首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive approach of untargeted and targeted fatty acid bioprofiling of different royal jelly commercial and pharmaceutical products based on HPTLC-image analysis and melanoma cytotoxic activity together with chemometric analysis was applied in this study for discovering efficient biomarkers. Principal component analysis based on HPTLC-image analysis fingerprints of fatty acid loading plots were used to determine the chemical markers responsible for classification of royal jelly samples into fresh and lyophilized ones. These markers were identified using the HPTLC-MS technique as 8-hydroxyoctanoic acid, 3,10-dihydroxydecanoic acid, 10-hydroxy-2-decenoic acid, decanedioic acid and 10-hydroxydecanoic acid. These discriminating markers were quantified via the HPTLC-imaging technique for targeted profiling using two different methods: parametric and non-parametric regression. The non-parametric regression method exhibited superiority in terms of linearity, accuracy and precision. Biomarkers were determined from the 3D-loading plot of orthogonal projection to latent structures model based on the fatty acid quantitative data together with the melanoma cytotoxic activity data. 10-Hydroxy-2-decenoic acid showed the greatest reduction in melanoma cell viability followed by decanedioic acid then 8-hydroxyoctanoic acid. The present study is considered the first attempt to discriminate fresh and lyophilized royal jelly samples based on their holistic lipidomic profile to discover efficient fatty acid reducing melanoma cell viability.

Untargeted and targeted fatty acid bioprofiling of different royal jelly commercial and pharmaceutical products based on HPTLC-MS-image analysis and melanoma cytotoxic activity with chemometric analysis was applied to discover efficient biomarkers.  相似文献   

2.
A novel fluorescent labeling reagent toluene-4-sulfonic acid 2-(2-thiophen-2-yl-phenanthro[9,10-d]imidazol-1-yl)-ethyl ester has been designed and synthesized. It was used to label twenty-six fatty acids (C5–C30) successfully in the presence of K2CO3 catalyst in N,N-dimethylformamide solvent. The reaction conditions were optimized by employing a three-factor, three-level Box–Behnken design. Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography with fluorescence detection. All fatty acid derivatives were separated on a hypersil BDS-C8 column in conjunction with a gradient elution with a good baseline resolution. Good linear correlations were observed for all fatty acids with correlation coefficients > 0.993. The established method exhibited high sensitivity and excellent repeatability. The limit of detection (at a signal-to-noise ratio of 3 : 1) was 8.8–45.5 fmol. The method was used to quantify free fatty acids in ginkgo nut and ginkgo leaf samples with satisfactory results.

A highly sensitive HPLC-FL method to determine fatty acids was developed utilizing TSTPE as a novel fluorescent labeling reagent.  相似文献   

3.
Boronate-affinity magnetic hollow molecularly imprinted polymers (B-MhMIPs) were prepared with sialic acid (SA) as the template, 3-aminophenylboronic acid (APBA) as the functional monomer and glycidilmethacrylate (GMA) as the co-monomer to chemisorb Fe3O4 nanoparticles. Furthermore, the hollow structure made the nanoparticles have more binding sites at both internal and external surfaces, which can facilitate the removal of template molecules from polymers and enhance the adsorption abilities towards SA. After optimizing, the adsorption pH was controlled at 4.0, and this was different from most cis-diol-containing compounds. Under the optimal conditions, the limit of detection for SA was 0.025 μg mL−1 (n = 3). This method was applied to analyze serum samples with different spiked levels, and the recoveries of the SA were in the range of 70.9–106.2%. These results confirmed the superiority of the B-MhMIPs for selective and efficient enrichment of trace SA from complex matrices.

Boronate-affinity magnetic hollow molecularly imprinted polymers were prepared with sialic acid (SA) as a template to selectively extract SA from serum samples coupled with HPLC-UV.  相似文献   

4.
Phytosterol esters are functional compounds that can effectively reduce plasma cholesterol concentration, and have wide applications in the food industry. In this study, a simple and efficient enzymatic method was successfully applied to synthesize phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil. Among the tested lipases, Candida rugosa lipase (CRL) exhibited higher catalytic activity in the esterification of phytosterols with fatty acids (oleic acid 84%) from high-oleic sunflower seed oil. Box–Behnken design and response surface methodology were used to investigate the influence of reaction factors on the conversion of phytosterols. The maximum conversion of phytosterols (96.8%) and yield of phytosterol esters (92%) could be obtained under optimal conditions: reaction temperature 50 °C, a molar ratio of phytosterols to fatty acids at 1 : 2.3, enzyme loading of 5.8%, isooctane volume of 2 mL and reaction time of 2 h. It was noteworthy that this enzymatic esterification method indeed expended a much shorter reaction time (2 h) than that observed in previous reports. In general, the enzymatic preparation of phytosterol oleic acid esters with fatty acids from high-oleic sunflower seed oil will be a simple and rapid method for producing unsaturated fatty acid esters of phytosterol with both higher oil solubility and oxidative stability, which is beneficial as functional food ingredients.

Enzymatic preparation of phytosterol esters with fatty acids from high-oleic sunflower seed oil has been established with very mild reaction conditions.  相似文献   

5.
Postmenopausal women are at increased risk for a cardiovascular event due to platelet hyperactivity. There is evidence suggesting that ω‐3 polyunsaturated fatty acids (PUFAs) and ω‐6 PUFAs have cardioprotective effects in these women. However, a mechanistic understanding of how these fatty acids regulate platelet function is unknown. In this study, we supplemented postmenopausal women with fish oil (ω‐3 fatty acids) or evening primrose oil (ω‐6 fatty acids) and investigated the effects on their platelet activity. The effects of fatty acid supplementation on platelet aggregation, dense granule secretion, and activation of integrin αIIbβ3 at basal levels and in response to agonist were tested in postmenopausal women following a supplementation and washout period. Supplementation with fish oil or primrose oil attenuated the thrombin receptor PAR4‐induced platelet aggregation. Supplementation with ω‐3 or ω‐6 fatty acids decreased platelet dense granule secretion and attenuated basal levels of integrin αIIbβ3 activation. Interestingly, after the washout period following supplementation with primrose oil, platelet aggregation was similarly attenuated. Additionally, for either treatment, the observed protective effects post‐supplementation on platelet dense granule secretion and basal levels of integrin activation were sustained after the washout period, suggesting a long‐term shift in platelet reactivity due to fatty acid supplementation. These findings begin to elucidate the underlying mechanistic effects of ω‐3 and ω‐6 fatty acids on platelet reactivity in postmenopausal women. Hence, this study supports the beneficial effects of fish oil or primrose oil supplementation as a therapeutic intervention to reduce the risk of thrombotic events in postmenopausal women. https://clinicaltrials.gov/ct2/show/NCT02629497.

Study Highlights
  • WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Postmenopausal women are at increased risk for cardiovascular disease due to platelet hyperactivity. Evidence suggests that ω‐3 and ω‐6 fatty acids have cardioprotective effects in postmenopausal women. There is limited information about how ω‐3 and ω‐6 fatty acids regulate platelet function in postmenopausal women.
  • WHAT QUESTION DID THE STUDY ADDRESS?
Does supplementation with ω‐3 or ω‐6 fatty acids provide long‐term cardiovascular protection for postmenopausal women through attenuation of platelet reactivity and minimizing the risk for thrombosis?
  • WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Treatment of postmenopausal women with fish oil and evening primrose oil results in both acute and chronic protection from thrombosis beyond the duration of supplementation due to decreased integrin activation on the platelet surface and decreased positive feedback as a result of reduced granule secretion from the platelet.
  • HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE?
Due to the significant disparity in thrombotic risk in postmenopausal women compared to men, supplementation with fish oil or evening primrose oil represents a minimally invasive and safe method for preventing blood clots.  相似文献   

6.
Aromatic acids, which are generated from numerous anthropogenic emissions and secondary transformations, have been considered to play a crucial role in new particle formation. In this study, we performed theoretical calculations at the PW91PW91/6-311++G(3df,3pd) level to investigate the interaction between typical aromatic acids namely benzoic acid (BA), phenylacetic acid (PAA), phthalic acid (PA), isophthalic acid (mPA), and terephthalic acid (PTA) and common atmospheric nucleation precursors namely sulfuric acid (SA), water (H2O), ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). The geometric analysis, Gibbs free energy analysis, OH/NH-stretching vibrational frequency calculation, and atoms in molecules (AIM) analysis were conducted to determine the interactions in the complexes. The heterodimers formed a six to eight membered ring through four types of hydrogen bond, and the bond strength could be ranked in descending order: SO–H⋯O > O–H⋯O/N > N–H⋯O. The BA/PAA/mPA/PTA–SA complexes had the lowest Gibbs free energy values. PA was more likely to interact with NH3 or amines rather than SA due to an intra-molecular hydrogen bond. Additionally, the aromatic acids have similar ability to interact with SA and NH3 as monocarboxylic/dicarboxylic acid. The formation potential of the heterodimers from aromatic acids with common nucleation precursors in ambient atmosphere was investigated.

Aromatic acids, which are generated from numerous anthropogenic emissions and secondary transformations, have been considered to play a crucial role in new particle formation.  相似文献   

7.
To provide low-cost wax and a new methodology for utilizing waste cooking oil (WCO), fatty acid wax based on WCO was synthesized by using epoxidation and hydrolysis treatments, whose properties included melting point, color, hardness, combustion properties, aldehyde content, and microscopic morphology were tested and analyzed. The obtained WCO-based wax contained mixed fatty acids, including palmitic acid and 9,10-dihydroxystearic acid as main constituents, which could form a 3D stable crossing network constructed by large long-rod crystals. The WCO-based wax with high fatty acid content (96.41 wt%) has a high melting point (44–53 °C), light color (Lovibond color code Y = 11.9, R = 2.3), good hardness (needle penetration index = 2.66 mm), long candle burning time (293 min), and low aldehyde content (7.98 × 10−2 μg g−1), which could be a lower-cost alternative of commercial soybean wax (SW) for producing various wax products including candles, crayons, waxworks, etc.

A fatty acid wax based on waste cooking oil was synthesized and could be a lower-cost alternative of commercial soybean wax.  相似文献   

8.
Recently, the incorporation of hydrophobicity on the surface of UiO-66(Zr) has received much attention due to the deactivation of hydrophilic active sites of UiO-66(Zr) upon water adsorption. In this work, we report UiO-66(Zr) catalysts with an assortment of surface hydrophobicities fabricated by the solvent-free method to elucidate the impact of the environment framing Lewis acid sites on their catalytic activity in the production of fatty acid methyl ester (biodiesel) via the esterification of fatty acids at room temperature with high selectivity (100%) and good recyclability. A detailed structural analysis of the materials by N2 sorption, FT-IR, SEM, XRD, water contact angle measurement, dynamic liquid scattering (DLS), NMR and TGA revealed the fabrication of stearic acid-grafted UiO-66(Zr) catalysts (10SA/UiO-66) with fine particle size and a highly hydrophobic network. 10SA/UiO-66(Zr) with enhanced hydrophobicity exhibited superior catalytic performance in the esterification of a fatty acid with a long alkyl chain compared with conventional solid acid catalysts and even liquid acid catalysts. Detailed kinetic studies corroborated that the adsorption of lipophilic acids at the Lewis acid sites besides the enhancement of wettability between the reactants was facilitated by the hydrophobic environment, thus significantly motivating the esterification reaction at room temperature. Furthermore, 10SA/UiO-66(Zr) showed good catalytic activity in the esterification of oleic acid in the presence of water (∼10% in the light of acid weight).

Recently, the incorporation of hydrophobicity on the surface of UiO-66(Zr) has received much attention due to the deactivation of hydrophilic active sites of UiO-66(Zr) upon water adsorption.  相似文献   

9.
A high-temperature proton exchange membrane was fabricated based on polyvinylidene fluoride (PVDF) and polyvinylpyrrolidone (PVP) blend polymer nanofibers. Using electrospinning method, abundant small ionic clusters can be formed and agglomerated on membrane surface, which would facilitate the proton conductivity. To further enhance the conductivity, phosphoric acid (PA) retention as well as mechanical strength, sulfamic acid (SA)-doped metal–organic framework MIL-101 was incorporated into PVP-PVDF blend nanofiber membranes. As a result, the anhydrous proton conductivity of the composite SA/MIL101@PVP-PVDF membrane reached 0.237 S cm−1 at 160 °C at a moderate acid doping level (ADL) of 12.7. The construction of long-range conducting network by electrospinning method combined with hot-pressing and the synergistic effect between PVP-PVDF, SA/MIL-101 and PA all contribute to the proton conducting behaviors of this composite membrane.

A composite SA/MIL101@PVP-PVDF membrane was fabricated via electrospinning and reached a conductivity of 0.237 S cm−1 at 160 °C with a moderate acid doping level (12.7).  相似文献   

10.
This work aimed to determine the changes in the morphology, complexation degree, the structural, thermal, and rheological properties of starch–fatty acid complexes during steam cooking. In this study, wheat starch with certain water and palmitic acid contents were steamed for 0.5, 1, 1.5, 2, and 2.5 h. The complexing index (CI) first decreased and then progressively increased with the prolonging of steam cooking time. The decrease in CI was associated with the decomposition of the complex layer formed on the granule surface at 0.5 h of steam cooking. The interaction between wheat starch and palmitic acid led to the change of starch crystal type. Prolonging treatment time promoted thermal stability and structural order degree. The type I and IIa complexes reached saturation and fatty acids in the interstitial space between helices increased with excessive treatment times. Rheological behavior analysis showed that the viscoelasticity and deformation degree of samples decreased and increased, respectively, with increasing steam cooking time. Results showed that the thermostability and order degree of the complex layer were lower than those of samples with long treatment times and complexing was effective during steam cooking.

The present paper introduces the formation and characteristics of wheat starch–palmitic acid complexes during long-term steam cooking.  相似文献   

11.

OBJECTIVE

The conventional diet approach to gestational diabetes mellitus (GDM) advocates carbohydrate restriction, resulting in higher fat (HF), also a substrate for fetal fat accretion and associated with maternal insulin resistance. Consequently, there is no consensus about the ideal GDM diet. We hypothesized that, compared with a conventional, lower-carbohydrate/HF diet (40% carbohydrate/45% fat/15% protein), consumption of a higher-complex carbohydrate (HCC)/lower-fat (LF) Choosing Healthy Options in Carbohydrate Energy (CHOICE) diet (60/25/15%) would result in 24-h glucose area under the curve (AUC) profiles within therapeutic targets and lower postprandial lipids.

RESEARCH DESIGN AND METHODS

Using a randomized, crossover design, we provided 16 GDM women (BMI 34 ± 1 kg/m2) with two 3-day isocaloric diets at 31 ± 0.5 weeks (washout between diets) and performed continuous glucose monitoring. On day 4 of each diet, we determined postprandial (5 h) glucose, insulin, triglycerides (TGs), and free fatty acids (FFAs) following a controlled breakfast meal.

RESULTS

There were no between-diet differences for fasting or mean nocturnal glucose, but 24-h AUC was slightly higher (∼6%) on the HCC/LF CHOICE diet (P = 0.02). The continuous glucose monitoring system (CGMS) revealed modestly higher 1- and 2-h postprandial glucose on CHOICE (1 h, 115 ± 2 vs. 107 ± 3 mg/dL, P ≤ 0.01; 2 h, 106 ± 3 vs. 97 ± 3 mg/dL, P = 0.001) but well below current targets. After breakfast, 5-h glucose and insulin AUCs were slightly higher (P < 0.05), TG AUC was no different, but the FFA AUC was significantly lower (∼19%; P ≤ 0.01) on the CHOICE diet.

CONCLUSIONS

This highly controlled study randomizing isocaloric diets and using a CGMS is the first to show that liberalizing complex carbohydrates and reducing fat still achieved glycemia below current treatment targets and lower postprandial FFAs. This diet strategy may have important implications for preventing macrosomia.  相似文献   

12.
Fatty acid desaturases are key enzymes in the biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) via conversion of n-6 polyunsaturates to their n-3 counterparts. In this study, we reported the characterization and molecular docking of Δ17 desaturases from Rhizophagus irregularis and Octopus bimaculoides. These two new desaturase genes were screened using the known Δ17 desaturase gene (oPaFADS17) from Pythium aphanidermatum as a template. Analysis of their genes revealed that the sequences of oRiFADS17 and oObFADS17 contained the typical His-rich motifs (one HXXXH and two HXXHH). They were then expressed in Saccharomyces cerevisiae INVSc1 to examine their activities and substrate preferences. Our results show that the two candidate n-3 desaturases possess a strong Δ17 desaturase activity, exhibiting remarkable increase in desaturation activity on C20 fatty acids compared to C18 fatty acids. To the best of our knowledge, oRiFADS17 desaturase has greater (3–4 fold) catalytic activity for C18 substrates than other reported Δ17 desaturases and oObFADS17 is the first reported Δ17 desaturase in sea mollusks. Characterization of these two new desaturases will be of greater value for genetic engineering in industrial production of eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). Due to lack of crystal structure information about n-3 desaturases, for the first time, the view of their predicted structures, binding pockets and substrate tunnels was clearly observed based on molecular docking. This will contribute to strengthening our understanding of the structure–function relationships of n-3 fatty acid desaturases.

Fatty acid desaturases are key enzymes in the biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) via conversion of n-6 polyunsaturates to their n-3 counterparts.  相似文献   

13.

OBJECTIVE

Mixed-meal tolerance test (MMTT) area under the curve C-peptide (AUC CP) is the gold-standard measure of endogenous insulin secretion in type 1 diabetes but is intensive and invasive to perform. The 90-min MMTT-stimulated CP ≥0.2 nmol/L (90CP) is related to improved clinical outcomes, and CP ≥0.1 nmol/L is the equivalent fasting measure (FCP). We assessed whether 90CP or FCP are alternatives to a full MMTT.

RESEARCH DESIGN AND METHODS

CP was measured during 1,334 MMTTs in 421 type 1 diabetes patients aged <18 years at 3, 9, 18, 48, and 72 months duration. We assessed: 1) correlation between mean AUC CP and 90CP or FCP; 2) sensitivity and specificity of 90CP ≥0.2 nmol/L and FCP ≥ 0.1 nmol/L to detect peak CP ≥0.2 nmol/L and the equivalent AUC CP; and 3) how the time taken to reach the CP peak varied with age of diagnosis and diabetes duration.

RESULTS

AUC CP was highly correlated to 90CP (rs = 0.96; P < 0.0001) and strongly correlated to FCP (rs = 0.84; P < 0.0001). AUC CP ≥23 nmol/L/150 min was the equivalent cutoff for peak CP ≥0.2 nmol/L (98% sensitivity/97% specificity). A 90CP ≥0.2 nmol/L correctly classified 96% patients using AUC or peak CP, whereas FCP ≥0.1 nmol/L classified 83 and 85% patients, respectively. There was only a small difference seen between peak and 90CP (median 0.02 nmol/L). The CP peak occurred earlier in patients with longer diabetes duration (6.1 min each 1-year increase in duration) and younger age (2.5 min each 1-year increase).

CONCLUSIONS

90CP is a highly sensitive and specific measure of AUC and peak CP in children and adolescents with type 1 diabetes and offers a practical alternative to a full MMTT.The mixed-meal tolerance test (MMTT) is the gold-standard measure of endogenous insulin secretion in type 1 diabetes, with a higher peak C-peptide (CP) and reduced adverse effects compared with glucagon stimulation (13). The full MMTT is predominantly used in research and rarely performed in routine clinical practice due to the intensity of sampling, with samples required every 30 min for 2 h to allow measurement of area under the curve (AUC) and peak CP (2).A single measure of CP would be advantageous both for the patient and the clinician if it adequately reflects values obtained in the full MMTT. In a cross-sectional study of 259 patients aged 8–35 years, CP has been shown to usually peak at 90 min (90CP) during an MMTT (3), and 90CP ≥0.2 nmol/L has been related to improved clinical outcomes both with less complications and less severe hypoglycemia (4). Fasting CP (FCP) is frequently used in clinical practice because it is known to be well-correlated to stimulated CP (510), but in more careful studies of preservation of residual insulin secretion, the AUC after an MMTT has been regarded as necessary (1,2). The validity of 90CP and FCP as alternatives to the full MMTT have not been fully investigated, particularly in young children or in studies when longitudinal measures are taken, allowing the impact of diabetes duration to be assessed.We aimed to assess whether 90CP and FCP were reliable measures of AUC and peak insulin secretion during the MMTT.  相似文献   

14.
Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), are beneficial for human health. In this study, we selected a high EPA content (30% in total fatty acids) strain of Mortierella alpina CCFM 698 that overexpressed an ω-3 fatty acid desaturase from Phytophthora parasitica, and investigated the cell growth and lipid accumulation of this strain in a 65 L airlift fermenter with glucose batch feeding. The maximum cell dry weight was 28.7 g L−1 and the highest total fatty acid content was 33.0% (w/w) in cell dry weight. The highest EPA yield was 1.8 g L−1. Both low and high dose supplementation of this strain into the feed of laying hens increased DHA accumulation in the yolk. The highest DHA content of 7.61 mg g−1 yolk was achieved in Fengda-1 laying hens with 4% supplementation and the DHA production per egg was 118.46 mg. However, Hy-Line Brown laying hens displayed a higher DHA production per egg and the value was 131.50, 131.72, 131.95 mg with 1.5%, 2%, 4% supplementation, respectively. The lowest ratio of ω-6/ω-3 PUFAs (3.53) was obtained in Hy-Line Brown laying hens with 4% supplementation. These results suggest that M. alpina CCFM 698 can be used as an alternative source of ω-3 PUFAs in feed to produce nutritious eggs with high DHA content.

A high EPA-producing M. alpina was fermented and added to laying hen feed for egg yolk DHA accumulation.  相似文献   

15.
Special wettability durable coatings, with average water contact angles exceeding 140°, have been fabricated utilising functionalised hydrophobic-SiO2 (H-SiO2) particles embedded in fatty acids. The inexpensive and non-toxic H-SiO2 particles imparted delicate lotus leaf inspired hierarchical surface nano-morphologies while the fatty acid modification afforded a suitable drop in surface energy. Comparison studies were carried out to explore the effects of fatty acid chain length and pipette as opposed to spray coating deposition methods on the coatings hydrophobicity. It was determined that the longest chain length fatty acid coatings showed enhanced hydrophobic properties due to their extended hydrophobic alkyl chain. A pipette deposited suspension containing H-SiO2 nanoparticles and octadecanoic acid generated a coating with the most favourable average water contact and tilting angles of 142 ± 6° and 16 ± 2° respectively.

Special wettability durable coatings, with water contact angles exceeding 140°, have been fabricated using inexpensive and non-toxic functionalised hydrophobic-silica nanoparticles embedded in fatty acids.  相似文献   

16.
Electrocoagulation (EC) approach was developed to allow fast sample cleanup step prior to selective analysis of non- and mono-hydroxylated phenolic acids in red wine samples with high performance liquid chromatography hyphenated with UV detection (HPLC-UV). EC system with the wine in KCl(aq) electrolyte (1.5 mol L−1) was employed removing the polymeric pigments with good recovery of 39 peaks from 64 peaks. The mechanisms mainly involve enrichment induced aggregation and reduction of the pigments at the cathode and the adsorption onto the EC sludge. The EC was further miniaturized employing two intercalated stainless steel spring electrodes at 9.0 V which allowed removal of >99% interference peak area from the pigments within 5 s. The recoveries of the target phenolic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid and ferulic acid) were within the range of 86–102%. The repeated analysis of these standards revealed <2 and ≤10% RSD of the intra-day and inter-day precisions, respectively. The linearities of their calibration curves were observed with R2 > 0.99. Their method detection limits were within the range of 0.02–0.20 mg L−1.

Electrocoagulation (EC) approach was developed to allow fast sample clean-up step prior to selective analysis of non- and mono-hydroxylated phenolic acids in red wine samples with high performance liquid chromatography hyphenated with UV detection (HPLC-UV).  相似文献   

17.
In the present study, heterogeneous acid catalysts for fatty acid esterification reactions were synthesized using agro-industrial waste from murumuru kernel shells. The waste was carbonized and functionalized with concentrated sulfuric acid under different sulfonation conditions, obtaining the sulfonated biochar. The results indicate that the best sulfonation conditions were obtained with a contact time of 4 h, the temperature of 200 °C, and a solid-acid ratio of 1 : 10 (w/v). The best catalyst was characterized by acid–base titration for the determination of total acid density, X-ray diffraction, scanning electron microscopy, X-ray energy dispersion spectroscopy, Fourier transform infrared spectroscopy and thermal analysis. Reaction conditions of oleic acid with methanol and the viability of catalyst reuse were also investigated. A conversion of 97.2% was achieved under optimum esterification reaction conditions, employing 5% catalyst, 10 : 1 molar ratio of methanol to oleic acid, during 1.5 h at a temperature of 90 °C. After 4 reaction cycles, the catalyst preserved its efficiency at 66.3% conversion. The catalyst activity was evaluated in reactions using palmitic acid, soybean fatty acid distillate, palm fatty acid distillate, and coconut fatty acid distillate. The results demonstrate that the catalyst is applicable and efficient in esterification reactions of raw materials, containing different fatty acid compositions since different carbonized materials have varying abilities to combine acid groups. This work reveals the promising feasibility of using biomass generated in large quantities by the agroindustry for the development of a new heterogeneous acid catalyst for biodiesel production.

In the present study, heterogeneous acid catalysts for fatty acid esterification reactions were synthesized using agro-industrial waste from murumuru kernel shells.  相似文献   

18.
This work reports the one-pot solvothermal synthesis of a Keggin heteropolyacid (phosphomolybdic acid, tungstophosphoric acid, or silicotungstic acid) immobilized on Ni-MOF composite catalysts for esterification of fatty acids, and the composites were further analyzed by XRD, FTIR, NH3-TPD, SEM, TEM, N2 adsorption/desorption, and XPS. Among the contrastive syntheses (i.e., HPW/Ni-MOF, HSiW/Ni-MOF, and HPMo/Ni-MOF), HPMo/Ni-MOF exhibits the most active catalyst toward fatty acids esterification, and the characterization results also revealed that HPMo/Ni-MOF has a strong acidity, large specific surface area, and appropriate average pore size. More significantly, this catalyst exhibits a good catalytic performance (86.1% conversion) during esterification under the optimized reaction conditions, and the HPMo/Ni-MOF catalyst can remain stable after the tenth cycle with a conversion of 73.5%. Intriguingly, the esterification reaction kinetics was studied, and the activation energy was found to be 64.6 kJ mol−1. The results indicated that the esterification of fatty acids using the HPMo/Ni-MOF catalyst is a chemically controlled reaction.

The developed heteropolyacids immobilized on Ni-MOF catalysts have strong acidity and perform well in esterification.  相似文献   

19.
Phenolic acids represented by caffeoylquinic acids in Xanthii Fructus have various pharmacological activities such as anti-inflammatory, anti-nociceptive, anti-oxidative and anti-allergic effects. In this study, pH-zone-refining counter-current chromatography was successfully applied in the segmentation of crude samples and further separation of phenolic acids from Xanthii Fructus. We initially segmented 1.6 g of the crude sample to yield three sample fractions using a two-phase solvent system composed of EtOAc–ACN–H2O (4 : 1 : 5, v/v/v) with 10 mM TFA added to the organic phase as the stationary phase and 10 mM NH3·H2O added to the aqueous phase as the mobile phase. The first fraction was separated using EtOAc–H2O (1 : 1, v/v) (10 mM TFA was added in the upper phase and 20 mM NH3·H2O was added in the lower phase) solvent system, the second fraction containing low-content compounds was separated using semi-preparative high performance liquid chromatography, and the third fraction contained one pure compound. As a result, seven phenolic acids including six caffeoylquinic acid isomers (3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 1,5-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, and 4,5-O-dicaffeoylquinic acid) and caffeic acid were successfully isolated from Xanthii Fructus with purities above 90%. This study demonstrated that pH-ZRCCC is an efficient preparative separation method for phenolic acids, especially isomeric caffeoylquinic acids, from natural products.

Segmentation and purification strategy using pH-zone-refining counter-current chromatography combined with semi-preparative HPLC for separation of six caffeoylquinic acid isomers and a caffeic acid from Xanthii Fructus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号