共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen-doped hierarchical porous carbon (NHPC) materials were synthesized by using a chitosan/polyethylene glycol (PEG) blend as raw material through a facile carbonization–activation process. In this method, chitosan was used as a nitrogen-containing carbon precursor, low cost and large-scale commercial PEG was employed as a porogen. The physical and electrochemical properties of the resultant NHPC were affected by the ratio of chitosan and PEG. The sample obtained by the ratio of 3 : 2 exhibits a high specific surface area (2269 m2 g−1), moderate nitrogen doping (3.22 at%) and optimized pore structure. It exhibits a high specific capacitance of 356 F g−1 in 1 M H2SO4 and 271 F g−1 in 2 M KOH at a current density of 1 A g−1, and over 230 F g−1 can be still retained at a high current density of 20 A g−1 in both electrolytes. Additionally, the assembled symmetric supercapacitors show an excellent cycling stability with 94% (in 1 M H2SO4) and 97% (in 2 M KOH) retention after 10 000 cycles at 1 A g−1. These results indicate that the chitosan/PEG blend can act as a novel and appropriate precursor to prepare low-cost NHPC materials for high-performance supercapacitors.NHPC was prepared from a low cost chitosan/PEG blend by a facile method for high performance supercapacitors. 相似文献
2.
Novel N, O and P co-doped honeycomb-like hierarchically porous carbon (N-O-P-HHPC) materials with a large specific surface area from Sophora japonica were prepared via a one-step activation and carbonization method and used as an electrode for supercapacitors. The results indicate that as-prepared N-P-HHPC with a large specific surface area (2068.9 m2 g−1) and N (1.5 atomic%), O (8.4 atomic%) and P (0.4 atomic%) co-doping has a high specific capacitance of 386 F g−1 at 1 A g−1. Moreover, a 1.8 V symmetrical SC was assembled from the N-O-P-HHPC-3 electrode using 1 M Na2SO4 gel electrolyte, presenting a high energy density (28.4 W h kg−1 at 449.9 W kg−1) and a long life cycling stability with only 7.3% capacitance loss after 10 000 cycles. Furthermore, the coin-type symmetrical SC using EMIMBF4 as electrolyte presents an ultrahigh energy density (80.8 W h kg−1 at 1500 W kg−1). When the two coin-type symmetrical SCs are connected in series, eight red light-emitting diodes (LEDs) and a small display screen can be powered. These results demonstrate as-prepared N, O and P co-doped HHPC is a considerable candidate as a carbon electrode for energy storage devices.N, O and P co-doped honeycomb-like hierarchical porous carbon (N-P-HHPC-3) derived from Sophora japonica displays an ultrahigh energy density (80.8 W h kg−1 at 1500 W kg−1) and outstanding long-term stability. 相似文献
3.
Zhaojin Li Qian Liu Lizhi Sun Ning Li Xiaofeng Wang Qiujun Wang Di Zhang Bo Wang 《RSC advances》2021,11(53):33208
It is a considerable challenge to produce a supercapacitor with inexpensive raw materials and employ a simple process to obtain carbon materials with a high specific surface area, rich pore structure, and appropriate doping of heterogeneous elements. In the current study, yam waste-derived porous carbon was synthesized for the first time by a two-step carbonization and KOH chemical activation process. An ultra-high specific surface area of 2382 m2 g−1 with a pore volume of 1.11 cm3 g−1 and simultaneous co-doping of O–N was achieved for the optimized sample. Because of these distinct features, the optimized material exhibits a high gravimetric capacitance of 423.23 F g−1 at 0.5 A g−1 with an impressive rate capability at 10 A g−1, and prominent cycling durability with a capacity retention of 96.4% at a high current density of 10 A g−1 after 10 000 cycles in 6 M KOH in a three-electrode system. Moreover, in 6 M KOH electrolyte, the assembled symmetrical supercapacitor provides a large C of 387.3 F g−1 at 0.5 A g−1. It also presents high specific energy of 34.6 W h kg−1 when the specific power is 200.1 W kg−1 and a praiseworthy specific energy of 8.3 W h kg−1 when the specific power is 4000.0 W kg−1 in 1 M Na2SO4 electrolyte. Thus, this study provides reference and guidance for developing high-performance electrode materials for supercapacitors.3D porous carbon with ultra-high specific surface area and excellent electrochemical performance is synthesized by a simple activation and carbonization process through adopting biomass yam waste as raw material. 相似文献
4.
Fenglian Tong Wei Jia Yanliang Pan Jixi Guo Lili Ding Jingjing Chen Dianzeng Jia 《RSC advances》2019,9(11):6184
A green method is designed to obtain hierarchical porous carbon nanofibers from coal. In the work, deionized water, coal, polyvinyl alcohol and Pluronic F127 are used as the aqueous solution, carbon source, spinning assistant and soft template for spinning, respectively. As electrode materials for supercapacitors, the obtained hierarchical porous carbon nanofibers exhibit a high specific capacitance of 265.2 F g−1 at 1.0 A g−1 in 6 M KOH, a good rate performance with a capacitance of 220.3 F g−1 at 20.0 A g−1 with the retention of 83.1% and a superior cycle stability without capacitance loss after 20 000 charge/discharge cycles at 10.0 A g−1. Compared with the carbon nanofibers constructed without Pluronic F127, the enhanced electrochemical performance of the sample benefits from a larger contact surface area and the mesoporous structure formed by decomposition of Pluronic F127 and good structural stability. This work not only provides a green route for high-value utilization of coal in energy storage, but also paves a new way to make hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.A green method is designed to obtain hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life. 相似文献
5.
Lan Zhang Lu Xu Yagang Zhang Xin Zhou Letao Zhang Akram Yasin Lulu Wang Keke Zhi 《RSC advances》2018,8(7):3869
Biomass-derived O- and N-doped porous carbon has become the most competitive supercapacitor electrode material because of its renewability and sustainability. We herein presented a facile approach to prepare O/N-doped porous carbon with cotton as the starting material. Absorbent cotton immersed in diammonium hydrogen phosphate (DAP) was activated at 800 °C (CDAP800s) and then was oxidized in a temperature range of 300–400 °C. The electrochemical capacitance of the impregnated cotton was significantly improved by doping with O and N, and the yield was improved from 13% to 38%. The sample oxidation at 350 °C (CDAP800-350) demonstrated superior electrical properties. CDAP800-350 showed the highest BET surface area (1022 m2 g−1) and a relatively high pore volume (0.53 cm3 g−1). In a three-electrode system, the CDAP800-350 electrodes had high specific capacitances of 292 F g−1 in 6 M KOH electrolyte at a current density of 0.5 A g−1. In the two-electrode system, CDAP800-350 electrode displayed a specific capacitance of 270 F g−1 at 0.5 A g−1 and 212 F g−1 at 10 A in KOH electrolyte. In addition, the CDAP800-350-based symmetric supercapacitor achieved a high stability with 87% of capacitance retained after 5000 cycles at 5 A g−1, as well as a high volumetric energy density (18 W h kg−1 at 250 W kg−1).Biomass-derived O- and N-doped porous carbon has become one of the most competitive supercapacitor electrode material because of its renewability and sustainability. 相似文献
6.
Hamouda Adam Hamouda Shuzhen Cui Xiuwen Dai Lele Xiao Xuan Xie Hui Peng Guofu Ma 《RSC advances》2020,11(1):354
Carbon-based materials are manufactured as high-performance electrodes using biomass waste in the renewable energy storage field. Herein, four types of hierarchical porous activated carbon using hibiscus sabdariffa fruits (HBFs) as a low-cost biomass precursor are synthesized through carbonization and activation. NH4Cl is used as a chemical blowing agent to form carbon nanosheets, which are the first types of hibiscus sabdariffa fruit-based carbon (HBFC-1) sample, and KOH also forms a significant bond in the activation process. The prepared HBFC-1 is chosen to manufacture the symmetric supercapacitor due to its rough surface and high surface area (1720.46 m2 g−1), making it show a high specific capacity of 194.50 F g−1 at a current density of 0.5 A g−1 in a three-electrode system. Moreover, the HBFC-1 based symmetric supercapacitor devices display a high energy density of 13.10 W h kg−1 at a power density of 225.00 W kg−1, and a high specific capacity of 29 F g−1 at 0.5 A g−1. Additionally, excellent cycle life is observed (about 96% of capacitance retained after 5000 cycles). Therefore, biomass waste, especially hibiscus sabdariffa fruit based porous carbon, can be used as the electrode for high-performance supercapacitor devices.Carbon-based materials are manufactured as high-performance electrodes using biomass waste in the renewable energy storage field. 相似文献
7.
Haibin Sun Congcong Liu Dongfang Guo Shuangshuang Liang Wenhe Xie Shenghong Liu Zijiong Li 《RSC advances》2022,12(38):24724
Zinc ion hybrid capacitors (ZHCs) are expected to be candidates for large-scale energy storage products due to their high power density and large energy density. Due to their low cost and stability, carbon materials are generally the first choice for the cathode of ZHCs, but they face a challenge in the serious self-discharge behavior. Herein, zinc ion hybrid capacitors with high-performance are successfully assembled using a porous carbon cathode derived from low-cost p-doped waste biomass and a commercial zinc foil anode. The p-doped walnut shell ZHCs delivered a specific capacity of 158.9 mA h g−1 with an energy density of 127.1 W h kg−1 at a low current density. More importantly, the device had outstanding anti-self-discharge characteristics (retaining 77.98% of its specific capacity after a 72 h natural self-discharge test) and long-term cycle stability (retaining 88.2% of its initial specific capacity after 15 000 cycles at 7.5 A g−1). This work presents guidance and support for the design and optimization of electrode materials for zinc ion supercapacitors and next-generation aqueous zinc ion energy storage performance.A P-doped porous carbon cathode material from walnut shell is assembled with zinc foil to form typical ZHCs, which showed excellent energy storage characteristics and long-life cycle stability. 相似文献
8.
The sustainable development of human society is facing challenges of resource depletion, energy crisis and worsening environment. In this work, a typical Chinese herbal residue (gallnut residues), with a large amount of organic waste threatening the environment after extracting the bioactive components, especially in China, was used as a single precursor for both a carbon and heteroatoms source to prepare heteroatoms co-doped hierarchical porous carbon via carbonization and a subsequent KOH activation. The prepared nitrogen, oxygen and sulfur co-doped porous carbons (NOSPC-X) show developed hierarchical micro–mesoporous structures, high specific surface areas, as well as high content of N/S co-doping. When used as supercapacitor electrodes, NOSPC-800 exhibits excellent electrochemical performance with an ultrahigh specific capacitance, a high energy density of 11.25 W h kg−1 at 25 W kg−1 and an excellent charge–discharge cycling stability of 96.5% capacitance remained after 10 000 cycles. As an ORR electrocatalyst, it shows outstanding ORR activity as well as much better stability and methanol-tolerance capacity than that of a commercial Pt/C catalyst. The unique hierarchical micro–mesoporous architecture, high surface area as well as optimal N and S co-doping level make biomass-derived NOSPC-800 an excellent candidate for electrode materials in diverse electrochemical energy applications.Typical Chinese herbal gallnut residue, an organic waste threatening the environment during the modernization of traditional Chinese medicine, was used as a precursor to prepare heteroatom co-doped hierarchical porous carbon materials with electrochemical properties. 相似文献
9.
Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber electrodes were successfully synthesized via combining centrifugal spinning, chemical polymerization of pyrrole and a two-step heat treatment. Nanoparticle-on-nanofiber morphology with highly porous carbon nanotube like channels were observed from SEM and TEM images. Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber (N-PCNF) electrodes exhibited excellent cycling and C-rate performance with a high reversible capacity of around 280 mA h g−1 in sodium ion batteries. Moreover, at 1000 mA g−1, a high reversible capacity of 172 mA h g−1 was observed after 300 cycles. The superior electrochemical properties were attributed to a highly porous structure with enlarged d-spacings, enriched defects and active sites due to nitrogen doping. The electrochemical results prove that N-PCNF electrodes are promising electrode materials for high performance sodium ion batteries.Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber electrodes were successfully synthesized via combining centrifugal spinning, chemical polymerization of pyrrole and a two-step heat treatment. 相似文献
10.
A simple ion exchange reaction of sodium lignosulfonate (SLS) and 1-allyl-3-methyl imidazolium chloride ([Amim]Cl) produced a new polymeric ionic liquid [Amim]LS and NaCl, and the mixture was successfully used as a precursor to prepare a nitrogen-doped porous carbon material via direct carbonization without any additional activation agent or template. It was believed that the in situ produced NaCl during the precursor synthesis process acted as the self-template and in self-activation. The introduction of imidazolium ionic liquid into the precursor raised the nitrogen content of the obtained carbon material up to 4.68% for a high yield of [Amim]LS-700 carbon material up to 34.6%. The effect of carbonization temperature on the structures and electrochemical properties of the prepared carbon were also studied systematically. It was found that the carbon material exhibits a superior gravimetric capacitance up to 230 F g−1 (0.1 A g−1) at the carbonization temperature of 700 °C, a good energy density of 7.99 W h kg−1 at the power density of 25 W Kg−1, and an excellent cycling stability of 90.3% after 20 000 cycles. This work provides a new path for the value-added utilization of biomass coupled with the field of electrochemical energy storage.Without any additional template or activation agent, a high N-doped porous carbon was easily prepared by a simple ion exchange reaction and a following carbonization, and showed excellent electrochemical performance as a supercapacitor electrode. 相似文献
11.
Gan Cai Zhenguo Wu Tao Luo Yanjun Zhong Xiaodong Guo Zhiye Zhang Xinlong Wang Benhe Zhong 《RSC advances》2020,10(7):3936
In recent years, anode materials of transition metal phosphates (TMPs) for lithium ion batteries (LIBs) have drawn a vast amount of attention from researchers, due to their high theoretical capacity and comparatively low intercalation potentials vs. Li/Li+. However, in practice, their application remains constrained by poor electrical conductivity, and dramatic volume expansion and severe agglomeration during the lithium process, which leads to questionable kinetic issues and a prompt decline in capacity during cycling. Herein, through an elaborate design, we developed a novel three-dimensional (3D) hierarchical rose-like architecture self-assembled from two-dimensional (2D) Ni2P nanoflakes immobilized on reduced graphene oxide (rGO) via a combination of a hydrothermal process and phosphating treatment. Such a design provides unique superiority for Ni2P-based anode materials for LIBs. Paraphrasing, the 3D hierarchical structure of Ni2P distributes the stress on the anode material while cycling and provides more lithium storage space. The rGO not only enhances the conductivity of materials, but also serves as a flexible framework which immobilizes Ni2P so that it prevents it from pulverization. Therefore, the synergistic effect between them guarantees the integrity of the material structure after a long-term cycling Li+ intercalation and deintercalation process. When it acted as anode material for LIBs, the as-obtained 3D rose-like Ni2P@rGO electrode exhibited a noticeable electrochemical performance, which delivers a discharge capacity of 330.5 mA h g−1 at a current density of 100 mA g−1 after 100 cycles and retains 200.5 mA h g−1 at 1000 mA g−1.In recent years, anode materials of transition metal phosphates (TMPs) for lithium ion batteries have drawn a vast amount of attention, due to their high theoretical capacity and comparatively low intercalation potentials vs. Li/Li+. 相似文献
12.
Porous biomass carbon derived from corn stalks was prepared via carbonization and activation of CaCl2. Combined with its microstructure, the formation mechanism and electrochemical properties were analyzed. The addition of CaCl2 was the key factor to form the porous structure, and the proportion of CaCl2 had a significant impact on the pores distribution and electrochemical properties. The resulting sample had a specific surface area of 370.6 m2 g−1 and an average pore size of 9.65 nm. The sample was circulated at 0.2C for 100 cycles, the specific discharge capacity was 783 mA h g−1. After 60 cycles at different rates, when the current was restored to 0.2C again, the discharge specific capacity quickly recovered. This showed that the sample had excellent rate performance and cycle stability for lithium-ion batteries.Porous biomass carbon derived from corn stalks was prepared via carbonization and activation of CaCl2. 相似文献
13.
Hui Yu Wenjian Zhu Hu Zhou Jianfeng Liu Zhen Yang Xiaocai Hu Aihua Yuan 《RSC advances》2019,9(17):9577
The C@GQD composite was prepared by the combination of metal–organic framework (ZIF-8)-derived porous carbon and graphene quantum dots (GQDs) by a simple method. The resulting composite has a high specific surface area of 668 m2 g−1 and involves numerous micro- and mesopores. As a supercapacitor electrode, the material showed an excellent double-layer capacitance and a high capacity retention of 130 F g−1 at 2 A g−1. The excellent long-term stability was observed even after ∼10 000 charge–discharge cycles. Moreover, the composite as an anode material for a lithium-ion battery exhibited a good reversible capacity and outstanding cycle stability (493 mA h g−1 at 100 mA g−1 after 200 cycles). The synergistic effect of a MOF-derived porous carbon and GQDs was responsible for the improvement of electrochemical properties.The C@GQD composite was prepared by the combination of metal–organic framework (ZIF-8)-derived porous carbon and graphene quantum dots (GQDs) by a simple method. 相似文献
14.
Yao Li Ran Xu Xin Wang Binbin Wang Jianliang Cao Juan Yang Jianping Wei 《RSC advances》2018,8(35):19818
The goal of this research is to develop a low-cost porous carbon adsorbent for selective CO2 capture. To obtain advanced adsorbents, it is critical to understand the synergetic effect of textural characteristics and surface functionality of the adsorbents for CO2 capture performance. Herein, we report a sustainable and scalable bio-inspired fabrication of nitrogen-doped hierarchical porous carbon by employing KOH chemical activation of waste wool. The optimal sample possesses a large surface area and a hierarchical porous structure, and exhibits good CO2 adsorption capacities of 2.78 mmol g−1 and 3.72 mmol g−1 at 25 °C and 0 °C, respectively, under 1 bar. Additionally, this sample also displays a moderate CO2/N2 selectivity, an appropriate CO2 isosteric heat of adsorption and a stable cyclic ability. These multiple advantages combined with the low-cost of the raw material demonstrate that this sample is an excellent candidate as an adsorbent for CO2 capture.In this work, N-doped hierarchical porous carbon has been successfully fabricated by KOH activation of waste wool. The optimal sample exhibits good CO2 adsorption capacity under atmospheric pressure (1 bar), as well as excellent CO2/N2 selectivity. 相似文献
15.
Two novel carbons (MCs) derived from moxa floss of different storage years have been prepared by two low-cost and facile approaches, which are hydrothermal carbonization at a low temperature (200 °C) and direct pyrolysis at a moderate temperature (500 °C) followed by potassium hydroxide (KOH) activation strategy at a high temperature (800 °C), respectively. The physicochemical properties of MCs are investigated by Raman spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption isotherms. Results show that MCs derived from moxa floss of different storage years by two facile approaches possess different morphologies: MCs by hydrothermal carbonization (denoted as MC-1, MC-2 and MC-3) exhibit porous nanosheet structures, the highest specific surface area is about 1788.6 m2 g−1, and the largest total pore volumes is around 0.8170 cm3 g−1, while MCs by direct pyrolysis (denoted as MC-4, MC-5 and MC-6) have basically blocky and rod-like morphologies, the highest specific surface area is about 1628.0 m2 g−1, and the largest total pore volume is around 0.7058 cm3 g−1. However, despite the different morphologies, all MCs possess a similar hierarchical porous structure, numerous heteroatom groups and good electrical conductivity. Therefore, these low-cost, biomass-derived porous carbons with promising capacitive performance are used for supercapacitors application with high performance, for example, the as-assembled supercapacitor based on MC-5 exhibits a high specific capacitance of 288.3 F g−1 at 0.25 A g−1, an excellent rate performance of 243.5 F g−1 even at 30 A g−1 with 84.5% capacitance retention of its initial specific capacitance, and an outstanding long-term cycling stability with 98.7% capacitance retention after 10 000 cycles at 5 A g−1. Furthermore, the maximum energy density for these supercapacitors with an aqueous electrolyte in a two-electrode system is about 10.0 W h kg−1 at a power density of 70.3 W kg−1. Therefore, this work opens up a whole new field for the applications of moxa floss and this novel concept of moxa floss use is an extremely promising strategy for developing high-performance carbons with porous structures and heteroatom-doping from renewable sources.Two novel carbons (MCs) derived from moxa floss of different storage years have been prepared by two low-cost and facile approaches, which are hydrothermal carbonization and direct pyrolysis followed by KOH activation strategy, respectively. 相似文献
16.
Guohua Sun Jiacong Guo Hongqing Niu Nanjun Chen Mengying Zhang Guofeng Tian Shengli Qi Dezhen Wu 《RSC advances》2019,9(68):40084
Herein, we design a controllable approach for preparing multifunctional polybenzimidazole porous membranes with superior fire-resistance, excellent thermo-stability, and high wettability. Specifically, the recyclable imidazole is firstly utilized as the eco-friendly template for micropores formation, which is an interesting finding and has tremendous potential for low-cost industrial production. The unique backbone structure of the as-prepared polybenzimidazole porous membrane endows the separator with superb thermal dimensional stability at 300 °C. Most significantly, the inherent flame retardancy of polybenzimidazole can ensure the high security of lithium-ion batteries, and the existence of polar groups of imidazole can regulate the Li+ flux and improve the ionic conductivity of lithium ions. Notably, the cell with a polybenzimidazole porous membrane presents higher capability (131.7 mA h g−1) than that of a commercial Celgard membrane (95.4 mA h g−1) at higher charge–discharge density (5C), and it can work normally at 120 °C. The fascinating comprehensive properties of the polybenzimidazole porous membrane with excellent thermal-stability, satisfying wettability, superb flame retardancy and good electrochemical performance indicate its promising application for high-safety and high-performance lithium-ion batteries.A multifunctional PBI porous membrane with superior fire-resistance, excellent thermo-stability and high wettability is designed. 相似文献
17.
Sayali B. Kale Manjiri A. Mahadadalkar Chang Hyo Kim Yoong Ahm Kim Manish S. Jayswal Kap Seung Yang Bharat B. Kale 《RSC advances》2019,9(62):36075
Nitrogen enriched carbon nanofibers have been obtained by one-step carbonization/activation of PAN-based nanofibers with various concentrations of melamine at 800 °C under a N2 atmosphere. As synthesised carbon nanofibers were directly used as electrodes for symmetric supercapacitors. The obtained PAN-MEL fibers with 5% melamine stabilised at 280 °C and carbonized at 800 °C under a nitrogen atmosphere showed excellent electrochemical performance with a specific capacitance of up to 166 F g−1 at a current density of 1A g−1 using 6 M KOH electrolyte and a capacity retention of 109.7% after 3000 cycles. It shows a 48% increase as compared to pristine carbon nanofibers. Two electrode systems of the CNFM5 sample showed high energy densities of 23.72 to 12.50 W h kg−1 at power densities from 400 to 30 000 W kg−1. When used as an anode for Li-ion battery application the CNFM5 sample showed a high specific capacity up to 435.47 mA h g−1 at 20 mA g−1, good rate capacity and excellent cycling performance (365 mA h g−1 specific capacity even after 200 cycles at 100 mA g−1). The specific capacity obtained for these nitrogen enriched carbon nanofibers is higher than that for pristine carbon nano-fibers.Nitrogen enriched carbon nanofibers have been obtained by one-step carbonization/activation of PAN-based nanofibers with various concentrations of melamine at 800 °C under a N2 atmosphere. 相似文献
18.
Xin Chen Guojun Gao Zhipeng Wu Jun Xiang Xiaoqiang Li Guangguang Guan Kaiyin Zhang 《RSC advances》2019,9(64):37556
Flexible free-standing hierarchically porous carbon nanofibers embedded with ultrafine (∼3.5 nm) MoO2 nanoparticles (denoted as MoO2@HPCNFs) have been synthesized by electrospinning and subsequent heat treatment. When evaluated as a binder-free anode in Li-ion batteries, the as-obtained MoO2@HPCNFs film exhibits excellent capacity retention with high reversible capacity (≥1055 mA h g−1 at 100 mA g−1) and good rate capability (425 mA h g−1 at 2000 mA g−1), which is much superior to most of the previously reported MoO2-based materials. The synergistic effect of uniformly dispersed ultrasmall MoO2 nanoparticles and a three-dimensionally hierarchical porous conductive network constructed by HPCNFs effectively improve the utilization rate of active materials, enhance the transport of both electrons and Li+ ions, facilitate the electrolyte penetration, and promote the Li+ storage kinetics and stability, thus leading to a greatly enhanced electrochemical performance.A novel binder-free LIB anode made of ultrafine MoO2 nanoparticles encapsulated in hierarchically porous carbon nanofibers exhibits high Li-storage performance. 相似文献
19.
Pinecone-based biomass carbon (PC) is a potential anode material for potassium-ion batteries because it is abundant, cheap, renewable, and easy to obtain. However, because of inferior kinetics and the effects of volume expansion due to the large radius of the K+ ion, it does not meet commercial performance requirements. In this study, nitrogen-doped PC (NPC) was prepared by carbonization in molten ZnCl2 with urea as a nitrogen source. A strategy based on synergistic effects between N doping and ZnCl2 molten salt was used to produce a hierarchically porous pie-like NPC with abundant defects and active sites and an enlarged interlayer distance—properties that enhance K+ adsorption, promote K+ intercalation/diffusion, and reduce the effects of volume expansion. This NPC exhibited a high reversible capacity (283 mA h g−1 at 50 mA g−1) and superior rate performance and cyclic stability (110 mA h g−1 after 1000 cycles at 5 A g−1), demonstrating its potential for use in potassium-ion batteries.Pinecone-based biomass carbon (PC) is a potential anode material for potassium-ion batteries because it is abundant, cheap, renewable, and easy to obtain. 相似文献
20.
We present a simple, low-cost method for producing activated-carbon materials from sugarcane tips (ST) via two-step pre-carbonization and KOH activation treatment. After optimizing the amount of KOH, the resulting ST-derived activated carbon prepared with a KOH to PC-ST mass ratio of 2 (ACST-2) contained 17.04 wt% oxygen and had a large surface area of 1206.85 m2 g−1, which could be attributed to the large number of micropores in ACST-2. In a three-electrode system, the ACST-2 electrode exhibited a high specific capacitance of 259 F g−1 at 0.5 A g−1 and good rate capability with 82.66% retention from 0.5 to 10 A g−1. In addition, it displayed a high capacitance retention of 89.6% after 5000 cycles at a current density of 3 A g−1, demonstrating excellent cycling stability. Furthermore, the ACST-2//ACST-2 symmetric supercapacitor could realize a high specific energy density of 7.93 W h kg−1 at a specific power density of 100 W kg−1 in 6 M KOH electrolyte. These results demonstrate that sugarcane tips, which are inexpensive and easily accessible agricultural waste, can be used to create a novel biomass precursor for the production of low-cost activated carbon materials for high-performance supercapacitors.The aim of this study is to produce activated-carbon materials from sugarcane tips (ST) via two-step pre-carbonization and evaluate the electrochemical performance. 相似文献