首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
The selective catalytic reduction of NO with propene (C3H6-SCR) in the presence of SO2 was investigated over a series of Mn-promoted calcined NiAl hydrotalcite-like compounds. The obtained 5% MnNiAlO catalyst exhibits superior NO conversion efficiency (95%) at 240 °C, and excellent sulfur-poisoning resistance. The possible reaction pathways of the catalytic process were proposed according to several characterization measurements. It is demonstrated that Mn-promoted NiAlO catalysts enhance the Brønsted acid sites and surface active oxygen groups, and improve the redox properties by the redox cycle (Ni3+ + Mn2+ ↔ Ni2+ + Mn4+). Thus, the amount of the reaction intermediates is improved, and the reactivities between CxHyOz species and nitrite/nitrate species are promoted. Furthermore, in the presence of SO2, the MnNiAlO samples can give rise to minor formation of sulfate and inhibit the competitive adsorption effectively due to their nitrite/nitrate species being more abundant and stable. Finally, regeneration was studied using in situ FTIR and the water washing method showed the best performance on the regeneration of S-poisoned catalysts.

The selective catalytic reduction of NO with propene (C3H6-SCR) in the presence of SO2 was investigated over a series of Mn-promoted calcined NiAl hydrotalcite-like compounds.  相似文献   

2.
To investigate the effect of catalyst precursors on physicochemical properties and activity of lean methane catalytic combustion, a series of Co3O4 catalysts were prepared via a precipitation method by using four different cobalt precursors: Co(C2H3O2)2, Co(NO3)2, CoCl2, and CoSO4. The catalysts were characterized by BET, XRD, SEM, Raman, XPS, XRF, O2-TPD and H2-TPR techniques. It was found that the different types of cobalt precursor had remarkable effects on the surface area, particle size, reducibility and catalytic performance. In contrast, the Co3O4-Ac catalyst showed a relatively small surface area, but its activity and stability were the highest. XPS, Raman, O2-TPD and H2-TPR results demonstrated that the superior catalytic performance of Co3O4-Ac was associated with its higher Co2+ concentration, more surface active oxygen species and better reducibility. In addition, the activity of the Co3O4-S catalyst reduced significantly due to the residual impurity SO42−, which could reduce the concentration of surface adsorbed active oxygen species and inhibit oxygen migration.

The effects of cobalt precursor on the microstructure, surface properties, reducibility and catalytic performance for methane combustion were investigated.  相似文献   

3.
A series of Co3O4 catalysts modified by Sm were prepared by a combined dealloying and calcination approach, and the catalytic activities were evaluated using CO catalytic oxidation. The Sm2O3/Co3O4 catalysts were composed of a large number of nanorods and nanosheets, and exhibited a three-dimensional supporting structure with pores. The experimental results revealed that the addition of a small amount of Sm into the precursor AlCo alloy led to a dealloyed sample with improved catalytic activity, and the dealloyed Al90Co9.5Sm0.5 ribbons (0.5 Sm2O3/Co3O4) calcined at 300 °C showed the highest activity for CO oxidation with complete CO conversion at 135 °C, moreover, CO conversion almost no attenuation, even after 70 hours of catalytic oxidation, which is superior to that of Co3O4. The enhanced catalytic activity of the Sm2O3/Co3O4 catalyst can be attributed to the large specific surface area, more reactive oxygen species and Co3+ ion, as well as electronic interactions between Sm and Co.

A series of Co3O4 catalysts modified by Sm were prepared by a combined dealloying and calcination approach, and the catalytic activities were evaluated using CO catalytic oxidation.  相似文献   

4.
NOX is a major atmospheric pollutant that is emanated by motor vehicles, thermal power plants, and industrial boilers. Therefore, the removal of NOX is a research hotspot in the exhaust gas treatment field. Numerous methods have been used to eliminate NOX: the selective catalytic reduction of NOX using C3H6 as the reducing agent (C3H6-SCR) is an effective method to remove NOX. The key issue in NOX removal in C3H6-SCR is to obtain catalysts with low-temperature activity and wide operating temperatures. Till date, different supported wide-temperature-active molecular sieve catalysts have been prepared and used in C3H6-SCR reactions. Studies have shown that the catalytic performance of supported catalysts is related not only to the active component but also to the structural and textural parameters of the molecular sieve supports. This review summarizes the structural and textural characteristics, catalytic properties, and catalytic mechanism of molecular sieve catalysts with different pore structures for C3H6-SCR reactions. The design strategies of supported molecular sieve catalysts are suggested. The goal of this review is to highlight (1) the structural and textural characteristics and low-temperature catalytic performance of different supported molecular sieve catalysts; (2) the relationship between wide-temperature window and loaded active components, as well as carriers of the supported molecular sieve catalysts; and (3) design strategies and development prospects of supported molecular sieve catalysts with low-temperature activity and wide-temperature operating range for C3H6-SCR reactions.

NOX is a major atmospheric pollutant that is emanated by motor vehicles, thermal power plants, and industrial boilers.  相似文献   

5.
Mn-Based catalysts supported on γ-Al2O3, TiO2 and MCM-41 synthesized by an impregnation method were compared to evaluate their NO catalytic oxidation performance with low ratio O3/NO at low temperature (80–200 °C). Activity tests showed that the participation of O3 remarkably promoted the NO oxidation. The catalytic oxidation performance of the three catalysts decreased in the following order: Mn/γ-Al2O3 > Mn/TiO2 > Mn/MCM-41, indicating that Mn/γ-Al2O3 exhibited the best catalytic activity. In addition, there was a clear synergistic effect between Mn/γ-Al2O3 and O3, followed by Mn/TiO2 and O3. The characterization results of XRD, EDS mapping, BET, H2-TPR, XPS and TG showed that Mn/γ-Al2O3 had good manganese dispersion, excellent redox properties, appropriate amounts of coexisting Mn3+ and Mn4+ and abundant chemically adsorbed oxygen, which ensured its good performance. In situ DRIFTS demonstrated the NO adsorption performance on the catalyst surface. As revealed by in situ DRIFTS experiments, the chemically adsorbed oxygen, mainly from the decomposition of O3, greatly promoted the NO adsorption and the formation of nitrates. The Mn-based catalysts showed stronger adsorption strength than the corresponding pure supports. Due to the abundant adsorption sites provided by pure γ-Al2O3, under the interaction of Mn and γ-Al2O3, the Mn/γ-Al2O3 catalyst exhibited the strongest NO adsorption performance among the three catalysts and produced lots of monodentate nitrates (–O–NO2) and bidentate nitrates (–O2NO), which were the vital intermediate species for NO2 formation. Moreover, the NO–TPD studies also demonstrated that Mn/γ-Al2O3 showed the best NO desorption performance among the three catalysts. The good NO adsorption and desorption characteristics of Mn/γ-Al2O3 improved its high catalytic activity. In addition, the activity test results also suggested that Mn/γ-Al2O3 exhibited good SO2 tolerance.

The Mn/γ-Al2O3 catalyst exhibited excellent performance for NO conversion in the presence of a low ratio of O3/NO, which was due to the coexistence of Mn3+ and Mn4+ and abundant chemically adsorbed oxygen.  相似文献   

6.
Metal–organic framework (MOF)-based derivatives have attracted an increasing interest in various research fields. Here, we synthesized CeO2–ZnO catalysts through the complete thermal decomposition of the Ce/MOF-5 precursor. The catalysts were characterized using XRD, FTIR, TG-DSC, SEM and H2-TPR. It is found that the as-prepared CeO2–ZnO is favorable for strengthening the interaction between Ce4+ and Zn2+. A significant improvement in the catalytic performance for C3H6-SCR of NO was found over the Ce-doped catalysts with the highest N2 yield of 69.1% achieved over 5% CeO2–ZnO. In situ DRIFTS and NO-TPD experiments demonstrated the formation of monodentate nitrates, bidentate nitrates, chelating nitrite, nitro compounds, nitrosyl and CxHyOz species (enolic species and acetate) on the surface, followed by the formation of hydrocarbonate or carbonate as intermediates to directly generate N2, CO2 and H2O.

Metal–organic framework (MOF)-based derivatives have attracted an increasing interest in various research fields. Here, we synthesized CeO2–ZnO catalysts through the complete thermal decomposition of the Ce/MOF-5 precursor.  相似文献   

7.
In this study, different preparation methods including an oxalate route, a nano-casting strategy and a traditional co-precipitation route were applied to obtain MnOx–CeO2 mixed oxides for selective catalytic reduction (SCR) of NO with NH3. The catalyst prepared from the oxalate route showed improved performance for NOx conversion and SO2 + H2O durability. To further improve the SO2 and H2O resistance of catalysts, ternary oxides were prepared from the oxalate route. The catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), SO2 temperature-programmed desorption (SO2-TPD), and in situ diffuse reflectance infrared fourier transform spectroscopy (in situ DRIFTS). The nickel–manganese–cerium ternary oxide showed the best SO2 and H2O durability. The reason can be ascribed to its smaller pores, amorphous structure, and moderate amount of surface Mn3+/oxygen species, which could decrease chemical adsorption of SO2.

In this study, an optimal oxalate route was used to obtain nickel/cobalt doped MnOx–CeO2 mixed oxides. Nickel doped MnOx–CeO2 showed excellent NH3-SCR activity and H2O + SO2 resistance.  相似文献   

8.
In the present work, fresh and Ca poisoned Fe–Ce/Ti catalysts were prepared and used for the NH3-SCR reaction to investigate the effect of Ca doping on the catalytic activity of catalysts. And these catalysts were characterized by BET, XRD, Raman, UV-vis DRS, XPS, H2-TPR, and NH3-TPD techniques. The obtained results demonstrate that Ca doping could lead to an obvious decrease in the catalytic activity of catalysts. The reasons for this may be due to the smaller specific surface area and pore volume, the decreased ratio of Fe3+/Fe2+ and Ce3+/Ce4+, as well as the reduced redox ability and surface acidity.

In the present work, fresh and Ca poisoned Fe–Ce/Ti catalysts were prepared and used for the NH3-SCR reaction to investigate the effect of Ca doping on the catalytic activity of catalysts.  相似文献   

9.
A series of MOx–Cr2O3–La2O3/TiO2–N (M = Cu, Fe, Ce) catalysts with nitrogen doping were prepared via the impregnation method. Comparing the low-temperature NH3-SCR activity of the catalysts, CeCrLa/Ti–N (xCeO2yCr2O3zLa2O3/TiO2–N) exhibited the best catalytic performance (NO conversion approaching 100% at 220–460 °C). The physico-chemical properties of the catalysts were characterized by XRD, BET, SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. From the XRD and SEM results, N doping affects the crystalline growth of anatase TiO2 and MOx (M = Cu, Fe, Ce, Cr, La) which were well dispersed over the support. Moreover, the doping of N promotes the increase of the Cr6+/Cr ratio and Ce3+/Ce ratio, and the surface chemical adsorption oxygen content, which suggested the improvement of the redox properties of the catalyst. And the surface acid content of the catalyst increased with the doping of N, which is related to CeCrLa/TiO2–N having the best catalytic activity at high temperature. Therefore, the CeCrLa/TiO2–N catalyst exhibited the best NH3-SCR performance and the redox performance of the catalysts is the main factor affecting their activity. Furthermore, in situ DRIFTS analysis indicates that Lewis-acid sites are the main adsorption sites for ammonia onto CeCrLa/TiO2–N and the catalyst mainly follows the L–H mechanism.

A series of MOx–Cr2O3–La2O3/TiO2–N (M = Cu, Fe, Ce) catalysts with nitrogen doping were prepared via the impregnation method.  相似文献   

10.
Chromium oxide nano-particles with an average diameter of 3 nm covered by amorphous carbon (CrOx/C) were successfully synthesized. The synthesized CrOx/C materials were used for the selective catalytic reduction of NOx by NH3 (NH3-SCR), which shows superb NH3-SCR activity and in particular, satisfactory regeneration ability in the presence of SO2 compared with Mn-based catalysts. The as-prepared catalysts were characterized by XRD, HRTEM, Raman, FTIR, BET, TPD, TPR, XPS and in situ FTIR techniques. The results indicated presence of certain amounts of unstable lattice oxygen exposed on the surface of CrOx nano-particles with an average size of 3 nm in the CrOx/C samples, which led to NO being conveniently oxidized to NO2. The formed NO2 participated in NH3-SCR activity, reacting with catalysts via a “fast NH3-SCR” pathway, which enhanced th NH3-SCR performance of the CrOx/C catalysts. Furthermore, the stable lattice of the CrOx species made the catalyst immune to the sulfation process, which was inferred to be the cause of its superior regeneration ability in the presence of SO2. This study provides a simple way to synthesize stable CrOx nano-particles with active oxygen, and sheds light on designing NH3-SCR catalysts with highly efficient low temperature activity, SO2 tolerance, and regeneration ability.

Novel CrOx@C catalyst with both remarkable NH3-SCR activity and satisfactory regeneration ability in the presence of SO2.  相似文献   

11.
A MnOx@PrOx catalyst with a hollow urchin-like core–shell structure was prepared using a sacrificial templating method and was used for the low-temperature selective catalytic reduction of NO with NH3. The structural properties of the catalyst were characterized by FE-SEM, TEM, XRD, BET, XPS, H2-TPR and NH3-TPD analyses, and the performance of the low-temperature NH3-SCR was also tested. The results show that the catalyst with a molar ratio of Pr/Mn = 0.3 exhibited the highest NO conversion at nearly 99% at 120 °C and NO conversion greater than 90% over the temperature range of 100–240 °C. Also, the MnOx@PrOx catalyst presented desirable SO2 and H2O resistance in 100 ppm SO2 and 10 vol% H2O at the space velocity of 40 000 h−1 and a testing time of 3 h test at 160 °C. The excellent low-temperature catalytic activity of the catalyst could ultimately be attributed to high concentrations of Mn4+ and adsorbed oxygen species on the catalyst surface, suitable Lewis acidic surface properties, and good reducing ability. Additionally, the enhanced SO2 and H2O resistance of the catalyst was primarily ascribed to its unique core–shell structure which prevented the MnOx core from being sulfated.

A MnOx@PrOx catalyst with a hollow urchin-like core–shell structure was prepared using a sacrificial templating method and was used for the low-temperature selective catalytic reduction of NO with NH3.  相似文献   

12.
This study demonstrates a simple strategy to fabricate Co3O4 on N-doped laser-induced graphene (Co3O4-NLIG) based on duplicate laser pyrolysis, enabling the in situ generation of Co3O4 nanoparticles and heteroatom doping in laser-induced graphene (LIG). Morphological analyses reveal the uniform distribution of Co3O4 nanoparticles on the surface of the LIG structure. The modification of NLIG with Co3O4 nanoparticles results in impressive electrochemical performance due to the contributions from electric double-layer capacitance and pseudocapacitance. The optimal Co3O4-NLIG is produced at 20 wt% cobalt precursor loading (Co3O4-NLIG-20). In a three-electrode setup, this electrode exhibits a specific areal capacitance (CA) of 216.3 mF cm−2 at a current density of 0.5 mA cm−2 in a 1 M KOH electrolyte. When the optimal electrodes are assembled into a solid-state supercapacitor (Co3O4-NLIG-SC) using a poly(vinyl alcohol) phosphoric acid (PVA–H3PO4) gel electrolyte, a CA of 17.96 mF cm−2 is obtained with good cycling stability.

Simultaneous decoration of Co3O4 nanoparticles and heteroatom doping on laser-induced graphene based on a duplicate pyrolysis method for supercapacitor applications.  相似文献   

13.
In the direct synthesis of 2-propylheptanol (2-PH) from n-valeraldehyde, a second-metal oxide component Co3O4 was introduced into NiO/Nb2O5–TiO2 catalyst to assist in the reduction of NiO. In order to optimize the catalytic performance of NiO–Co3O4/Nb2O5–TiO2 catalyst, the effects of the Ni/Co mass ratio and NiO–Co3O4 loading were investigated. A series of NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were prepared by the co-precipitation method and their catalytic performances were evaluated. The result showed that NiO–Co3O4/Nb2O5–TiO2 with a Ni/Co mass ratio of 8/3 demonstrated the best catalytic performance because the number of d-band holes in this catalyst was nearly equal to the number of electrons transferred in hydrogenation reaction. Subsequently, the NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were characterized by XRD and XPS and the results indicated that both an interaction of Ni with Co and formation of a Ni–Co alloy were the main reasons for the reduction of NiO–Co3O4/Nb2O5–TiO2 catalyst in the reaction process. A higher NiO–Co3O4 loading could increase the catalytic activity but too high a loading resulted in incomplete reduction of NiO–Co3O4 in the reaction process. Thus the NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and a NiO–Co3O4 loading of 14 wt% showed the best catalytic performance; a 2-PH selectivity of 80.4% was achieved with complete conversion of n-valeraldehyde. Furthermore, the NiO–Co3O4/Nb2O5–TiO2 catalyst showed good stability. This was ascribed to the interaction of Ni with Co, the formation of the Ni–Co alloy and further reservation of both in the process of reuse.

NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and NiO–Co3O4 loading of 14% shows the best catalytic performance.  相似文献   

14.
In this work, fullerene-modified magnetic silver phosphate (Ag3PO4/Fe3O4/C60) nanocomposites with efficient visible light photocatalytic and catalytic activity were fabricated by a simple hydrothermal approach. The composition and structure of the obtained new magnetically recyclable ternary nanocomposites were completely characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, vibrating sample magnetometery (VSM), diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy and transmission electron microscopy (TEM). This novel magnetically recyclable heterogeneous fullerene-modified catalyst was tested for the H2O2-assisted photocatalytic degradation of MB dye under visible light. The results show that about 95% of the MB (25 mg L−1, 50 ml) was degraded by the Ag3PO4/Fe3O4/C60 nanocomposite within 5 h under visible light irradiation. The catalytic performance of the Ag3PO4/Fe3O4/C60 nanocomposite was then examined for 4-nitrophenol (4-NP) reduction using NaBH4. This new nanocomposite showed that 4-NP was reduced to 4-aminophenol (4-AP) in 98% yield with an aqueous solution of NaBH4. In both photocatalytic and catalytic reactions, the Ag3PO4/Fe3O4/C60 nanocomposite exhibited higher catalytic activity than pure Ag3PO4. Moreover, the Ag3PO4/Fe3O4/C60 nanocomposite could be magnetically separated from the reaction mixture and reused without any change in structure. The antibacterial activity of the nanocomposites was also investigated and they showed good antibacterial activity against a few human pathogenic bacteria.

Fullerene-modified magnetic silver phosphate (Ag3PO4/Fe3O4/C60) nanocomposites prepared by a hydrothermal route were used as photocatalysts/catalysts for the efficient degradation and reduction of MB dye and 4-nitrophenol, respectively.  相似文献   

15.
A hydrothermal method was used to synthesise (Ce,La)CO3F grain simulated minerals, in accordance with the Ce–La ratio of bastnaesite in the mineralogy of the Bayan Ebo process. The NH3-SCR catalytic activity of the synthesised (Ce,La)CO3F was improved by loading transition metals Mn and Fe and sulphuric acid acidification treatments. The activity test results showed that the catalysts which were simultaneously acidified with sulphuric acid and loaded with transition metals Mn and Fe had a NOx conversion of 92% at 250 °C. XRD, SEM, XPS and in situ Fourier transform infrared spectroscopy (FTIR) were used to investigate the physical phase structure, surface morphology, reaction performance and mechanism of the catalysts, to provide theoretical guidance for the specific reaction path of cerium fluorocarbon ore in the NH3-SCR reaction. The results showed that the introduction of transition metals and sulphuric acid greatly increases the proportion of adsorbed oxygen (Oα) and facilitates the adsorption of NH3 and NO. The catalyst surface metal sulphate and metal oxide species act as the main active components on the catalyst surface to promoted the reaction, and cracks and pores appear on the surface to facilitate the adsorption of reactive gases. The reaction mechanism of the SO42−–Mn–Fe/(Ce,La)CO3F catalyst, and characterisation of the adsorption and conversion behaviour of the reactive species on the catalyst surface, were investigated by Fourier transform infrared spectroscopy (FTIR). The results showed that the catalyst follows the E–R and L–H mechanisms throughout the reaction, with the E–R mechanism being the main reaction. The reaction species were NH4+/NH3 species in the adsorbed state and NO. The NH3(ad) species on the Lewis acidic site is the main NH3(g) adsorbed species for the reaction, bonded to Ce4+ in the carrier (Ce,La)CO3F to participate in the acid cycle reaction, and undergo a redox reaction on the catalyst surface to produce N2 and H2O. The SO42− present on the catalyst surface can also act as an acidic site for the adsorption of NH3. The above results indicated the excellent performance of the SO42−–Mn–Fe/(Ce,La)CO3F catalyst, which provided a theoretical basis for the high value utilization of bastnaesite.

A hydrothermal method was used to synthesise (Ce,La)CO3F grain simulated minerals, in accordance with the Ce–La ratio of bastnaesite in the mineralogy of the Bayan Ebo process.  相似文献   

16.
MnxZr1 series catalysts were prepared by a coprecipitation method. The effect of zirconium doping on the NH3-SCR performance of the MnOx catalyst was studied, and the influence of the calcination temperature on the catalyst activity was explored. The results showed that the Mn6Zr1 catalyst exhibited good NH3-SCR activity when calcined at 400 °C. When the reaction temperature was 125–250 °C, the NOx conversion rate of Mn6Zr1 catalyst reached more than 90%, and the optimal conversion efficiency reached 97%. In addition, the Mn6Zr1 catalyst showed excellent SO2 and H2O resistance at the optimum reaction temperature. Meanwhile, the catalysts were characterized. The results showed that the morphology of the MnOx catalyst was significantly changed, whereby as the proportion of Mn4+ and Oα species increased, the physical properties of the catalyst were improved. In addition, both Lewis acid sites and Brønsted acid sites existed in the Mn6Zr1 catalyst, which reduced the reduction temperature of the catalyst. In summary, zirconium doping successfully improved the NH3-SCR performance of MnOx.

MnxZr1 series catalysts were prepared by a coprecipitation method.  相似文献   

17.
High-temperature arsenic resistance catalysts of CeLa0.5Fex/Ti (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) series were prepared and measured under a simulation condition of arsenic poisoning. The as-prepared catalysts were characterized by XRD, SEM, TEM, and XPS. The specific surface area and pore size of the catalysts were measured. At x = 0.2, the catalyst shows the best arsenic resistance and catalytic performance. The active temperature range of the CeLa0.5Fe0.2/Ti catalyst is 345–520 °C when the gas hourly space velocity is up to 225 000 mL g−1 h−1. Compared with commercial vanadium-based catalysts, CeLa0.5Fe0.2/Ti shows much better catalytic performance. The introduction of Fe will improve the dispersion of CeO2 and increase the concentration of Ce3+ and unsaturated active oxygen on the surface. The NH3-TPD and H2-TPR results show that the CeLa0.5Fe0.2/Ti catalyst has more acidic sites and more excellent redox performance than CeLa0.5Fe0/Ti. The CeLa0.5Fe0.2/Ti catalyst might have application prospects in the field of selective catalytic reduction of NOx with NH3.

The NO conversion of the CeLa0.5Fe0.2/Ti is obviously better than that of the commercial vanadium-based catalyst with regard to arsenic resistance and it has good N2 selectivity, and good SO2 resistance.  相似文献   

18.
Ce modified MnOx/SAPO-34 was prepared and investigated for low-temperature selective catalytic reduction of NOx with ammonia (NH3-SCR). The 0.3Ce–Mn/SAPO-34 catalyst had nearly 95% NO conversion at 200–350 °C at a space velocity of 10 000 h−1. Microporous SAPO-34 as the support provided the catalyst with increased hydrothermal stability. XPS and H2-TPR results proved that the Mn4+ and Oα content increased after incorporation of Ce, this promoted the conversion of NO at low temperature via a ‘fast SCR’ route. NH3-TPD measurements combined oxidation experiments of NO, NH3 indicated the reduction of both the surface acidity and the amount of acid sites, which effectively decreased the NH3 oxditaion to NO or N2O at elevated temperature and promoted the catalytic selectivity for nitrogen. A redox cycle between manganese oxide and Ce was assumed for the active oxygen transfer and facilitated the catalyst durability.

Ce modified MnOx/SAPO-34 was prepared and investigated for low-temperature selective catalytic reduction of NOx with ammonia (NH3-SCR).  相似文献   

19.
Co3O4/MCM-41 adsorbents were successfully prepared by ultrasonic assisted impregnation (UAI) and traditional mechanical stirring impregnation (TMI) technologies and characterized by X-ray diffraction (XRD), N2 adsorption desorption, Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetry-differential thermal analysis (TG-DTA). The H2S removal performances for a simulated low H2S concentration gas were investigated in a fixed-bed. The effect of preparation and adsorption conditions on the H2S removal over Co3O4/MCM-41 were systematically examined. The results showed that UAI promotes more and well defined highly dispersed active Co3O4 phase on MCM-41. As compared to the Co3O4/MCM-41-T prepared via TMI, the saturated H2S capacity of Co3O4/MCM-41-U prepared via UAI improved by 33.2%. The desulfurization performance of adsorbents decreased in the order of Co3O4/MCM-41-U > Co3O4/MCM-41-T > MCM-41. The Co3O4/MCM-41-U prepared using Co(NO3)2 concentration of 10%, ultrasonic time of 2 h, calcination temperature of 550 °C and calcination time of 3 h exhibited the best H2S removal efficiency. At adsorption temperature of 25 °C with model gas flowrate of 20 mL min−1, the breakthrough time of Co3O4/MCM-41-U was 10 min, and the saturated H2S capacity and H2S removal rate was 52.6 mg g−1 and 47.8%, respectively.

Co3O4/MCM-41 adsorbent with high surface area and more active sites was successfully prepared by ultrasonic assisted impregnation (UAI) technology and it has been found that the sulfur capacity was improved by 33.2% because of ultrasonication.  相似文献   

20.
Fabricating abundant oxygen vacancies is crucial for non-noble metal oxides to catalyze formaldehyde (HCHO) oxidation at room temperature. Here, a simple one-pot preparation method via solution combustion was found to produce oxygen vacancy-rich Co3O4 catalysts, avoiding delicate defect engineering. The catalyst was evaluated to result in 52% HCHO conversion in a dynamic flow reaction with ∼6 ppm HCHO, which was higher as compared to some other Co3O4 catalysts prepared in three methods of sol–gel, deposition precipitation and thermal decomposition. The optimal catalyst also exhibited high durability with steady HCHO conversion (∼47%) for more than 50 h. The catalyst characterizations revealed that the explosive solution combustion brought out two particular features of Co3O4, namely, the porous network structure with nano-holes and the abundant oxygen vacancies. The latter was demonstrated to increase the reactive oxygen species and to improve the reducibility and the oxygen transport capacity of Co3O4. The two features and the derived properties are beneficial to the activity and durability of Co3O4. The solution combustion method can serve as a simple and feasible way to fabricate abundant oxygen vacancies to provide room-temperature activity of Co3O4 for HCHO elimination at room temperature.

The rich oxygen vacancies in porous Co3O4 were generated in solution combustion, offering high room-temperature activity for formaldehyde oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号