似文献   

6.
The separation and quantification of collagen‐bound water (CBW) and pore water (PW) components of the cortical bone signal are important because of their different contribution to bone mechanical properties. Ultrashort TE (UTE) imaging can be used to exploit the transverse relaxation from CBW and PW, allowing their quantification. We tested, for the first time, the feasibility of UTE measurements in mice for the separation and quantification of the transverse relaxation of CBW and PW in vivo using three different approaches for T2* determination. UTE sequences were acquired at 4.7 T in six mice with 10 different TEs (50–5000 μs). The transverse relaxation time T2* of CBW (T2*cbw) and PW (T2*pw) and the CBW fraction (bwf) were computed using a mono‐exponential (i), a standard bi‐exponential (ii) and a new multi‐step bi‐exponential (iii) approach. Regions of interest were drawn at multiple levels of the femur and vertebral body cortical bone for each mouse. The sum of the normalized squared residuals (Res) and the homogeneity of variance were tested to compare the different methods. In the femur, approach (i) yielded mean T2* ± standard deviation (SD) of 657 ± 234 μs. With approach (ii), T2*cbw, T2*pw and bwf were 464 ± 153 μs, 15 777 ± 10 864 μs and 57.6 ± 9.9%, respectively. For approach (iii), T2*cbw, T2*pw and bwf were 387 ± 108 μs, 7534 ± 2765 μs and 42.5 ± 6.2%, respectively. Similar values were obtained from vertebral bodies. Res with approach (ii) was lower than with the two other approaches (p < 0.007), but T2*pw and bwf variance was lower with approach (iii) than with approach (ii) (p < 0.048). We demonstrated that the separation and quantification of cortical bone water components with UTE sequences is feasible in vivo in mouse models. The direct bi‐exponential approach exhibited the best approximation to the measured signal curve with the lowest residuals; however, the newly proposed multi‐step algorithm resulted in substantially lower variability of the computed parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
1H magnetic resonance imaging (MRI) by a zero echo time (ZTE) sequence is an excellent method to image teeth. Calcium phosphate cement (CPC) materials are applied in the restoration of tooth lesions, but it has not yet been investigated whether they can be detected by computed tomography (CT) or MRI. The aim of this study was to optimize high‐field ZTE imaging to enable the visualization of a new CPC formulation implanted in teeth and to apply this in the assessment of its decomposition in vivo. CPC was implanted in three human and three goat teeth ex vivo and in three goat teeth in vivo. An ultrashort echo time (UTE) sequence with multiple flip angles and echo times was applied at 11.7 T to measure T1 and T2* values of CPC, enamel and dentin. Teeth with CPC were imaged with an optimized ZTE sequence. Goat teeth implanted with CPC in vivo were imaged after 7 weeks ex vivo. T2* relaxation of implanted CPC, dentin and enamel was better fitted by a model assuming a Gaussian rather than a Lorentzian distribution. For CPC and human enamel and dentin, the average T2* values were 273 ± 19, 562 ± 221 and 476 ± 147 μs, respectively, the average T2 values were 1234 ± 27, 963 ± 151 and 577 ± 41 μs, respectively, and the average T1 values were 1065 ± 45, 972 ± 40 and 903 ± 7 ms, respectively. In ZTE images, CPC had a higher signal‐to‐noise‐ratio than dentin and enamel because of the higher water content. Seven weeks after in vivo implantation, the CPC‐filled lesions showed less homogeneous structures, a lower T1 value and T2* separated into two components. MRI by ZTE provides excellent contrast for CPC in teeth and allows its decomposition to be followed.  相似文献   

8.
The purpose of the study was to investigate the capability of 1H MRS and MRI methods for detecting early response to radiation therapy in non‐Hodgkin's lymphoma (NHL). Studies were performed on the WSU‐DLCL2 xenograft model in nude mice of human diffuse large B‐cell lymphoma, the most common form of NHL. Radiation treatment was applied as a single 15 Gy dose to the tumor. Tumor lactate, lipids, total choline, T2 and apparent diffusion coefficients (ADC) were measured before treatment and at 24 h and 72 h after radiation. A Hadamard‐encoded slice‐selective multiple quantum coherence spectroscopy sequence was used for detecting lactate (Lac) while a stimulated echo acquisition mode sequence was used for detection of total choline (tCho) and lipids. T2‐ and diffusion‐weighted imaging sequences were used for measuring T2 and ADC. Within 24 h after radiation, significant changes were observed in the normalized integrated resonance intensities of Lac and the methylenes of lipids. Lac/H2O decreased by 38 ± 15% (p = 0.03), and lipid (1.3 ppm, CH2)/H2O increased by 57 ± 14% (p = 0.01). At 72 h after radiation, tCho/H2O decreased by 45 ± 14% (p = 0.01), and lipid (2.8 ppm, polyunsaturated fatty acid)/H2O increased by 970 ± 36% (p = 0.001). ADC increased by 14 ± 2% (p = 0.003), and T2 did not change significantly. Tumor growth delay and regression were observed thereafter. This study enabled comparison of the relative sensitivities of various 1H MRS and MRI indices to radiation and suggests that 1H MRS/MRI measurements detect early responses to radiation that precede tumor volume changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This study investigates T2* quantification in carotid plaques before and after the administration of ultrasmall superparamagnetic iron oxide particles (USPIOs) in a cohort of patients receiving statin therapy. Phantom studies were performed using gels with varying concentrations of USPIOs. In the phantom study, 12 gels were prepared with a range of freely distributed concentrations of USPIO nanoparticles (0–0.05 mg/mL). Relative signal intensity measurements were obtained from a T2*‐weighted sequence as well as quantitative T2* (qT2*) measurements. In the patient study, 40 patients with >40% carotid stenosis were randomised to low‐ and high‐dose statin therapy (10 and 80 mg of atorvastatin). Pre‐ and post‐ (36 h) USPIO‐enhanced MRI were performed at baseline, and at 6 and 12 weeks. A linear mixed‐effects model was applied to account for the inherent correlation of multiple‐plaque measurements from the same patient and to assess dose–response differences to statin therapy. In the phantom study, the T2*‐weighted sequence demonstrated an initial increase (T1 effect), followed by a decrease (T2* effect), in relative signal intensity with increasing concentrations of USPIO. The qT2* values decreased exponentially with increasing concentrations of USPIO. In the patient study, there was a highly significant difference in post‐USPIO T2* measurements in plaques between the low‐ and high‐dose statin groups. This was observed for both the difference in qT2* measurements (post‐USPIO minus pre‐USPIO) (p < 0.001) and for qT2* post‐USPIO only (p < 0.001). The post‐USPIO qT2* values were as follows: baseline: low dose, 13.6 ± 5.5 ms; high dose, 12.9 ± 6.2 ms; 6 weeks: low dose, 13.3 ± 6.7 ms; high dose, 14.3 ± 7.7 ms; 12 weeks: low dose, 14.0 ± 7.6 ms; high dose, 18.3 ± 11.2 ms. It can be concluded that qT2* measurements provide an alternative method of quantifying USPIO uptake. These results also demonstrate that changes in USPIO uptake can be measured using post‐USPIO imaging only. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Parenchymal extravascular R2* is an important parameter for quantitative blood oxygenation level‐dependent (BOLD) studies. Total and intravascular R2* values and changes in R2* values during functional stimulations have been reported in a number of studies. The purpose of this study was to measure absolute extravascular R2* values in human visual cortex and to estimate the intra‐ and extravascular contributions to the BOLD effect at 7 T. Vascular space occupancy (VASO) MRI was employed to separate out the extravascular tissue signal. Multi‐echo VASO and BOLD functional MRI (fMRI) with visual stimulation were performed at 7 T for R2* measurement at a spatial resolution of 2.5 × 2.5 × 2.5 mm3 in healthy volunteers (n = 6). The ratio of changes in extravascular and total R2* (ΔR2*) was used to estimate the extravascular fraction of the BOLD effect. Extravascular R2* values were found to be 44.66 ± 1.55 and 43.38 ± 1.51 s–1 (mean ± standard error of the mean, n = 6) at rest and activation, respectively, in human visual cortex at 7 T. The extravascular BOLD fraction was estimated to be 91 ± 3%. The parenchymal oxygen extraction fraction (OEF) during activation was estimated to be 0.24 ± 0.01 based on the R2* measurements, indicating an approximately 37% decrease compared with OEF at rest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
12.
At ultrahigh magnetic field strengths (B0 ≥ 7.0 T), potassium (39K) MRI might evolve into an interesting tool for biomedical research. However, 39K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of 39K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared 39K and sodium (23Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. 39K relaxation times were markedly shorter than those of 23Na. Compared with the lower field strength, 39K relaxation times were up to 1.9‐ (T1), 1.4‐ (T2S) and 1.9‐fold (T2L) longer at 21.1 T. The increase in the 23Na relaxation times was less pronounced (up to 1.2‐fold). Mono‐exponential fits of the 39K longitudinal relaxation time at 21.1 T revealed T1 = 14.2 ± 0.1 ms for the healthy rat head. The 39K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S) and long (T2L) components, respectively. 23Na relaxation times were markedly longer (T1 = 41.6 ± 0.4 ms; T2S = 4.9 ± 0.2 ms; T2L = 33.2 ± 0.2 ms). 39K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm3 within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for 23Na and 39K MRI at ultrahigh magnetic field strength. Our results demonstrate that 39K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Signal intensities of T2‐weighted magnetic resonance images depend on the local fiber arrangement in hyaline cartilage. The aims of this study were to determine whether angle‐sensitive MRI at 7 T can be used to quantify the cartilage ultrastructure of the knee in vivo and to assess potential differences with age. Ten younger (21–30) and ten older (55–76 years old) healthy volunteers were imaged with a T2‐weighted spin‐echo sequence in a 7 T whole‐body MRI. A “fascicle” model was assumed to describe the depth‐dependent fiber arrangement of cartilage. The R/T boundary positions between radial and transitional zones were assessed from intensity profiles in small regions of interest in the femur and tibia, and normalized to cartilage thickness using logistic curve fits. The quality of our highly resolved (0.3 × 0.3 × 1.0 mm3) MR cartilage images were high enough for quantitative analysis (goodness of fit R2 = 0.91 ± 0.09). Between younger and older subjects, normalized positions of the R/T boundary, with value 0 at the bone–cartilage interface and 1 at the cartilage surface, were significantly (p < 0.05) different in femoral (0.51 ± 0.12 versus 0.41 ± 0.10), but not in tibial cartilage (0.65 ± 0.11 versus 0.57 ± 0.09, p = 0.119). Within both age groups, differences between femoral and tibial R/T boundaries were significant. Using a fascicle model and angle‐sensitive MRI, the depth‐dependent anisotropic fiber arrangement of knee cartilage could be assessed in vivo from a single 7 T MR image. The derived quantitative parameter, thickness of the radial zone, may serve as an indicator of the structural integrity of cartilage. This method may potentially be suitable to detect and monitor early osteoarthritis because the progressive disintegration of the anisotropic network is also indicative of arthritic changes in cartilage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Subcutaneous (SAT) and visceral adipose tissue (VAT) differ in composition, endocrine function and localization in the body. VAT is considered to play a role in the pathogenesis of insulin resistance, type 2 diabetes, fatty liver disease, and other obesity‐related disorders. It has been shown that the amount, distribution, and (cellular) composition of adipose tissue (AT) correlate well with metabolic conditions. In this study, T1 relaxation times of AT were measured in severely obese subjects and compared with those of healthy lean controls. Here, we tested the hypothesis that T1 relaxation times of AT differ between lean and obese individuals, but also between VAT and SAT as well as superficial (sSAT) and deep SAT (dSAT) in the same individual. Twenty severely obese subjects (BMI 41.4 ± 4.8 kg/m2) and ten healthy lean controls matched for age (BMI 21.5 ± 1.9 kg/m2) underwent MRI at 1.5 T using a single‐shot fast spin‐echo sequence (short‐tau inversion recovery) at six different inversion times (TI range 100–1000 ms). T1 relaxation times were computed for all subjects by fitting the TI‐dependent MR signal intensities of user‐defined regions of interest in both SAT and VAT to a model function. T1 times in sSAT and dSAT were only measured in obese patients. For both obese patients and controls, the T1 times of SAT (275 ± 14 and 301 ± 12 ms) were significantly (p < 0.01) shorter than the respective values in VAT (294 ± 20 and 360 ± 35 ms). Obese subjects also showed significant (p < 0.01) T1 differences between sSAT (268 ± 11 ms) and dSAT (281 ± 19 ms). More important, T1 differences in both SAT and VAT were highly significant (p < 0.001) between obese patients and healthy subjects. The results of our pilot study suggest that T1 relaxation times differ between severely obese patients and lean controls, and may potentially provide an additional means for the non‐invasive assessment of AT conditions and dysfunction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Although current cardiovascular MR (CMR) techniques for the detection of myocardial fibrosis have shown promise, they nevertheless depend on gadolinium‐based contrast agents and are not specific to collagen. In particular, the diagnosis of diffuse myocardial fibrosis, a precursor of heart failure, would benefit from a non‐invasive imaging technique that can detect collagen directly. Such a method could potentially replace the need for endomyocardial biopsy, the gold standard for the diagnosis of the disease. The objective of this study was to measure the MR properties of collagen using ultrashort TE (UTE), a technique that can detect short T2* species. Experiments were performed in collagen solutions. Via a model of bi‐exponential T2* with oscillation, a linear relationship (slope = 0.40 ± 0.01, R2 = 0.99696) was determined between the UTE collagen signal fraction associated with these properties and the measured collagen concentration in solution. The UTE signal of protons in the collagen molecule was characterized as having a mean T2* of 0.75 ± 0.05 ms and a mean chemical shift of ?3.56 ± 0.01 ppm relative to water at 7 T. The results indicated that collagen can be detected and quantified using UTE. A knowledge of the collagen signal properties could potentially be beneficial for the endogenous detection of myocardial fibrosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Renal failure causes sympathetic overactivity and inadequate capillary growth in response to cardiomyocyte hypertrophy in experimental renal failure, as well as in uremic patients. In nonuremic animals, sympathetic overactivity was shown to suppress capillary growth. The purpose of this study was to examine whether blockade with α- and β-adrenoblockers ameliorates the capillary deficit that was documented in the hearts of rats with moderate renal failure. Male Sprague–Dawley rats, 3 days after surgical ablation [subtotal nephrectomy (SNX)] or sham operation (sham), were treated with phenoxybenzamine, metoprolol, or a combination of both: After 12 weeks, the hearts were investigated using morphometric and stereologic techniques. The length density of myocardial capillaries was lower (p<0.05) in untreated SNX than in sham (2,786±372 vs 3,397±602 mm/mm3); the decrease was abrogated by metoprolol (3,305±624 mm/mm3), but not by phenoxybenzamin (2,628±480 mm/mm3). The intercapillary distance increased (p<0.05) in SNX (20.5±1.5 μm) and tended to be lower after metoprolol treatment (19.0±1.9 μm). The media area of intramyocardial arterioles was significantly higher in untreated SNX (1,158±1,343 vs 686±771 μm2 in sham). Metoprolol in nonhypotensive doses prevents the capillary deficit in the hearts of rats with moderate renal failure and presents an argument for an important role of sympathetic overactivity in the genesis of the capillary deficit in moderate chronic renal insufficiency.  相似文献   

17.
The purpose of this work was to quantify muscular perfusion patterns of back muscles after exercise in patients with adolescent idiopathic scoliosis (AIS) using intravoxel incoherent motion (IVIM) MR perfusion imaging. The paraspinal muscles of eight patients with AIS (Cobb angle 35 ± 10°, range [25‐47°]) and nine healthy volunteers were scanned with a 1.5 T MRI, at rest and after performing a symmetric back muscle exercise on a Roman chair. An IVIM sequence with 16 b‐values from 0 to 900 s/mm2 was acquired, and the IVIM bi‐exponential signal equation model was fitted in two steps. Perfusion asymmetries were evaluated using the blood flow related IVIM fD* parameter in regions of interest placed within the paraspinal muscles. Statistical significance was assessed using a Student t‐test. The observed perfusion pattern after performing a Roman chair muscle exercise differed consistently in patients with AIS compared with healthy normal volunteers, and consisted of an asymmetrical increase in IVIM fD* [10?3 mm2/s] above the lumbar convexity from 6.5 ± 5.8 to 28.8 ± 26.8 (p < 0.005), with no increase in the concavity (decrease from 6.5 ± 10.0 to 3.2 ± 1.5 (p = 0.19)), compared with a bilateral symmetric increase in the healthy volunteers (right, increase from 3.3 ± 2.1 to 10.1 ± 4.6 (p < 0.05); left, 6.7 ± 10.7 to 13.3 ± 7.0 (p < 0.05)). In conclusion, patients with AIS exhibit significant asymmetric muscle perfusion over the convexity of the scoliotic curvature after Roman chair exercise.  相似文献   

18.
Quantitative MRI can detect early biochemical changes in cartilage, but its bilateral use in clinical routines is challenging. The aim of this prospective study was to demonstrate the feasibility of magnetic resonance fingerprinting for bilateral simultaneous T1, T2, and T mapping of the hip joint. The study population consisted of six healthy volunteers with no known trauma or pain in the hip. Monoexponential T1, T2, and T relaxation components were assessed in femoral lateral, superolateral, and superomedial, and inferior, as well as acetabular, superolateral, and superomedial subregions in left and right hip cartilage. Aligned ranked nonparametric factorial analysis was used to assess the side's impact on the subregions. Kruskal–Wallis and Wilcoxon tests were used to compare subregions, and coefficient of variation to assess repeatability. Global averages of T1 (676.0 ± 45.4 and 687.6 ± 44.5 ms), T2 (22.5 ± 2.6 and 22.1 ± 2.5 ms), and T (38.2 ± 5.5 and 38.2 ± 5.5 ms) were measured in the left and right hip, and articular cartilage, respectively. The Kruskal–Wallis test showed a significant difference between different subregions’ relaxation times regardless of the hip side (p < 0.001 for T1, p = 0.012 for T2, and p < 0.001 for T). The Wilcoxon test showed that T1 of femoral layers was significantly (p < 0.003) higher than that for acetabular cartilage. The experiments showed excellent repeatability with CVrms of 1%, 2%, and 4% for T1, T2, and T1ρ, respectively. It was concluded that bilateral T1, T2, and T relaxation times, as well as B1+ maps, can be acquired simultaneously from hip joints using the proposed MRF sequence.  相似文献   

19.
Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in ‘free’ form in the pores of cortical bone. In this study, we aimed to develop and evaluate ultrashort‐TE (UTE) MRI techniques for the assessment of T2*, T1 and concentration of collagen‐bound and pore water in cortical bone using a 3‐T clinical whole‐body scanner. UTE MRI, together with an isotope study using tritiated and distilled water (THO–H2O) exchange, as well as gravimetric analysis, were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between the pore water concentration measured with UTE MRI and the cortical porosity derived from micro‐computed tomography (μCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116 ± 6 ms were observed for collagen‐bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527 ± 28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7–5.3% by volume and collagen‐bound water concentration of 15.7–17.9% in bovine bone. THO–H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen‐bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetric analysis showed a pore water concentration of 6.3 ± 0.8% and collagen‐bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO–H2O exchange study. UTE‐measured pore water concentration is highly correlated (R2 = 0.72, p < 0.0001) with μCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen‐bound and pore water concentration in cortical bone using a clinical scanner. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
To compare different MRI sequences for the detection of lesions and the evaluation of response to chemotherapy in patients with diffuse large B‐cell lymphoma (DLBCL), 18 patients with histology‐confirmed DLBCL underwent 3‐T MRI scanning prior to and 1 week after chemotherapy. The MRI sequences included T1‐weighted pre‐ and post‐contrast, T2‐weighted with and without fat suppression, and a single‐shot echo‐planar diffusion‐weighted imaging (DWI) with two b values (0 and 800 s/mm2). Conventional MRI sequence comparisons were performed using the contrast ratio between tumor and normal vertebral body instead of signal intensity. The apparent diffusion coefficient (ADC) of the tumor was measured directly on the parametric ADC map. The tumor volume was used as a reference for the evaluation of chemotherapy response. The mean tumor volume was 374 mL at baseline, and decreased by 65% 1 week after chemotherapy (p < 0.01). The T2‐weighted image with fat suppression showed a significantly higher contrast ratio compared with images from all other conventional MRI sequences, both before and after treatment (p < 0.01, respectively). The contrast ratio of the T2‐weighted image with fat suppression decreased significantly (p < 0.01), and that of the T1‐weighted pre‐contrast image increased significantly (p < 0.01), after treatment. However, there was no correlation between the change in contrast ratio and tumor volume. The mean ADC value was 0.68 × 10–3 mm2/s at baseline; it increased by 89% after chemotherapy (p < 0.001), and the change in ADC value correlated with the change in tumor volume (r = 0.66, p < 0.01). The baseline ADC value also correlated inversely with the percentage change in ADC after treatment (r = ?0.62, p < 0.01). In conclusion, this study indicates that T2‐weighted imaging with fat suppression is the best conventional sequence for the detection of lesions and evaluation of the efficacy of chemotherapy in DLBCL. DWI with ADC mapping is an imaging modality with both diagnostic and prognostic value that could complement conventional MRI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号