首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, considerable efforts have been devoted to the detection and quantification of hazardous multi-analytes using a single probe. Herein, we have developed a simple, environment-friendly colourimetric sensor for the sensitive, selective and rapid detection of Ni2+ and Cu2+ ions using a simple organic Schiff base ligand L in methanol–Tris–HCl buffer (1 : 1 v/v, 10 mM, pH = 7.2). The probe L exhibited a binding-induced colour change from colourless to yellow and fluorescence quenching in the presence of both Ni2+ and Cu2+ ions. The interactions between L and the respective metal ions were studied by Job''s plot, electrospray ionisation-mass spectrometry (ESI-MS), Fourier-transform infrared spectroscopy (FT-IR), density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The limit of detection (LOD) of L towards Ni2+ and Cu2+ was calculated to be 7.4 × 10−7 M and 4.9 × 10−7 M, respectively. Furthermore, the L–Cu2+ complex could be used as a new cascade fluorescent-colourimetric sensor to detect CN ions with a very low level of detection (40 nM). Additionally, L could operate in a wide pH range, and thus was successfully applied for the detection and quantification of Ni2+ and Cu2+ in environmental samples, and for building OR- and IMPLICATION-type logic gates.

A novel colorimetric chemosensor L has been developed for the detection of Ni2+ and Cu2+ ions. The obtained L–Cu2+ complex can be used as a new cascade fluorescent-colorimetric sensor for the nanomolar detection of CN ions. This chemosensor has practical application.  相似文献   

2.
A simple and low cost multifunctional colorimetric receptor L has been designed, synthesized and characterized by 1H-NMR, IR spectroscopy, ESI-MS spectrometry and elemental analysis. The chemosensor L can selectively detect three biologically and environmentally important trivalent metal ions (Al3+, Fe3+and Cr3+) both visually and spectrophotometrically in CH3CN–H2O (1 : 1, v/v) solution in the presence of other biologically relevant metal ions. The Job''s plot analyses indicate the 2 : 2 binding stereochemistry for Al3+, Fe3+ and Cr3+ ions with L, which was further confirmed by 1H-NMR and ESI-MS studies. The binding constant values were found to be 2.9 × 104 M−1 for Al3+, 1.079 × 105 M−1 for Fe3+ and 1.366 × 105 M−1 for Cr3+ respectively. The detections limits of the sensor for Al3+ (2.8 × 10−7 M), Fe3+ (1.9 × 10−7 M) and Cr3+ (2.5 × 10−7 M) are far below than the limit set by the World Health Organization (WHO) for drinking water. Moreover, colorimetric test kits for rapid detection of Al3+, Fe3+, and Cr3+ could be successively applied for all practical purposes, indicating its potential use in environmental samples. It has also been used in building molecular logic gates.

A dipodal reversible colorimetric trivalent metal ion chemosensor (L) has been designed and synthesized. The chemosensor L successfully detects Al3+, Fe3+ and Cr3+ based on binding site-signaling approach and it has practical application.  相似文献   

3.
A novel bifunctional sensor based on diarylethene with a benzyl carbazate unit was synthesized successfully. It not only served as a colorimetric sensor for the recognition of Cu2+ by showing changes in absorption spectra and solution color, but also acted as a fluorescent sensor for the detection of Cd2+ through obvious emission intensity enhancement and fluorescence color change. The sensor exhibited excellent selectivity and sensitivity towards Cu2+ and Cd2+, and the limits of detection for Cu2+ and Cd2+ were 8.36 × 10−8 mol L−1 and 1.71 × 10−7 mol L−1, respectively, which were much lower than those reported by the WHO and EPA in drinking water. Furthermore, its application in practical samples demonstrated that the sensor can be effectively applied for the detection of Cu2+ and Cd2+ in practical water samples.

A bifunctional sensor for colorimetric recognition of Cu2+ and fluorescent detection of Cd2+ was synthesized. It not only showed high selectivity and sensitivity to Cu2+ and Cd2+, but also could be used in practical water samples with high accuracy.  相似文献   

4.
Achieving selective detection of target analytes in aqueous media continues to be an arduous proposition. Herein, we report the conceptualization and synthesis of a novel tailor-fit molecular probe R based on 1,8-naphthalimide which acts as a trifunctional molecular sensor for CN, Fe3+ and H2S. R shows colorimetric and fluorometric “on–off” relay recognition for CN (red colour and orange emission) and Fe3+ (no colour and no emission) in 5% H2O + DMSO medium which is experimentally ascertained to be a tandem deprotonation–protonation process and is supported by 1H-NMR titration. Among all RSS (Reactive Sulphur Species), R shows selectivity for H2S through red colouration. Other coexistent anions, cations and RSS cause no discernible perturbation to the detection process. The detection of H2S is attributed to a chemodosimetric reduction of the nitro to amino group as evidenced by a potentiometric titration assay. The experimental observations are well supported by DFT theoretical calculation. The Ka for CN/Fe3+ are 1.4 × 104 M−1, 6.07 × 104 M−1 respectively and photochemical yield of R + CN is 0.86. Limit of detections for CN, Fe3+ and H2S are 17.5 nM, 8.69 μM and 8.1 μM respectively. Receptor R is effective for real time applications, bio-compatible and has been successfully employed for confocal fluorescence imaging of RAW264.7 cell and zebrafish.

Probe R designed as tailor-fit triple action smart chemosensor for the sequential detection of CN and Fe3+via colorimetric and fluorometric ‘on–off’ method and H2S through colorimetric method in semi-aqueous conditions.  相似文献   

5.
Herein, a dual-response fluorescent sensor, L, based on pyrazolopyrimidine was designed and developed for the simultaneous detection of Ni2+ and Cu2+ ions in the presence of other metal ions; the structural characterization of L was carried out by FTIR spectroscopy, NMR spectroscopy, HRMS and X-ray diffraction analysis. The sensor L effectively displayed fluorescence quenching towards the Ni2+ and Cu2+ ions with high sensitivity without interference from other metal ions. The results reveal that L binds to Ni2+ and Cu2+ in a 2 : 1 pattern, which matches well with the result of the Job''s plot. The association constants of L with Ni2+ and Cu2+ were 3.2 × 104 M−1 and 7.57 × 104 M−1, respectively. The detection limits (DLs) are down to 8.9 nM for Ni2+ and 8.7 nM for Cu2+. The fluorescence imaging of L in T-24 cells was investigated because of the low cytotoxicity of L, indicating that L could be used to detect Ni2+ and Cu2+ in living cells.

A pyrazolopyrimidine-based fluorescent sensor L was developed and applied for detection of Cu2+ and Ni2+ in ethanol solution by photoluminescence quenching. It shows low cytotoxicity and good imaging characteristics for Cu2+ and Ni2+ in living cells.  相似文献   

6.
A novel solvent-dependent chemosensor 1o based on a diarylethene containing a rhodamine B unit has been designed. It could be used as a dual-functional chemosensor for selective detection of Hg2+ and Cu2+ by monitoring the changes in the fluorescence and UV-vis spectral in different solvents. A striking fluorescence enhancement at 617 nm was observed in DMSO upon the addition of Hg2+. However, 1o showed a remarkable absorption band appeared with maximum absorption at 555 nm after the addition of Cu2+ in THF. The results of ESI-MS spectra and Job''s plot confirmed a 1 : 1 binding stoichiometry between 1o and the two ions. The limits of detection of Hg2+ and Cu2+ were determined to be 0.14 μM and 0.51 μM, respectively. A 1 : 2 demultiplexer circuit was constructed by using UV light as data input, Cu2+ as the address input, and the absorbance at 555 nm and the absorbance ratio of (A603/A274) as the dual data outputs.

A novel solvent-dependent chemosensor based on a diarylethene derivative for fluorescent “turn-on” recognition of Hg2+ and colorimetric detection of Cu2+ was synthesized, its multi-controllable photoswitchable behaviors with light and chemical stimuli were investigated.  相似文献   

7.
In this study, a highly sensitive and selective fluorescent chemosensor, ethyl(E)-2-((2-((2-(7-(diethylamino)-2-oxo-2H-chromene-3-carbonyl)hydrazono)methyl)quinolin-8-yl)oxy)acetate (1), was synthesized and characterized by 1H NMR, 13C NMR and ESI-MS. Sensor 1 showed an “on–off” fluorescence response to Pb2+ with a 1 : 1 binding stoichiometry in CH3CN/HEPES buffer medium (9 : 1 v/v). The detection limit of sensor 1 to Pb2+ was determined to be 0.5 μM, and the stable pH range for Pb2+ detection was from 4 to 8.

A highly sensitive and selective fluorescent chemosensor 1 was synthesized and used for naked eye detection of Pb2+.  相似文献   

8.
In this study, a highly selective chemosensor ML based on a BODIPY fluorescent chromophore was synthesized for sequential recognition of Cu2+ and HSO3 in a CH3OH/H2O (99 : 1 v/v) system, which contained three recognition sites and its structure characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor ML showed an obvious “on–off” fluorescence quenching response toward Cu2+ and the ML-Cu2+ complex showed an “off–on” fluorescence enhancement response toward HSO3. The detection limit of the sensor ML was 0.36 μM to Cu2+ and 1.4 μM to HSO3. In addition, the sensor ML showed a 1 : 3 binding stoichiometry to Cu2+ and the recovery rate of ML-Cu2+ complex identifying HSO3 could be over 70%. Sensor ML showed remarkable detection ability in a pH range of 4–8.

A highly selective chemosensor based on a BODIPY chromophore for sequential recognition of Cu2+ and HSO3.  相似文献   

9.
A new colorimetric and fluorescence molecular chemosensor based on triazole hydrazone can be used as a multi-probe for selective detection of Al3+, Zn2+, and Cu2+ by monitoring changes in the absorption and fluorescence spectral patterns. Results show that Al3+ and Zn2+ ions can induce remarkable fluorescence enhancement at pH 6.0 and pH 10.0, respectively, while the addition of Cu2+ ions leads to a significant UV-visible absorption enhancement in the visible range at pH 6.0. In addition, the resultant Al3+ complex could act as an ‘on–off’ fluorescence sensor for F. The fluorescence sensor was also used to monitor intracellular Al3+, Zn2+, and F in Hela cells.

A fluorescent probe for Al3+ and Zn2+ was synthesised, and the resultant Al3+-complex was used for the detection of F.  相似文献   

10.
Curcuminoids have been extensively investigated as metal ion probes, but the intrinsic aggregation-caused-quenching (ACQ) characteristic of curcumin would hinder their applications in aqueous solution. Fortunately, tetraphenylethylene (TPE) could endow the compounds with aggregation-induced emission (AIE)/aggregation-induced enhanced emission (AIEE) characteristics to eliminate the ACQ effect. According to this strategy, a series of TPE-modified curcumin derivatives L1–4 were prepared and studied for their AIEE properties. Among the four TPE-curcumin analogues, only L1 particles have been successfully used as an on-off fluorescence probe for detecting Cu2+ in aqueous solution. The fluorescence titration experiment determined its detection limit of 1.49 × 10−7 mol L−1, and the binding ratio between L1 and Cu2+ was estimated as 2 : 1, which was in agreement with the results of high resolution mass spectrum and Job''s plot. In addition, the binding constant was evaluated as 6.77 × 102 M−1 using a Benesi–Hildebrand plot. Finally, the obtained L1-based indicator paper showed significant fluorescence response to Cu2+ aqueous solution. This TPE-modified strategy improves the detection capability of curcumin probe in aqueous solution and provides a feasible way to obtain other probes with ACQ characteristics.

A curcumin-based AIEE-active L1 was synthesized and used to prepare an on-off fluorescent probe for Cu2+ detection in aqueous solution.  相似文献   

11.
In this study, dual-emission carbon dots (D-CDs) are synthesized via a simple one-step solvothermal treatment of red tea. The obtained D-CDs are characterized by XPS, IR, TEM, XRD, fluorescence and UV-vis spectroscopy techniques. It is found that D-CDs present a strong red fluorescence emission peak at 671 nm and weak blue fluorescence emission peak at 478 nm under the excitation wavelength of 410 nm. The unique dual-emission properties of D-CDs provide great opportunities in ratiometric fluorescence sensing applications. The results show that Cu2+ ions can quench the fluorescence of the red emission band of D-CDs effectively, resulting in the disappearance of red fluorescence ultimately. Upon the addition of Al3+ ions, the fluorescence of blue emission band at 478 nm grows apparently, and the fluorescence color transforms gradually from red to orange, then to yellow-green. Based on these findings, a novel ratiometric fluorescence and colorimetric dual mode nanosensor is developed for simultaneous detection of Cu2+ and Al3+ ions. Regarding Cu2+ ions, the fluorescent detection linear range is 0.1–50 μM with detection limit of 0.1 μM, and the colorimetric detection limit is estimated as 25 μM. With regard to Al3+ ions, the fluorescent detection linear range is 0–20 μM and 25–100 μM with detection limit of 0.5 μM, and the colorimetric detection limit is 20 μM. Furthermore, the fluorescence response mechanisms of Cu2+ and Al3+ ions were discussed detailed. To the best of our current knowledge, this will be the first research work on the simultaneous determination of Cu2+ and Al3+ using D-CDs as fluorescent probes.

D-CDs with strong red emission and weak blue emission as an effective colorimetric and ratiometric fluorescence sensing probe are employed to realize the simultaneous detection of Cu2+ and Al3+ ions without any interference effect.  相似文献   

12.
A new fluorescent chemosensor based on 8-aminoquinoline L1 bearing a benzimidazole moiety was synthesized, which exists as two predominant tautomers L1A and L1B in diluted DMSO-d6 solution. Among various metal ions, L1 showed a highly selective and sensitive turn-on fluorescence response to the presence of Zn2+ ions in methanol. The detection limit for Zn2+ by L1 was calculated to be 1.76 × 10−7 M. The 1 : 1 complexation ratio of the L1–Zn complex was confirmed through Job plot measurements. Complexation studies were performed by FT-IR, NMR and HR-ESI MS measurements and DFT calculations. With the gained insight, it was possible to successfully apply L1 in water sample analysis.

The sensor shows a high selectivity and sensitivity toward zinc cations, accompanied by a distinct green fluorescence emission.  相似文献   

13.
Two new dual channel Schiff base fluorescent probes, Tri-R6G and Tri-Flu, were synthesized, and can detect Hg2+ and Al3+, respectively. The two probes were characterized by FTIR, 1H NMR, 13C NMR and HRMS, and their optical properties were detected by UV and FL. Test results showed the probes'' detection of Hg2+ and Al3+ compared to other metal ions (Ag+, Co2+, Cd2+, Mg2+, Cu2+, Ni2+, Ba2+, Pb2+, Cr3+, Al3+, Zn2+, Hg2+, K+, Ga2+ and Fe3+), respectively. Besides, the detection limits were determined to be 1.61 × 10−8 M and 1.15 × 10−8 M through the standard curve plot, respectively. The photoelectron transfer (PET) mechanism was guessed by the Job''s plot and the infrared titration. Corresponding orbital electron distribution and molecular geometry configurations of the compounds were predicted by density functional theory (DFT). In addition, the prepared test paper changed from white to pink when the target ion was detected. The color changed from colorless to pink in a solution having a concentration of 10−5 M.

Two new dual channel Schiff base fluorescent probes, Tri-R6G and Tri-Flu, were synthesized, and can detect Hg2+ and Al3+, respectively.  相似文献   

14.
Due to remarkable fluorescence characteristics, lanthanide coordination polymers (CP) have been widely employed in fluorescence detection, but it is rarely reported that they act as multifunctional luminescent probes dedicated to detecting malachite green (MG) and various metal ions. A europium-based CP fluorescent probe, Eu(PDCA)2(H2O)6 (PDCA = 2,6-pyridinedicarboxylic acid), has been synthesized and exhibited excellent recognition ability for malachite green and metal cations (Cr3+, Fe3+ and Cu2+) among 11 metal cations, 13 anions and six other compounds. The recognition was achieved by fluorescence quenching when MG, Cr3+, Fe3+ and Cu2+ were added to a suspension of Eu(PDCA)2(H2O)6 respectively. Eu(PDCA)2(H2O)6 is a multifunctional luminescent probe, and displayed high quenching efficiencies Ksv (2.10 × 106 M−1 for MG; 1.46 × 105 M−1 for Cr3+; 7.26 × 105 M−1 for Fe3+; 3.64 × 105 M−1 for Cu2+), and low detection limits (MG: 0.039 μM; Cr3+: 0.539 μM; Fe3+: 0.490 μM; Cu2+: 0.654 μM), presenting excellent selectivity and sensitivity, especially for MG. In addition, Eu(PDCA)2(H2O)6 was also made into fluorescent test strips, which can rapidly and effectively examine trace amounts of MG, Cr3+, Fe3+ and Cu2+ in aqueous solutions. This work provides a new perspective for detecting malachite green in fish ponds and heavy metal ions in waste water.

A europium-based CP fluorescent sensor was synthesized and exhibited excellent recognition ability for malachite green (MG) and metal cations (Cr3+, Fe3+ and Cu2+).  相似文献   

15.
A series of complexes with oxathiacrown ethers appended to a [Ru(bpy)2]2+ moiety have been synthesized and characterised using 1H NMR, 13C NMR, IR, electronic absorption and emission spectroscopies, mass spectrometry and elemental analyses. The complexes exhibit strong MLCT luminescence bands in the range 608–611 nm and one reversible metal centred oxidation potential in the range 1.00–1.02 V. Their selectivity and sensitivity towards Hg2+, Cd2+ and Pb2+ metal ions have been investigated using electronic absorption, luminescence, cyclic and differential pulse voltammetry titrations. Their responses towards selected cations and anions have also been investigated using electronic absorption and luminescence. While the complexes are selective towards Hg2+ and Cd2+ ions, none of them is selective towards Pb2+ ions. In particular, complex 2 gives a selective change in the UV/Vis absorbance with Hg2+ making it possible to detect mercury down to a detection limit of 68 ppm. The binding constants and limits of detection of the complexes have been calculated, with values ranging from 4.37 to 5.38 and 1.4 × 10−3 to 6.8 × 10−5 for log Ks and LOD respectively.

Oxathiacrown ether modified ruthenium complex 2 facilitates a selective naked-eye detection of Hg2+ with an instrumental detection limit of 68 ppm.  相似文献   

16.
In this work, a colorimetric and ratiometric fluorescent sensor based on a coumarin–rhodamine B hybrid for the sequential recognition of Cu2+ and arginine (Arg) via the FRET mechanism was designed and synthesized. With the addition of Cu2+, the solution displayed a colorimetric change from pale yellow to pink which is discernible by the naked eye. Additionally, the fluorescence intensities of the sensor exhibited ratiometric changes for the detection of Cu2+ at 490 and 615 nm under a single excitation wavelength of 350 nm, which corresponded to the emissions of coumarin and rhodamine B moieties, respectively. The fluorescence color change could be visualized from blue to pink. The limits of detection were determined to be as low as 0.50 and 0.47 μM for UV-vis and fluorescence measurements, respectively. More importantly, the sensor not only can recognize Cu2+ and form a sensor-Cu2+ complex but can also sequentially detect Arg with the resulting complex. The detection limits for Arg were as low as 0.60 μM (UV-vis measurement) and 0.33 μM (fluorescence measurement), respectively. A fluorescence imaging experiment in living cells demonstrated that the fabricated sensor could be utilized in ratiometric fluorescence imaging towards intracellular Cu2+, which is promising for the detection of low-level Cu2+ and Arg with potentially practical significance.

A FRET-based colorimetric and ratiometric coumarin–rhodamine B fluorescent sensor was designed, and its sensing behaviors for sequentially detecting Cu2+ and arginine were studied systematically.  相似文献   

17.
A simple Schiff-base ligand 2-hydroxy-1-naphthaldehyde semicarbazone (HNS) was synthesized and characterized. Based on the combined effect of inhibition of CH Created by potrace 1.16, written by Peter Selinger 2001-2019 N isomerization and chelation-enhanced fluorescence (CHEF), HNS functions as a fluorescence “turn on” sensor for Al3+ in buffered aqueous media. Based on the strong affinity of Al3+ to F ions, the in situ generated Al3+–HNS complex can also be utilized as an effective chemosensor for F sensing by metal displacement approach, ensuing quenching of fluorescence by the reversible return of HNS from Al3+–HNS complex. Thus a method using a single probe for the detection of both Al3+ and F ions is developed. The system exhibits high selectivity and sensitivity for Al3+ and F ions and the detection limits were found to be as low as 6.75 × 10−8 M and 7.89 × 10−7 M, respectively. Furthermore, the practical applicability of this probe has been examined in living cells.

A simple Schiff-base ligand 2-hydroxy-1-naphthaldehyde semicarbazone (HNS) was synthesized and applied to the sequential sensing of Al3+ and F ions in aqueous media and live cells.  相似文献   

18.
A novel dual-emission ratiometric fluorescent probe based on N-doped yellow fluorescent carbon dots (y-CDs) and blue fluorescent copper nanoclusters (CuNCs) was established for quantitative determination of Cu2+ and biothiols. In this work, the Cu2+-(y-CDs) complexes formed by the chelation of y-CDs with Cu2+, showed an absorption peak at 430 nm that not only enhanced the fluorescence of y-CDs through inhibiting photoinduced electron transfer (PET) but also effectively quenched the fluorescence of CuNCs due to Förster resonance energy transfer (FRET). In addition, the chelation of y-CDs with Cu2+ could be inhibited by biothiols that prevented the fluorescence of y-CDs from being enhanced and the fluorescence of CuNCs from being quenched. On account of the changes of ratiometric signal, a dual-emission fluorescence probe for Cu2+ and biothiols determination was achieved. The proposed method exhibited high sensitivity for Cu2+ and biothiols in the ranges of 0.5–100 μM and 0.8–50 μM and the limits of detection (LODs) of Cu2+, glutathione (GSH), cysteine (Cys) and homocysteine (Hcy) were 0.21 μM, 0.33 μM, 0.39 μM and 0.46 μM, respectively. Subsequently, the established strategy presented an application prospect for the detection of Cu2+ and biothiols in real samples.

A dual-mechanism ratiometric fluorescent probe based on N-doped yellow fluorescent carbon dots (y-CDs) and blue fluorescent copper nanoclusters (CuNCs) was established for the first simultaneous determination of Cu2+ and biothiols.  相似文献   

19.
A novel multifunctional chemosensor HL bearing a julolidine unit and a Schiff base unit has been synthesized. As a fluorescent sensor, HL exhibited excellent selectivity and high sensitivity to Al3+ and F/CN with a low detection limit in acetonitrile. Moreover, HL also showed good colorimetric selectivity to F/CN; a solution color change from colorless to light yellow in acetonitrile was observed by the ‘naked-eye’. The properties of HL with Al3+ and F/CN were studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, high-resolution mass spectrometry and 1H NMR titration. Furthermore, the cell imaging experimental results indicated that the chemosensor HL could be applied for the detection of Al3+ in living cells.

A novel multifunctional chemosensor HL bearing a julolidine unit and a Schiff base unit has been synthesized.  相似文献   

20.
A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism. The sensor showed a selective “off–on” fluorescence response with a 120-fold increase toward Cu2+, and its limits of detection were 0.26 μM and 0.17 μM for UV-vis and fluorescence measurements, respectively. In addition, 1–Cu2+ was an efficient “on–off” sensor to detect H2S with detection limits of 0.40 μM (UV-vis measurement) and 0.23 μM (fluorescence measurement), respectively. Furthermore, the sensor can also be used for biological imaging of intracellular staining in living cells. Therefore, the sensor should be highly promising for the detection of low level Cu2+ and H2S with great potential in many practical applications.

A novel colorimetric and fluorometric sensor with unique dual-channel emission to sequentially detect Cu2+ and hydrogen sulfide (H2S) was synthesized from naphthalimide–rhodamine B through the PET and FRET mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号