首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this work was to develop an acquisition and reconstruction technique for two‐ and three‐directional (2d and 3d) phase‐contrast flow MRI in real time. A previous real‐time MRI technique for one‐directional (1d) through‐plane flow was extended to 2d and 3d flow MRI by introducing in‐plane flow sensitivity. The method employs highly undersampled radial FLASH sequences with sequential acquisitions of two or three flow‐encoding datasets and one flow‐compensated dataset. Echo times are minimized by merging the waveforms of flow‐encoding and radial imaging gradients. For each velocity direction individually, model‐based reconstructions by regularized nonlinear inversion jointly estimate an anatomical image, a set of coil sensitivities and a phase‐contrast velocity map directly. The reconstructions take advantage of a dynamic phase reference obtained by interpolating consecutive flow‐compensated acquisitions. Validations include pulsatile flow phantoms as well as in vivo studies of the human aorta at 3 T. The proposed method offers cross‐sectional 2d and 3d flow MRI of the human aortic arch at 53 and 67 ms resolution, respectively, without ECG synchronization and during free breathing. The in‐plane resolution was 1.5 × 1.5 mm2 and the slice thickness 6 mm. In conclusion, real‐time multi‐directional flow MRI offers new opportunities to study complex human blood flow without the risk of combining differential phase (i.e., velocity) information from multiple heartbeats as for ECG‐gated data. The method would benefit from a further reduction of acquisition time and accelerated computing to allow for extended clinical trials.  相似文献   

2.
To be able to examine dynamic and detailed brain functions, the spatial and temporal resolution of 7 T MRI needs to improve. In this study, it was investigated whether submillimeter multishot 3D EPI fMRI scans, acquired with high‐density receive arrays, can benefit from a 2D CAIPIRINHA sampling pattern, in terms of noise amplification (g‐factor), temporal SNR and fMRI sensitivity. High‐density receive arrays were combined with a shot‐selective 2D CAIPIRINHA implementation for multishot 3D EPI sequences at 7 T. In this implementation, in contrast to conventional inclusion of extra kz gradient blips, specific EPI shots are left out to create a CAIPIRINHA shift and reduction of scan time. First, the implementation of the CAIPIRINHA sequence was evaluated with a standard receive setup by acquiring submillimeter whole brain T2*‐weighted anatomy images. Second, the CAIPIRINHA sequence was combined with high‐density receive arrays to push the temporal resolution of submillimeter 3D EPI fMRI scans of the visual cortex. Results show that the shot‐selective 2D CAIPIRINHA sequence enables a reduction in scan time for 0.5 mm isotropic 3D EPI T2*‐weighted anatomy scans by a factor of 4 compared with earlier reports. The use of the 2D CAIPIRINHA implementation in combination with high‐density receive arrays, enhances the image quality of submillimeter 3D EPI scans of the visual cortex at high acceleration as compared to conventional SENSE. Both the g‐factor and temporal SNR improved, resulting in a method that is more sensitive to the fMRI signal. Using this method, it is possible to acquire submillimeter single volume 3D EPI scans of the visual cortex in a subsecond timeframe. Overall, high‐density receive arrays in combination with shot‐selective 2D CAIPIRINHA for 3D EPI scans prove to be valuable for reducing the scan time of submillimeter MRI acquisitions.  相似文献   

3.
The quality of an RF detector coil design is commonly judged on how it compares with other coil configurations. The aim of this article is to develop a tool for evaluating the absolute performance of RF coil arrays. An algorithm to calculate the ultimate intrinsic signal‐to‐noise ratio (SNR) was implemented for a spherical geometry. The same imaging tasks modeled in the calculations were reproduced experimentally using a 32‐element head array. Coil performance maps were then generated based on the ratio of experimentally measured SNR to the ultimate intrinsic SNR, for different acceleration factors associated with different degrees of parallel imaging. The relative performance in all cases was highest near the center of the samples (where the absolute SNR was lowest). The highest performance was found in the unaccelerated case and a maximum of 85% was observed with a phantom whose electrical properties are consistent with values in the human brain. The performance remained almost constant for 2‐fold acceleration, but deteriorated at higher acceleration factors, suggesting that larger arrays are needed for effective highly‐accelerated parallel imaging. The method proposed here can serve as a tool for the evaluation of coil designs, as well as a tool to guide the development of original designs which may begin to approach the optimal performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Water‐suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non‐water‐suppressed MRS spectrum is used for artefact correction, reconstruction of phased‐array coil data and metabolite quantification. Here, a two‐scan metabolite‐cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short‐echo (TE = 14 ms), two‐dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite‐cycling is counterbalanced by a time‐efficient concentric ring k‐space trajectory. To validate the technique, water‐suppressed MRSI acquisitions were also performed for comparison. The proposed non‐water‐suppressed metabolite‐cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high‐resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non‐water‐suppressed and water‐suppressed techniques. The achieved spectral quality, signal‐to‐noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in‐plane resolution of 10 × 10 mm2 in 8 min and with a Cramér‐Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non‐water‐suppressed technique enabled voxel‐wise single‐scan frequency, phase and eddy current correction. These findings demonstrate that our non‐water‐suppressed metabolite‐cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time.  相似文献   

5.
Recent technical developments have significantly increased the signal‐to‐noise ratio (SNR) of arterial spin labeled (ASL) perfusion MRI. Despite this, typical ASL acquisitions still employ large voxel sizes. The purpose of this work was to implement and evaluate two ASL sequences optimized for whole‐brain high‐resolution perfusion imaging, combining pseudo‐continuous ASL (pCASL), background suppression (BS) and 3D segmented readouts, with different in‐plane k‐space trajectories. Identical labeling and BS pulses were implemented for both sequences. Two segmented 3D readout schemes with different in‐plane trajectories were compared: Cartesian (3D GRASE) and spiral (3D RARE Stack‐Of‐Spirals). High‐resolution perfusion images (2 × 2 × 4 mm3) were acquired in 15 young healthy volunteers with the two ASL sequences at 3 T. The quality of the perfusion maps was evaluated in terms of SNR and gray‐to‐white matter contrast. Point‐spread‐function simulations were carried out to assess the impact of readout differences on the effective resolution. The combination of pCASL, in‐plane segmented 3D readouts and BS provided high‐SNR high‐resolution ASL perfusion images of the whole brain. Although both sequences produced excellent image quality, the 3D RARE Stack‐Of‐Spirals readout yielded higher temporal and spatial SNR than 3D GRASE (spatial SNR = 8.5 ± 2.8 and 3.7 ± 1.4; temporal SNR = 27.4 ± 12.5 and 15.6 ± 7.6, respectively) and decreased through‐plane blurring due to its inherent oversampling of the central k‐space region, its reduced effective TE and shorter total readout time, at the expense of a slight increase in the effective in‐plane voxel size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In order to acquire consistent k‐space data in MR elastography, a fixed temporal relationship between the MRI sequence and the underlying period of the wave needs to be ensured. To this end, conventional GRE‐MRE enforces synchronization through repeated triggering of the transducer and forcing the sequence repetition time to be equal to an integer multiple of the wave period. For wave frequencies below 100 Hz, however, this leads to prolonged acquisition times, as the repetition time scales inversely with frequency. A previously developed multi‐shot approach (eXpresso MRE) to multi‐slice GRE‐MRE tackles this issue by acquiring an integer number of slices per wave period, which allows acquisition to be accelerated in typical scenarios by a factor of two or three. In this work, it is demonstrated that the constraints imposed by the eXpresso scheme are overly restrictive. We propose a generalization of the sequence in three steps by incorporating sequence delays into imaging shots and allowing for interleaved wave‐phase acquisition. The Ristretto scheme is compared in terms of imaging shot and total scan duration relative to eXpresso and conventional GRE‐MRE and is validated in three different phantom studies. First, the agreement of measured displacement fields in different stages of the sequence generalization is shown. Second, performance is compared for 25, 36, 40, and 60 Hz actuation frequencies. Third, the performance is assessed for the acquisition of different numbers of slices (13 to 17). In vivo feasibility is demonstrated in the liver and the breast. Here, Ristretto is compared with an optimized eXpresso sequence, leading to scan accelerations of 15% and 5%, respectively, without compromising displacement field and stiffness estimates in general. The Ristretto concept allows us to choose imaging shot durations on a fine grid independent of the number of slices and the wave frequency, permitting 2‐ to 4.5‐fold acceleration of conventional GRE‐MRE acquisitions.  相似文献   

7.
Although combined spin‐ and gradient‐echo (SAGE) dynamic susceptibility‐contrast (DSC) MRI can provide perfusion quantification that is sensitive to both macrovessels and microvessels while correcting for T1‐shortening effects, spatial coverage is often limited in order to maintain a high temporal resolution for DSC quantification. In this work, we combined a SAGE echo‐planar imaging (EPI) sequence with simultaneous multi‐slice (SMS) excitation and blipped controlled aliasing in parallel imaging (blipped CAIPI) at 3 T to achieve both high temporal resolution and whole brain coverage. Two protocols using this sequence with multi‐band (MB) acceleration factors of 2 and 3 were evaluated in 20 patients with treated gliomas to determine the optimal scan parameters for clinical use. ΔR2*(t) and ΔR2(t) curves were derived to calculate dynamic signal‐to‐noise ratio (dSNR), ΔR2*‐ and ΔR2‐based relative cerebral blood volume (rCBV), and mean vessel diameter (mVD) for each voxel. The resulting SAGE DSC images acquired using MB acceleration of 3 versus 2 appeared visually similar in terms of image distortion and contrast. The difference in the mean dSNR from normal‐appearing white matter (NAWM) and that in the mean dSNR between NAWM and normal‐appearing gray matter were not statistically significant between the two protocols. ΔR2*‐ and ΔR2‐rCBV maps and mVD maps provided unique contrast and spatial heterogeneity within tumors.  相似文献   

8.
It has been shown that density‐weighted (DW) k‐space sampling with spiral and conventional phase encoding trajectories reduces spatial side lobes in magnetic resonance spectroscopic imaging (MRSI). In this study, we propose a new concentric ring trajectory (CRT) for DW‐MRSI that samples k‐space with a density that is proportional to a spatial, isotropic Hanning window. The properties of two different DW‐CRTs were compared against a radially equidistant (RE) CRT and an echo‐planar spectroscopic imaging (EPSI) trajectory in simulations, phantoms and in vivo experiments. These experiments, conducted at 7 T with a fixed nominal voxel size and matched acquisition times, revealed that the two DW‐CRT designs improved the shape of the spatial response function by suppressing side lobes, also resulting in improved signal‐to‐noise ratio (SNR). High‐quality spectra were acquired for all trajectories from a specific region of interest in the motor cortex with an in‐plane resolution of 7.5 × 7.5 mm2 in 8 min 3 s. Due to hardware limitations, high‐spatial‐resolution spectra with an in‐plane resolution of 5 × 5 mm2 and an acquisition time of 12 min 48 s were acquired only for the RE and one of the DW‐CRT trajectories and not for EPSI. For all phantom and in vivo experiments, DW‐CRTs resulted in the highest SNR. The achieved in vivo spectral quality of the DW‐CRT method allowed for reliable metabolic mapping of eight metabolites including N‐acetylaspartylglutamate, γ‐aminobutyric acid and glutathione with Cramér‐Rao lower bounds below 50%, using an LCModel analysis. Finally, high‐quality metabolic mapping of a whole brain slice using DW‐CRT was achieved with a high in‐plane resolution of 5 × 5 mm2 in a healthy subject. These findings demonstrate that our DW‐CRT MRSI technique can perform robustly on MRI systems and within a clinically feasible acquisition time.  相似文献   

9.
The ability to accelerate the spatial encoding process during a chemical shift imaging (CSI) scan of hyperpolarized compounds is demonstrated through parallel imaging. A hardware setup designed to simultaneously acquire 13C data from multiple receivers is presented here. A system consisting of four preamplifiers, four gain stages, a transmit coil, and a four receive channel rat coil was built for single channel excitation and simultaneous multi‐channel detection of 13C signals. The hardware setup was integrated with commercial scanner electronics, allowing the system to function similar to a conventional proton multi‐channel setup, except at a different frequency. The ability to perform parallel imaging is demonstrated in vivo. CSI data from the accelerated scans are reconstructed using a self‐calibrated multi‐spectral parallel imaging algorithm, by using lower resolution coil sensitivity maps obtained from the central region of k‐space. The advantages and disadvantages of parallel imaging in the context of imaging hyperpolarized compounds are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Atherosclerotic plaques that cause stroke and myocardial infarction are characterized by increased microvascular permeability and inflammation. Dynamic contrast‐enhanced MRI (DCE‐MRI) has been proposed as a method to quantify vessel wall microvascular permeability in vivo. Until now, most DCE‐MRI studies of atherosclerosis have been limited to two‐dimensional (2D) multi‐slice imaging. Although providing the high spatial resolution required to image the arterial vessel wall, these approaches do not allow the quantification of plaque permeability with extensive anatomical coverage, an essential feature when imaging heterogeneous diseases, such as atherosclerosis. To our knowledge, we present the first systematic evaluation of three‐dimensional (3D), high‐resolution, DCE‐MRI for the extensive quantification of plaque permeability along an entire vascular bed, with validation in atherosclerotic rabbits. We compare two acquisitions: 3D turbo field echo (TFE) with motion‐sensitized‐driven equilibrium (MSDE) preparation and 3D turbo spin echo (TSE). We find 3D TFE DCE‐MRI to be superior to 3D TSE DCE‐MRI in terms of temporal stability metrics. Both sequences show good intra‐ and inter‐observer reliability, and significant correlation with ex vivo permeability measurements by Evans Blue near‐infrared fluorescence (NIRF). In addition, we explore the feasibility of using compressed sensing to accelerate 3D DCE‐MRI of atherosclerosis, to improve its temporal resolution and therefore the accuracy of permeability quantification. Using retrospective under‐sampling and reconstructions, we show that compressed sensing alone may allow the acceleration of 3D DCE‐MRI by up to four‐fold. We anticipate that the development of high‐spatial‐resolution 3D DCE‐MRI with prospective compressed sensing acceleration may allow for the more accurate and extensive quantification of atherosclerotic plaque permeability along an entire vascular bed. We foresee that this approach may allow for the comprehensive and accurate evaluation of plaque permeability in patients, and may be a useful tool to assess the therapeutic response to approved and novel drugs for cardiovascular disease. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The neuroimaging of nonhuman primates (NHPs) realised with magnetic resonance imaging (MRI) plays an important role in understanding brain structures and functions, as well as neurodegenerative diseases and pathological disorders. Theoretically, an ultrahigh field MRI (≥7 T) is capable of providing a higher signal‐to‐noise ratio (SNR) for better resolution; however, the lack of appropriate radiofrequency (RF) coils for 9.4 T monkey MRI undermines the benefits provided by a higher field strength. In particular, the standard volume birdcage coil at 9.4 T generates typical destructive interferences in the periphery of the brain, which reduces the SNR in the neuroscience‐focused cortex region. Also, the standard birdcage coil is not capable of performing parallel imaging. Consequently, extended scan durations may cause unnecessary damage due to overlong anaesthesia. In this work, assisted by numerical simulations, an eight‐channel receive RF coil array was specially designed and manufactured for imaging NHPs at 9.4 T. The structure and geometry of the proposed receive array was optimised with numerical simulations, so that the SNR enhancement region was particularly focused on monkey brain. Validated with rhesus monkey and cynomolgus monkey brain images acquired from a 9.4 T MRI scanner, the proposed receive array outperformed standard birdcage coil with higher SNR, mean diffusivity and fractional anisotropy values, as well as providing better capability for parallel imaging.  相似文献   

12.
Radial spin‐echo diffusion imaging allows motion‐robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal‐to‐noise ratio (SNR). However, in vivo measurements are challenging, due to the significantly slower data acquisition speed of spin‐echo sequences and the less efficient k‐space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled diffusion‐tensor imaging (DTI). A model‐based reconstruction implicitly exploits redundancies in the diffusion‐weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a total variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (three and two volunteers, respectively). Evaluation of the new approach was conducted by comparing the results with reconstructions performed with gridding, combined parallel imaging and compressed sensing and a recently proposed model‐based approach. The experiments demonstrated improvements in terms of reduction of noise and streaking artifacts in the quantitative parameter maps, as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin‐echo diffusion‐tensor imaging without degrading parameter quantification and/or SNR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The macaque monkey is an important model for cognitive and sensory neuroscience that has been used extensively in behavioral, electrophysiological, molecular and, more recently, neuroimaging studies. However, macaque MRI has unique technical differences relative to human MRI, such as the geometry of highly parallel receive arrays, which must be addressed to optimize imaging performance. A 22‐channel receive coil array was constructed specifically for rapid high‐resolution anesthetized macaque monkey MRI at 3 T. A local Helmholtz transmit coil was used for excitation. Signal‐to‐noise ratios (SNRs) and noise amplification for parallel imaging were compared with those of single‐ and four‐channel receive coils routinely used for macaque MRI. The 22‐channel coil yielded significant improvements in SNR throughout the brain. Using this coil, the SNR in peripheral brain was 2.4 and 1.7 times greater than that obtained with single‐ or four‐channel coils, respectively. In the central brain, the SNR gain was 1.5 times that of both the single‐ and four‐channel coils. Finally, the performance of the array for functional, anatomical and diffusion‐weighted imaging was evaluated. For all three modalities, the use of the 22‐channel array allowed for high‐resolution and accelerated image acquisition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of this work was to show that the overall peak power of RF pulses for CAIPIRINHA excitation can be substantially reduced by applying interslice phase relaxation. The optimal phases are scan dependent and can be quickly calculated by the proposed method. The multi‐band RF pulse design is implemented as the minimization of a linear objective function with quadratic constraints. The interslice phase is considered to be a variable for optimization. In the case of a phase cycling scheme (CAIPIRINHA), the peak power is considered over all pulses. The computation time (about 1 s) is compatible with online RF pulse design. It is shown that the optimal interslice phases depend on the CAIPIRINHA scheme used and that RF peak power is reduced when the CAIPIRINHA phase cycling is taken into account in the optimization. The proposed method is extremely fast and results in RF pulses with low peak power for CAIPIRINHA excitation. The MATLAB implementation is given in the appendix; it allows for online determination of scan‐dependent phase parameters. Furthermore, the method can be easily extended to pTx shimming systems in the context of multi‐slice excitations, and this possibility is included in the software. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The ultimate intrinsic signal‐to‐noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl‐free and divergence‐free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl‐free current patterns to the ultimate intrinsic SNR in a spherical head‐sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl‐free or divergence‐free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl‐free and divergence‐free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full‐wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra‐high field strength (B0?7T) a combination of curl‐free and divergence‐free current patterns is required to achieve the best possible SNR at any position in a spherical head‐sized model. On 1.5‐ and 3T platforms, divergence‐free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR.  相似文献   

16.
To date, spatial encoding for MRI is based on linear X, Y and Z field gradients generated by dedicated X, Y and Z wire patterns. We recently introduced the dynamic multi‐coil technique (DYNAMITE) for the generation of magnetic field shapes for biomedical MR applications from a set of individually driven localized coils. The benefits for B0 magnetic field homogenization have been shown, as well as proof of principle of radial and algebraic MRI. In this study the potential of DYNAMITE MRI is explored further and the first multi‐slice MRI implementation in which all gradient fields are purely DYNAMITE based is presented. The obtained image fidelity is shown to be virtually identical to that of a conventional MRI system with dedicated X, Y and Z gradient coils. Comparable image quality is a milestone towards the establishment of fully functional DYNAMITE MRI (and shim) systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A new method has been developed to reduce the number of phase-encoding steps in a multi-echo spin-echo imaging sequence allowing fast T(2) mapping without loss of spatial resolution. In the proposed approach, the k-space data at each echo time were undersampled and a reconstruction algorithm that exploited the temporal correlation of the MR signal in k-space was used to reconstruct alias-free images. A specific application of this algorithm with multiple-receiver acquisition, offering an alternative to existing parallel imaging methods, has also been introduced. The fast T(2) mapping method has been validated in human brain T(2) measurements in a group of nine volunteers with acceleration factors up to 3.4. The results demonstrated that the proposed method exhibited excellent linear correlation with the regular T(2) mapping with full sampling and achieved better image reconstruction and T(2) mapping with respect to SNR and reconstruction artifacts than the selected reference acceleration techniques. The new method has also been applied for quantitative tracking of injected magnetically labeled breast cancer cells in the rat brain with acceleration factors of 1.8 and 3.0. The proposed technique can provide an effective approach for accelerated T(2) quantification, especially for experiments with single-channel coil when parallel imaging is not applicable.  相似文献   

18.
Diffusion imaging is a promising technique as it can provide microstructural tissue information and thus potentially show viable changes in spinal cord. However, the traditional single‐shot imaging method is limited as a result of various image artifacts. In order to improve measurement accuracy, we used a newly developed, multi‐shot, high‐resolution, diffusion tensor imaging (DTI) method to investigate diffusion metric changes and compare them with T2‐weighted (T2W) images before and after decompressive surgery for cervical spondylotic myelopathy (CSM). T2W imaging, single‐shot DTI and multi‐shot DTI were employed to scan seven patients with CSM before and 3 months after decompressive surgery. High signal intensities were scored using the T2 W images. DTI metrics, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were quantified and compared pre‐ and post‐surgery. In addition, the relationship between imaging metrics and neurological assessments was examined. The reproducibility of multi‐shot DTI was also assessed in 10 healthy volunteers. Post‐surgery, the mean grade of cervical canal stenosis was reduced from grade 3 to normal after 3 months. Compared with single‐shot DTI, multi‐shot DTI provided better images with lower artifact levels, especially following surgery, as a result of reduced artifacts from metal implants. The new method also showed acceptable reproducibility. Both FA and RD values from the new acquisition showed significant differences post‐surgery (FA, p = 0.026; RD, p = 0.048). These changes were consistent with neurological assessments. In contrast, T2W images did not show significant changes before and after surgery. Multi‐shot diffusion imaging showed improved image quality over single‐shot DWI, and presented superior performance in diagnosis and recovery monitoring for patients with CSM compared with T2W imaging. DTI metrics can reflect the pathological conditions of spondylotic spinal cord quantitatively and may serve as a sensitive biomarker for potential CSM management.  相似文献   

19.
Simultaneous multi‐slice (SMS) imaging techniques accelerate diffusion MRI data acquisition. However, slice separation is imperfect and results in residual signal leakage between the simultaneously excited slices. The resulting consistent bias may adversely affect diffusion model parameter estimation. Although this bias is usually small and might not affect the simplified diffusion tensor model significantly, higher order diffusion models such as kurtosis are likely to be more susceptible to such effects. In this work, two SMS reconstruction techniques and an alternative acquisition approach were tested to quantify the effects of slice crosstalk on diffusion kurtosis parameters. In reconstruction, two popular slice separation algorithms, slice GRAPPA and split‐slice GRAPPA, are evaluated to determine the effect of slice leakage on diffusion kurtosis metrics. For the alternative acquisition, the slice pairings were varied across diffusion weighted images such that the signal leakage does not come from the same overlapped slice for all diffusion encodings. Simulation results demonstrated the potential benefits of randomizing the slice pairings. However, various experimental factors confounded the advantages of slice pair randomization. In volunteer experiments, region‐of‐interest analyses found high metric errors with each of the SMS acquisitions and reconstructions in the brain white matter.  相似文献   

20.
We introduce a new protocol to obtain very high‐frame‐rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self‐gated accelerated fast low‐angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k–t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self‐gated FLASH sequence with a total acquisition time of 10 min was used to produce single‐slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k–t space undersampled Cine movies were produced from 2.5‐ and 1.5‐min data acquisitions, respectively. The accelerated 90‐frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end‐systolic and end‐diastolic lumen surface areas and early‐to‐late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号