首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine (Gln), glutamate (Glu) and γ‐aminobutyric acid (GABA) are relevant brain metabolites that can be measured with magnetic resonance spectroscopy (MRS). This work optimizes the point‐resolved spectroscopy (PRESS) sequence echo times, TE1 and TE2, for improved simultaneous quantification of the three metabolites at 9.4 T. Quantification was based on the proton resonances of Gln, Glu and GABA at ≈2.45, ≈2.35 and ≈2.28 ppm, respectively. Glu exhibits overlap with both Gln and GABA; in addition, the Gln peak is contaminated by signal from the strongly coupled protons of N‐acetylaspartate (NAA), which resonate at about 2.49 ppm. J‐coupling evolution of the protons was characterized numerically and verified experimentally. A {TE1, TE2} combination of {106 ms, 16 ms} minimized the NAA signal in the Gln spectral region, whilst retaining Gln, Glu and GABA peaks. The efficacy of the technique was verified on phantom solutions and on rat brain in vivo. LCModel was employed to analyze the in vivo spectra. The average T2‐corrected Gln, Glu and GABA concentrations were found to be 3.39, 11.43 and 2.20 mM, respectively, assuming a total creatine concentration of 8.5 mM. LCModel Cramér–Rao lower bounds (CRLBs) for Gln, Glu and GABA were in the ranges 14–17%, 4–6% and 16–19%, respectively. The optimal TE resulted in concentrations for Gln and GABA that agreed more closely with literature concentrations compared with concentrations obtained from short‐TE spectra acquired with a {TE1, TE2} combination of {12 ms, 9 ms}. LCModel estimations were also evaluated with short‐TE PRESS and with the optimized long TE of {106 ms, 16 ms}, using phantom solutions of known metabolite concentrations. It was shown that concentrations estimated with LCModel can be inaccurate when combined with short‐TE PRESS, where there is peak overlap, even when low (<20%) CRLBs are reported.  相似文献   

2.
MRS of 13C4‐labelled glutamate (13C4‐Glu) during an infusion of a carbon‐13 (13C)‐labelled substrate, such as uniformly labelled glucose ([U‐13C6]‐Glc), provides a measure of Glc metabolism. The presented work provides a single‐shot indirect 13C detection technique to quantify the approximately 2.51 ppm 13C4‐Glu satellite proton (1H) peak at 9.4 T. The methodology is an optimized point‐resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N‐acetylaspartate (NAA), which resonate at approximately 2.49 ppm. J‐coupling evolution of protons was characterized numerically and verified experimentally. A (TE1, TE2) combination of (20 ms, 106 ms) was found to be suitable for minimizing NAA signal in the 2.51 ppm 1H 13C4‐Glu spectral region, while retaining the 13C4‐Glu 1H satellite peak. The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U‐13C6]‐Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1H 13C4‐Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér‐Rao lower bounds of about 8% were obtained for the 2.51 ppm 13C4‐Glu 1H satellite peak with the optimal TE combination.  相似文献   

3.
The goals of this study were to develop an acquisition protocol and the analysis tools for Meshcher–Garwood point‐resolved spectroscopy (MEGA‐PRESS) in mouse brain at 9.4 T, to allow the in vivo detection of γ‐aminobutyric acid (GABA) and to examine whether isoflurane alters GABA levels in the thalamus during anesthesia. We implemented the MEGA‐PRESS sequence on a Bruker 94/20 system with ParaVision 6.0.1, and magnetic resonance spectra were acquired from nine male wild‐type C57BL/6 J mice at the thalamus. Four individual scans were obtained for each mouse in a 2‐h time course whilst the mouse was anesthetized with isoflurane. We developed an automated analysis program with improved correction for frequency and phase drift compared with the standard creatine (Cr) fitting‐based method and provided automatic quantification. During MEGA‐PRESS acquisition, a single voxel with a size of 5 × 3 × 3 mm3 was placed at the thalamus to evaluate GABA to Cr (GABA/Cr) ratios during anesthesia. Detection and quantitative analysis of thalamic GABA levels were successfully achieved. We noticed a significant decrease in GABA/Cr during the 2‐h anesthesia (by linear regression analysis: slope < 0, p < 0.0001). In summary, our findings demonstrate that MEGA‐PRESS is a feasible technique to measure in vivo GABA levels in the mouse brain at 9.4 T.  相似文献   

4.
The glycerol methylene proton resonances (4–4.5 parts per million, ppm), which arise from the triglyceride backbone, are relevant to fat composition assessment and can be measured with proton MRS. The purpose of the presented work is to determine long TE (echo time) point resolved spectroscopy (PRESS) and stimulated echo acquisition mode (STEAM) values at 3 T to resolve the glycerol resonances from that of overlapping water. The response of the glycerol methylene protons of nine edible oils as a function of PRESS and STEAM TE (mixing time, TM = 20 ms) was investigated. In addition, high resolution NMR spectra of the oils were acquired at 16.5 T. Long TE values where J‐coupling losses were lowest were selected, namely a TE of 180 ms for PRESS (first echo time 17 ms) and a TE of 100 ms for STEAM (mixing time 20 ms). Oil olefinic (≈5.4 ppm) to glycerol ratios were calculated from the long TE spectra and correlated with 16.5 T ratios. The two techniques yielded olefinic/glycerol ratios that correlated with 16.5 T ratios (R2 = 0.79 for PRESS and 0.90 for STEAM). The efficacy of the sequences in resolving the glycerol resonance from that of water was verified in vivo on tibial bone marrow of four healthy volunteers. In addition, the potential for using the glycerol methylene signal normalized to the methyl signal (≈0.9 ppm) to assess changes in free fatty acid content was demonstrated by measuring differences in spectra acquired from a triglyceride peanut oil phantom and from a phantom composed of a mixture of peanut oil and free fatty acid oleic acid.  相似文献   

5.
Glutamine has multiple roles in brain metabolism and its concentration can be altered in various pathological conditions. An accurate knowledge of its concentration is therefore highly desirable to monitor and study several brain disorders in vivo. However, in recent years, several MRS studies have reported conflicting glutamine concentrations in the human brain. A recent hypothesis for explaining these discrepancies is that a short T2 component of the glutamine signal may impact on its quantification at long echo times. The present study therefore aimed to investigate the impact of acquisition parameters on the quantified glutamine concentration using two different acquisition techniques, SPECIAL at ultra‐short echo time and MEGA‐SPECIAL at moderate echo time. For this purpose, MEGA‐SPECIAL was optimized for the first time for glutamine detection. Based on the very good agreement of the glutamine concentration obtained between the two measurements, it was concluded that no impact of a short T2 component of the glutamine signal was detected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In vivo water‐ and fat‐suppressed 1H magnetic resonance spectroscopy (MRS) and 31P magnetic resonance adiabatic multi‐echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31P metabolites were determined, and the reproducibility of 1H and 31P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi‐exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi‐exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ‐ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono‐exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1H total choline (tChol) and the 31P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31P MRS imaging was superior to the reproducibility of 1H MRS for tChol. 1H and 31P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.  相似文献   

7.
Several studies have investigated the T1 and T2 relaxation time of choline, creatine and N-acetyl aspartate in cerebral white matter in normal human subjects. However, these studies demonstrate a large variation in T1 and T2 values. In the present study, relaxation times of choline, creatine and N-acetyl aspartate were determined in cerebral white matter in 15 control subjects (age 21 +/- 2 y, mean +/- SD) at 1.5 T. Using PRESS, seven or eight data points were obtained to fit the T1 and T2 relaxation curves to, respectively. The mean voxel size was 14 cm3. The T1 relaxation times of choline, creatine and N-acetyl aspartate were 1091 +/- 132 (mean +/- SD), 1363 +/- 137 and 1276 +/- 132 ms. The T2 relaxation times were 352 +/- 52, 219 +/- 29 and 336 +/- 46 ms, respectively.  相似文献   

8.
Separate quantification of glutamate (Glu) and glutamine (Gln) using conventional MRS on clinical scanners is challenging. In previous work, constant‐time point‐resolved spectroscopy (CT‐PRESS) was optimized at 3 T to detect Glu, but did not resolve Gln. To quantify Glu and Gln, a time‐domain basis set was constructed taking into account metabolite T2 relaxation times and dephasing from B0 inhomogeneity. Metabolite concentrations were estimated by fitting the basis one‐dimensional CT‐PRESS diagonal magnitude spectra to the measured spectrum. This method was first validated using seven custom‐built phantoms containing variable metabolite concentrations, and then applied to in vivo data acquired in rats exposed to vaporized ethanol and controls. Separate metabolite quantification revealed increased Gln after 16 weeks and increased Glu after 24 weeks of vaporized ethanol exposure in ethanol‐treated compared with control rats. Without separate quantification, the signal from the combined resonances of Glu and Gln (Glx) showed an increase at both 16 and 24 weeks in ethanol‐exposed rats, precluding the determination of the independent and differential contribution of each metabolite at each time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Knowledge of proton T2 relaxation time of metabolites is essential for proper quantitation of metabolite concentrations in localized proton spectroscopy, especially at moderate to long TEs. Although the T2 relaxation time of singlets, such as that of creatine and N-acetylaspartate, has been characterized in several studies, similar information is lacking from coupled spin resonances of cerebral metabolites. In this study, the T2 relaxation time of coupled spin resonances and singlet resonances of cerebral metabolites was measured in rat brain in vivo at 9.4 T. Spectra were acquired at 11 TEs using the SPin ECho, full Intensity Acquired Localized (SPECIAL) spectroscopy method. Data analysis was performed in the frequency domain with the LCModel software using simulated TE-specific basis sets. The T2 relaxation times in compounds showing singlet resonances were 113 +/- 3 ms (total creatine), 178 +/- 29 ms (total choline) and 202 +/- 12 ms (N-acetylaspartate). The T2 values of J-coupled metabolites ranged from 89 +/- 8 ms (glutamate) to 148 +/- 14 ms (myo-inositol).  相似文献   

10.
Proton point‐resolved spectroscopy (PRESS) localization has been combined with distortionless enhanced polarization transfer (DEPT) in multinuclear MRS to overcome the signal contamination problem in image‐selected in vivo spectroscopy (ISIS)‐combined DEPT, especially for lipid detection. However, homonuclear proton scalar couplings reduce the DEPT enhancement by modifying the spin coherence distribution under J modulation during proton PRESS localization. Herein, a J‐refocused proton PRESS‐localized DEPT sequence is presented to obtain simultaneously enhanced and localized signals from a large number of metabolites by in vivo 13C MRS. The suppression of J modulation during PRESS and the substantial recovery of signal enhancement by J‐refocused PRESS‐localized DEPT were demonstrated theoretically by product operator formalism, numerically by the spin density matrix simulations for different scalar coupling conditions, and experimentally with a glutamate phantom at various TEs, as well as a colza oil phantom. The application of the sequence for localized detection of saturated and unsaturated fatty acids in the calf bone marrow and skeletal muscle of healthy subjects yielded high signal enhancements simultaneously obtained for all components. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The 1H resonances of γ‐aminobutyric acid (GABA) in the human brain in vivo are extensively overlapped with the neighboring abundant resonances of other metabolites and remain indiscernible in short‐TE MRS at 7 T. Here we report that the GABA resonance at 2.28 ppm can be fully resolved by means of echo time optimization of a point‐resolved spectroscopy (PRESS) scheme. Following numerical simulations and phantom validation, the subecho times of PRESS were optimized at (TE, TE2) = (31, 61) ms for detection of GABA, glutamate (Glu), glutamine (Gln), and glutathione (GSH). The in vivo feasibility of the method was tested in several brain regions in nine healthy subjects. Spectra were acquired from the medial prefrontal, left frontal, medial occipital, and left occipital brain and analyzed with LCModel. Following the gray and white matter (GM and WM) segmentation of T1‐weighted images, linear regression of metabolite estimates was performed against the fractional GM contents. The GABA concentration was estimated to be about seven times higher in GM than in WM. GABA was overall higher in frontal than in occipital brain. Glu was about twice as high in GM as in WM in both frontal and occipital brain. Gln was significantly different between frontal GM and WM while being similar between occipital GM and WM. GSH did not show significant dependence on tissue content. The signals from N‐acetylaspartylglutamate were clearly resolved, giving the concentration more than 10 times higher in WM than in GM. Our data indicate that the PRESS TE = 92 ms method provides an effective means for measuring GABA and several challenging J‐coupled spin metabolites in human brain at 7 T. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
2‐Hydroxyglutarate (2HG) is produced in gliomas with mutations of isocitrate dehydrogenase (IDH) 1 and 2. The 1H resonances of the J‐coupled spins of 2HG are extensively overlapped with signals from other metabolites. Here, we report a comparative study at 3 T of the utility of the point‐resolved spectroscopy sequence with a standard short TE (35 ms) and a long TE (97 ms), which had been theoretically designed for the detection of the 2HG 2.25‐ppm resonance. The performance of the methods is evaluated using data from phantoms, seven healthy volunteers and 22 subjects with IDH‐mutated gliomas. The results indicate that TE = 97 ms provides higher detectability of 2HG than TE = 35 ms, and that this improved capability is gained when data are analyzed with basis spectra that include the effects of the volume localizing radiofrequency and gradient pulses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The problem of low signal-to-noise ratio for gamma-aminobutyric acid (GABA) in vivo is exacerbated by inefficient detection schemes and non-optimal experimental parameters. To analyze the mechanisms for GABA signal loss of a MEGA-PRESS J-difference sequence at 4 T, numerical simulations were performed ranging from ideal to realistic experimental implementation, including volume selection and experimental radio frequency (RF) pulse shapes with a macromolecular minimization scheme. The simulations were found to be in good agreement with phantom and in vivo data from human brain. The overall GABA signal intensity for the simulations with realistic conditions for the MEGA-PRESS difference spectrum was calculated to be almost half of the signal simulated under ideal conditions (~43% signal loss). In contrast, creatine was reduced significantly less then GABA (~19% signal loss). The 'four-compartment' distribution due to J-coupling in the PRESS-based localization was one of the most significant sources of GABA signal loss, in addition to imperfect RF profiles for volume selection and editing. An alternative strategy that reduces signal loss due to the four-compartment distribution is suggested. In summary, a detailed analysis of J-difference editing is provided with estimates of the relative amounts of GABA signal losses due to various mechanisms. The numerical simulations presented in this study should facilitate both implementation of the more efficient acquisition and quantification process of J-coupled systems.  相似文献   

15.
Chemical exchange saturation transfer (CEST) imaging of fast exchanging amine protons at 3 ppm offset from the water resonant frequency is of practical interest, but quantification of fast exchanging pools by CEST is challenging. To effectively saturate fast exchanging protons, high irradiation powers need to be applied, but these may cause significant direct water saturation as well as non‐specific semi‐solid magnetization transfer (MT) effects, and thus decrease the specificity of the measured signal. In addition, the CEST signal may depend on the water longitudinal relaxation time (T1w), which likely varies between tissues and with pathology, further reducing specificity. Previously, an analysis of the asymmetry of saturation effects (MTRasym) has been commonly used to quantify fast exchanging amine CEST signals. However, our results show that MTRasym is greatly affected by the above factors, as well as asymmetric MT and nuclear Overhauser enhancement (NOE) effects. Here, we instead applied a relatively more specific inverse analysis method, named AREX (apparent exchange‐dependent relaxation), that has previously been applied only to slow and intermediate exchanging solutes. Numerical simulations and controlled phantom experiments show that, although MTRasym depends on T1w and semi‐solid content, AREX acquired in steady state does not, which suggests that AREX is more specific than MTRasym. By combining with a fitting approach instead of using the asymmetric analysis to obtain reference signals, AREX can also avoid contaminations from asymmetric MT and NOE effects. Animal experiments show that these two quantification methods produce differing contrasts between tumors and contralateral normal tissues in rat brain tumor models, suggesting that conventional MTRasym applied in vivo may be influenced by variations in T1w, semi‐solid content, or NOE effect. Thus, the use of MTRasym may lead to misinterpretation, while AREX with corrections for competing effects likely enhances the specificity and accuracy of quantification to fast exchanging pools.  相似文献   

16.
T2 measurement of J-coupled metabolites in the human brain at 3T   总被引:1,自引:0,他引:1  
Proton T2 relaxation times of metabolites in the human brain were measured using point resolved spectroscopy at 3T in vivo. Four echo times (54, 112, 246 and 374 ms) were selected from numerical and phantom analyses for effective detection of the glutamate multiplet at ~ 2.35 ppm. In vivo data were obtained from medial and left occipital cortices of five healthy volunteers. The cortices contained predominantly gray and white matter, respectively. Spectra were analyzed with LCModel software using volume‐localized calculated spectra of brain metabolites. The estimate of the signal strength vs. TE was fitted to a monoexponential function for estimation of apparent T2 (T2?). T2? was estimated to be similar between the brain regions for creatine, choline, glutamate and myo‐inositol, but significantly different for N‐acetylaspartate singlet and multiplet. T2?s of glutamate and myo‐inositol were measured as 181 ± 16 and 197 ± 14 ms (mean ± SD, N = 5) for medial occipital cortices, and 180 ± 12 and 196 ± 17 ms for left occipital cortices, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Manganese cations (Mn(2+)) can be used as an intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn(2+) is neurotoxic and may influence the concentration of (1)H MR-detectable metabolites. Furthermore, the paramagnetic Mn(2+) cations may also influence the relaxation of the metabolites under investigation. Consequently, the purpose of this study was to investigate the effect of paramagnetic Mn(2+) cations on (1)H-MR spectra of the brain using in vivo and phantom models at 4.7 T. To investigate the direct paramagnetic effects of Mn(2+) cations on the relaxation of N-acetylaspartate (NAA), creatine and choline, T(1) relaxation times of metabolite solutions, with and without 5% albumin, and containing different Mn(2+) concentrations were determined. Relaxivity values with/without 5% albumin for NAA (4.8/28.1 s(-1) mM(-1)), creatine (2.8/2.8 s(-1) mM(-1)) and choline (1.8/1.1 s(-1) mM(-1)) showed NAA to be the most sensitive metabolite to the relaxation effects of the cations. Using an in vivo optic tract tracing imaging model, we obtained two adjacent regions of interest in the superior colliculi with different water T(1) values (Mn(2+)-enhanced = 1.01 s; unenhanced = 1.14 s) 24 h after intravitreal injection of 3 microL 50 mM MnCl(2). Using phantom and in vivo water relaxation time data, we estimated the in vivo Mn(2+) concentration to be 2-8 microM. The phantom data suggest that limited metabolite relaxation effects would be expected at this concentration. Consequently, this study indicates that, in this model, the presence of Mn(2+) cations does not significantly affect (1)H-MR spectra despite possible toxic and paramagnetic effects.  相似文献   

18.
This study was performed to investigate if glycogen loading of skeletal muscles, by binding water, would effect the cross‐sectional area (CSA) and if an altered water content would alter the transverse relaxation time (T2) measured by magnetic resonance imaging (MRI). Five healthy volunteers participated in a programme with 4 days of extremely carbohydrate‐restricted meals followed by 4 days of extremely high carbohydrate intake. The CSA and T2 of thigh and calf muscles were related to the intramuscular glycogen content evaluated at days 4 and 8. An increase in glycogen content from 281 to 634 mmol kg–1 dry wt increased the CSA of the vastus muscles by 3.5% from 78 ± 11 to 80 ± 12 cm2 and the thigh circumference by 2.5% from 146 ± 20 to 150 ± 23 cm2. Calf circumference increased non‐significantly by 4% from 78 ± 15 to 82 ± 19 cm2. Mono‐exponential T2 decreased in m tibialis anterior from 27.8 ± 1.2 to 26.9 ± 1.7 ms, did not change in m. vastus lateralis 26.5 ± 1.9 ms/26.6 ± 1.3 ms or in m. gastrocnemius 29.5 ± 1.0 ms/29.8 ± 1.9 ms. Glycogen loading increased the signal intensity mainly at different echo times (TE) 15 and 30 ms. The study shows that increased glycogen filling in the muscles increases muscle CSA and that this can be detected by MRI. The signal intensity increased the most at shorter TEs suggesting a more tight intracellular binding of water in glycogen loaded muscles.  相似文献   

19.
In response to hypobaric hypoxia (HH), which occurs at high altitude, the brain undergoes deleterious changes at the structural and metabolite level. In vivo T2 weighted imaging (T2WI) and 1H‐MRS was performed to understand the structural and metabolic changes in the hippocampus region of rat brain. Data were acquired pre‐exposure (baseline controls), immediately after exposure and subsequently at the first, fourth, seventh and 14th days post exposure at normoxia. T2 weighted images of rat brain showed hyperintensity in the CA2/CA3 region of the hippocampus 7 d after acute HH, which persisted till 14 d, probably indicating structural changes in the hippocampus. 1H‐MRS results showed no change in metabolite level immediately after acute HH exposure, but on the first day of normoxia the myo‐inositol level was significantly decreased, possibly due to altered astrocyte metabolism. Metabolic alterations showing an increase in choline and decrease in glutamate on the fourth day of normoxia may be seen as a process of demyelination and loss of glutamate pool respectively. On the seventh and 14th days of normoxia, decreases in N‐acetylaspartate, creatine and glutamine + glutamate were observed, which might be due to decreased viability of glutamatergic neurons. In vivo 1H‐MRS demonstrated early neurometabolic changes prior to probable structural changes post acute HH exposure. The extension of these studies will help in early risk assessment, developing intervention and strategies for combating HH related changes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This study demonstrates the suitability of magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) for the imaging of congenital portosystemic shunts (PSS) in mice, a vascular abnormality in which mesenteric blood bypasses the liver and is instead drained directly to the systemic circulation. The non‐invasive diagnosis performed in tandem with other experimental assessments permits further characterization of liver, whole‐body and brain metabolic defects associated with PSS. Magnetic resonance measurements were performed in a 26‐cm, horizontal‐bore, 14.1‐T magnet. MRA was obtained with a three‐dimensional gradient echo sequence (GRE; in‐plane resolution, 234 × 250 × 234 μm3) using a birdcage coil. Two‐dimensional GRE MRI with high spatial resolution (in‐plane resolution, 100 × 130 μm2; slices, 30 × 0.3 mm) was performed using a surface coil. Brain‐ (dorsal hippocampus) and liver‐localized 1H magnetic resonance spectroscopy (MRS) was also performed with the surface coil. Whole‐body metabolic status was evaluated with an oral glucose tolerance test (OGTT). Both MRA and anatomical MRI allowed the identification of hepatic vessels and the diagnosis of PSS in mice. The incidence of PSS was about 10%. Hepatic lipid content was higher in PSS than in control mice (5.1 ± 2.8% versus 1.8 ± 0.6%, p = 0.02). PSS mice had higher brain glutamine concentration than controls (7.3 ± 1.0 μmol/g versus 2.7 ± 0.6 μmol/g, p < 0.0001) and, conversely, lower myo‐inositol (4.2 ± 0.6 μmol/g versus 6.0 ± 0.4 μmol/g, p < 0.0001), taurine (9.7 ± 1.2 μmol/g versus 11.0 ± 0.4 μmol/g, p < 0.01) and total choline (0.9 ± 0.1 μmol/g versus 1.2 ± 0.1 μmol/g, p < 0.001) concentrations. Fasting blood glucose and plasma insulin were lower in PSS than in control mice (4.7 ± 0.5mM versus 8.8 ± 0.6mM, p < 0.0001; and 0.04 ± 0.03 μg/L versus 0.3 ± 0.2 μg/L, p = 0.02, respectively). Glucose clearance during OGTT was delayed and less efficient in PSS mice than in controls. Thus, given the non‐negligible incidence of PSS in inbred mice, the undiagnosed presence of PSS will, importantly, have an impact on experimental outcomes, notably in studies addressing brain, liver or whole‐body metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号