首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel visible light active TiO2/FeS2 semiconductor photocatalyst was synthesized by a simple wet chemical process. X-ray diffraction (XRD) was used to analyze the anatase TiO2 and pyrite structures in FeS2/TiO2 nanocrystals. Scanning electron microscopy (SEM) confirmed the spherical morphology of composite nanocrystals. X-ray photoelectron spectroscopy (XPS) identified the Fe2+, S1−, Ti4+, and O2− oxidation states of relevant species. Energy dispersive X-ray (EDX) analysis was performed for compositional analysis. The measured band gap of the TiO2/FeS2 nanocomposite system was 2.67 eV, which is smaller than un-doped TiO2 (3.10 eV) and larger than FeS2 (1.94 eV). The photocatalytic activity of TiO2/FeS2 was significantly higher than pure FeS2 for degrading methylene blue (MB) under solar light irradiation due to the increase in visible light absorption, reduction in band gap energy, and better election–hole pair separation. The photocatalytic degradation of MB was investigated under the influence of solution pH, dye concentrations, and varied catalyst dosage. The optimum degradation (100%) of MB was observed in 180 min and the photocatalysis of MB reduced as the dye concentrations in the solution increased from 15 to 75 mg L−1. These results prove that the TiO2/FeS2 nanocomposite has the stability, recycling, and adaptability for its practical application as a visible light photocatalyst for wastewater treatment. TiO2/FeS2 showed increased degradation of the organic pollutant; which is confirmed by the increased rate of chemical reaction following pseudo first-order reaction kinetics with the highest rate constant value of 0.0408 m−1 having highest R2 value of 0.9981.

A novel visible light active TiO2/FeS2 semiconductor photocatalyst was synthesized by a simple wet chemical process.  相似文献   

2.
In this work, we report the facile hydrothermal synthesis of manganese cobaltite nanoparticles (MnCo2O4.5 NPs) which can efficiently activate peroxymonosulfate (PMS) for the generation of sulfate free radicals (SO4˙) and degradation of organic dyes. The synthesized MnCo2O4.5 NPs have a polyhedral morphology with cubic spinel structure, homogeneously distributed Mn, Co, and O elements, and an average size less than 50 nm. As demonstrated, MnCo2O4.5 NPs showed the highest catalytic activity among all tested catalysts (MnO2, CoO) and outperformed other spinel-based catalysts for Methylene Blue (MB) degradation. The MB degradation efficiency reached 100% after 25 min of reaction under initial conditions of 500 mg L−1 Oxone, 20 mg L−1 MnCo2O4.5, 20 mg L−1 MB, unadjusted pH, and T = 25 °C. MnCo2O4.5 NPs showed a great catalytic activity in a wide pH range (3.5–11), catalyst dose (10–60 mg L−1), Oxone concentration (300–1500 mg L−1), MB concentration (5–40 mg L−1), and temperature (25–55 °C). HCO3, CO32− and particularly Cl coexisting anions were found to inhibit the catalytic activity of MnCo2O4.5 NPs. Radical quenching experiments revealed that sulfate radicals are primarily responsible for MB degradation. A reaction sequence for the catalytic activation of PMS was proposed. The as-prepared MnCo2O4.5 NPs could be reused for at least three consecutive cycles with small deterioration in their performance due to low metal leaching. This study suggests a facile route for synthesizing MnCo2O4.5 NPs with high catalytic activity for PMS activation and efficient degradation of organic dyes.

Catalytic degradation of organic dyes via manganese cobaltite nanoparticles-activated peroxymonosulfate.  相似文献   

3.
Nanocomposites of CoCrFeMnNi high entropy alloy nanoparticle–activated carbon (HEA NPs–AC) were prepared by a facile and controllable impregnation–adsorption method. The HEA NPs–AC showed excellent catalytic performance in the degradation of methylene blue (MB) without any peroxide addition. Besides, their reaction rate is also competitive among single-element and other catalysts. The outstanding efficiency is attributed to the coupling effects of the solid-solution structure of HEA NPs, and the large specific surface area and substantial reaction channels of AC. Moreover, the HEA NPs embedded in distinctive porous architectures accelerate the electron transfer and the mass transport as nanoscale galvanic cells in active bond breaking of MB. The nanocomposites of HEA NPs–AC are distinguished by containing non-noble metals and having high catalytic performance due to the synergetic degradation, providing a better alternative for efficient metal catalysis.

CoCrFeMnNi HEA NPs–AC were synthesized facilely with FCC solid solution phase and outstanding catalytic performance. The time required to reduce MB concentration can be as short as 12 min with the kobs of 0.191 min−1 for the 10 wt% catalyst.  相似文献   

4.
Developing materials for efficient environmental remediation via cheap, nontoxic and environmentally benign routes remains a challenge for the scientific community. Here, a novel, facile, and green synthetic approach to prepare gold nanoparticle decorated TiO2 (Au/TiO2) nanocomposites for sustainable environmental remediation is reported. The synthesis involved only TiO2, metal precursor and green tea, obviating the need for any solvents and/or harsh chemical reducing or stabilizing agents, and was efficiently conducted at 50 °C, indicating the prominent sustainability of the novel synthetic approach. The synthesis indicated notable atom economy, akin to that observed in a typical chemical mediated synthesis while high-resolution transmission electron microscopy (HRTEM) findings suggest the presence of a pertinent decoration of spherical and homogeneous gold nanoparticles on the titania surface. Notably, the Au/TiO2 nanocomposite demonstrated appreciable stability during preparation, subsequent processing and prolonged storage. Further, the nanocomposite was found to have a superior adsorption capacity of 8185 mg g−1 towards methylene blue (MB) in solution using the Freundlich isotherm model, while the rate constants for the photocatalytic degradation of MB on the nanocomposite under UV irradiation indicated a 4.2-fold improvement compared to that of bare TiO2. Hence, this novel green synthesized Au/TiO2 nanocomposite shows promising potential for sustainable environmental remediation via efficient contaminant capture and subsequent synergistic photocatalysis.

Green synthesis of gold nanoparticle decorated titania for enhanced surface adsorption and synergistic photocatalysis.  相似文献   

5.
The enormous numbers of applications of TiO2 nanoparticles (NPs) cause concern about their risk to the environment and human health. Consequently, motivated by the necessity of searching for new sources of TiO2 NPs of low cytotoxicity with antibacterial activity, we synthesized TiO2 NPs by a green route using a solution of titanium(iv) isopropoxide as a precursor and an aqueous extract of Artocarpus heterophyllus leaf as a reducing and surface modifying agent. We investigated their structure, shape, size, and magnetic properties, and evaluated their antibiotic application and cytotoxicity. The synthesized TiO2 NPs were applied against two Gram-negative bacteria (E. coli and S. typhimurium) and two Gram-positive bacteria (S. aureus and B. subtilis) to observe their antibacterial activity; and eventually clear zones of inhibition formed by the TiO2 NPs were obtained. Moreover, after exposing the synthesized TiO2 NPs to HeLa cells (carcinoma cells) and Vero cells (normal cells), no toxic effect was found up to a dose of 1000 mg L−1, indicating the safe use of the samples up to at least 1000 mg L−1. However, toxic effects on HeLa cells and Vero cells were observed at doses of 2000 mg L−1 and 3000 mg L−1, respectively. These results indicate the safe use of Artocarpus heterophyllus leaf extract mediated synthesized TiO2 NPs in their potential applications.

Artocarpus heterophyllus leaf extract mediated green synthesized TiO2 nanoparticles exhibit less toxicity with high antibacterial activity.  相似文献   

6.
In this work, TiO2/SBA-15 was synthesized via an in situ hydrothermal method and was used for vacuum-ultraviolet (VUV) photocatalytic degradation of unsymmetrical dimethylhydrazine (UDMH) for the first time. Compared with photocatalysis under UV irradiation, VUV photocatalysis exhibited higher photodegradation efficiency due to the synergetic effect of direct photolysis, indirect photooxidation and photocatalytic oxidation. The synthesized TiO2/SBA-15 catalysts exhibited ordered mesoporous structure and anatase phase TiO2. Titanium content, initial pH and substrate concentration impacted degradation efficiency of UDMH in the VUV photocatalysis process. Among the prepared catalysts, TiO2/SBA-15 with the molar ratio of Ti/Si = 1 : 3 (TS-2) showed the best photocatalytic activity under VUV light, with the rate constant of 0.02511 min−1, which is 1.91 times that with VUV/P25. The superior photocatalytic activity of TS-2 is mainly related to the good balance between the specific surface area and TiO2 contents. The photodegradation efficiency decreases with the increase in the initial UDMH concentration and the maximum degradation rate was obtained at pH 9.0. In the VUV/TS-2 process, ˙OH played a more important role in the degradation of UDMH than ˙O2 and the degradation pathways contained bond breaking, amidation, isomerisation and oxidation reactions. The TS-2 also showed good reusability with the rate constant maintained at above 90% after five cycles and exhibited satisfactory degradation efficiency in tap water.

Mesoporous TiO2/SBA-15 under VUV irradiation: enhanced photocatalytic oxidation for UDMH degradation.  相似文献   

7.
The work demonstrates tin oxide quantum dots/graphene oxide/polypyrrole (SnO2QDs/GO/PPY) ternary composite deposited on titanium foil as a positive electrode and graphene oxide (GO)/charcoal on titanium foil as negative electrode separated by polyvinyl alcohol/potassium hydroxide (PVA/KOH) gel-electrolyte as a solid-state asymmetric supercapacitor for high energy storage applications. Here, tin oxide quantum dots (SnO2QDs) were successfully synthesized by a hydrothermal technique, and SnO2QDs/GO/PPY ternary composite was synthesized by an in situ method with pyrrole monomer, SnO2, and GO. A pH value controlled, which maintained the uniform size of SnO2QDs dispersed on PPY, through GO ternary composite was used for fabricating the asymmetric supercapacitor electrode with the configuration (SnO2QDs/GO/PPY)/GO/charcoal (85 : 10 : 5). The device achieved the highest specific capacitance of 1296 F g−1, exhibited an energy density of 29.6 W h kg−1 and the highest power density of 5310.26 W kg−1 in the operating voltage from 0 to 1.2 V. The device also possessed excellent reliability and retained the capacitance of 90% after 11 000 GCD cycles. This ternary composite is a prominent material for potential applications in next-generation energy storage and portable electronic devices.

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.  相似文献   

8.
An efficient photocatalyst of boron-doped titanium dioxide/titanium nanotube array-supported platinum particles (Pt–B/TiO2/Ti NTs) was fabricated for photocatalytic water splitting for hydrogen production through a two-step route. First, B/TiO2/Ti NTs were prepared by anodic oxidation using hydrofluoric acid as electrolyte and boric acid as a B source. Then, Pt particles were deposited on the surface of B/TiO2/Ti NTs by photo-assisted impregnation reduction. The structure and properties of Pt–B/TiO2/Ti NTs were characterized by various physical measurements which showed the successful fabrication of Pt–B/TiO2/Ti NTs. The Pt–B/TiO2/Ti NTs, with a B-doping content of 15 mmol L−1, showed the highest photocatalytic activity and exhibited a photocatalytic hydrogen-production rate of 384.9 μmol g−1 h−1, which was 9.2-fold higher than that of unmodified TiO2/Ti NTs (41.7 μmol g−1 h−1). This excellent photocatalytic performance was ascribed mainly to the synergistic effect of Pt and B, which could enhance the photocatalytic activity of TiO2/Ti NTs.

Pt–B/TiO2/Ti NTs, prepared by anodic oxidation and photo-deposition methods, showed excellent photocatalytic activity.  相似文献   

9.
TiO2-based materials for photocatalytic hydrogen (H2) evolution have attracted much interest as a renewable approach for clean energy applications. TiO2–Au composite nanofibers (NFs) with an average fiber diameter of ∼160 nm have been fabricated by electrospinning combined with calcination treatment. In situ reduced gold nanoparticles (NPs) with uniform size (∼10 nm) are found to disperse homogenously in the TiO2 NF matrix. The TiO2–Au composite NFs catalyst can significantly enhance the photocatalytic H2 generation with an extremely high rate of 12 440 μmol g−1 h−1, corresponding to an adequate apparent quantum yield of 5.11% at 400 nm, which is 25 times and 10 times those of P25 (584 μmol g−1 h−1) and pure TiO2 NFs (1254 μmol g−1 h−1), respectively. Furthermore, detailed studies indicate that the H2 evolution efficiency of the TiO2–Au composite NF catalyst is highly dependent on the gold content. This work provides a strategy to develop highly efficient catalysts for H2 evolution.

The H2 production rate of TiO2–Au nanofibers is dramatically improved to 12 440 μmol g−1 h−1, 10 times that of pure TiO2.  相似文献   

10.
TiO2-supported clinoptilolite (TiO2/CP) was synthesized in the presence of F ions. Various characterizations demonstrated that the particle size of loaded TiO2 increased linearly with an increase in the temperature and concentration of F ions. In particular, the additive F ions were favored to produce the mutually independent co-exposed {001} and {101} facets of loaded TiO2, while TiO2/CPs synthesized in the absence of F ions were dominated by the thermodynamically stable {101} facet. As photocatalysts for the removal of crystal violet or methyl orange dyes under UV-irradiation in aqueous solutions, TiO2/CPs (ACP6) synthesized in the presence of F ions significantly improved the degradation efficiency, as compared to ACP3 obtained in the absence of F ions. These results elucidated that the highly energetic {001} exposed facet, large particle size and fine dispersion of loaded TiO2 in TiO2/CP accounts for its best photocatalytic performance. The effected mechanism of operational parameters on the degradation performances is proposed.

TiO2-supported clinoptilolite (TiO2/CP) was synthesized in the presence of F ions.  相似文献   

11.
Novel hydrophobic cellulose aerogel (CA) supported graphene quantum dots (GQD)/Pd were synthesized with high lipophilicity, superior porosity as well as high catalytic activity. The nanocomposite aerogel was obtained in four steps, including transformation of cotton to CA, a silanization reaction of CA in the presence of TiO2 nanoparticles to give polysiloxane/TiO2 nanoparticles supported on CA (ST@CA), a modification of ST@CA with GQD to yield polysiloxane/TiO2 nanoparticles/graphene quantum dots supported on CA (STG@CA), and finally a deposition of Pd nanoparticles on STG@CA. The synthesized aerogel demonstrated hydrophobicity with a water contact angle of 136.2°. It also exhibited excellent oil/water selective absorption capacity with an oil absorption of up to 79 g g−1 with 134 g g−1 selectivity. Finally, the nanocomposite was used as a heterogeneous catalyst in the oxidation reaction of alcohols, ethylbenzene, and alkenes. High yields, excellent selectivities, green and mild reaction conditions, recyclability and biocompatibility of the catalyst were important features of the reactions.

Novel hydrophobic cellulose aerogel (CA) supported graphene quantum dots (GQD)/Pd were synthesized with high lipophilicity, superior porosity as well as high catalytic activity.  相似文献   

12.
In this work, a polypyrrole (PPy)/TiO2 nanocomposite coating was fabricated by the direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction (DI-SPME) fiber coating for extraction of trace amounts of pollutants in environmental water samples. The functionalized fiber is mechanically and chemically stable, and can be easily prepared in a highly reproducible manner. The effects of the pyrrole monomer concentration, polymerization voltage and polymerization time on the fiber were discussed. Surface morphological and compositional analyses revealed that the composite coating of nano polypyrrole and titanium dioxide nanoparticles (TiO2NPs) uniformly doped the Ti substrate. The as-fabricated fiber exhibited good extraction capability for phenolic compounds in combination with high performance liquid chromatography-UV detection (HPLC-UV). At the optimum SPME conditions, the calibration curves were linear (R2 ≥ 0.9965). LODs and LOQs of less than 0.026 μg L−1 and 0.09 μg L−1 , respectively, were achieved, and RSDs were in the range 3.5–7.2%. The results obtained in this work suggest that PPy/TiO2 is a promising coating material for future applications of SPME and related sample preparation techniques.

A PPy/TiO2 nanocomposite coating was fabricated by direct electropolymerization of pyrrole on annealed TiO2 nanoparticles and evaluated as a novel direct immersion solid phase microextraction fiber coating for the extraction of trace pollutants in water.  相似文献   

13.
Highly crystalline anatase titanium dioxide (TiO2) nanocuboids were synthesized via a hydrothermal method using ethylenediamine tetraacetic acid as a capping agent. The structural study revealed the nanocrystalline nature of anatase TiO2 nanocuboids. Morphological study indicates the formation of cuboid shaped particles with thickness of ∼5 nm and size in the range of 10–40 nm. The UV-visible absorbance spectra of TiO2 nanocuboids showed a broad absorption with a tail in the visible-light region which is attributed to the incorporation of nitrogen atoms into the interstitial positions of the TiO2 lattice as well as the formation of carbonaceous and carbonate species on the surface of TiO2 nanocuboids. The specific surface areas of prepared TiO2 nanocuboids were found to be in the range of 85.7–122.9 m2 g−1. The formation mechanism of the TiO2 nanocuboids has also been investigated. Furthermore, the photocatalytic activities of the as-prepared TiO2 nanocuboids were evaluated for H2 generation via water splitting under UV-vis light irradiation and compared with the commercial anatase TiO2. TiO2 nanocuboids obtained at 200 °C after 48 h exhibited higher photocatalytic activity (3866.44 μmol h−1 g−1) than that of commercial anatase TiO2 (831.30 μmol h−1 g−1). The enhanced photoactivity of TiO2 nanocuboids may be due to the high specific surface area, good crystallinity, extended light absorption in the visible region and efficient charge separation.

Highly crystalline TiO2 nanocuboids have been prepared and their photocatalytic hydrogen generation activity was evaluated via water splitting.  相似文献   

14.
Lack of visible light response and low quantum yield hinder the practical application of TiO2 as a high-performance photocatalyst. Herein, we present a rational design of TiO2 nanorod arrays (NRAs) decorated with Ag/Ag2S nanoparticles (NPs) synthesized through successive ion layer adsorption and reaction (SILAR) and covered by graphene oxide (GO) at room temperature. Ag/Ag2S NPs with uniform sizes are well-dispersed on the TiO2 nanorods (NRs) as evidenced by electron microscopic analyses. The photocatalyst GO/Ag/Ag2S decorated TiO2 NRAs shows much higher visible light absorption response, which leads to remarkably enhanced photocatalytic activities on both dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 600% higher than that of pure TiO2 sample under visible light. This remarkable enhancement can be attributed to a synergy of electron-sink function and surface plasmon resonance (SPR) of Ag NPs, band matching of Ag2S NPs, and rapid charge carrier transport by GO, which significantly improves charge separation of the photoexcited TiO2. The photocurrent density of GO/Ag/Ag2S–TiO2 NRAs reached to maximum (i.e. 6.77 mA cm−2vs. 0 V). Our study proves that the rational design of composite nanostructures enhances the photocatalytic activity under visible light, and efficiently utilizes the complete solar spectrum for pollutant degradation.

The photocatalytic reaction efficiency of GO/Ag/Ag2S–TiO2 nanorod arrays is 600% higher than that of a pure TiO2 sample under visible light.  相似文献   

15.
To avoid the loss of catalytic material powder, a loaded catalytic material of TiO2 with basalt fiber as the carrier (TiO2@BF) was synthesized by an improved sol–gel method. The TiO2@BF was doped with different contents of N, Fe and Zn elements and was used to degrade rhodamine B (RhB) under ultraviolet light. The physical characterization analysis indicated that the co-doping of the N, Fe and Zn elements had the effects of reducing grain size, increasing sample surface area, and narrowing the electronic band gap. The electronic band gap of nitrogen–iron–zinc co-doped TiO2@BF (N/Fe/Zn_TiO2@BF) was 2.80 eV, which was narrower than that of TiO2@BF (3.11 eV). The degradation efficiency of RhB with N/Fe/Zn_TiO2@BF as a photocatalyst was 4.3 times that of TiO2@BF and its photocatalytic reaction was a first-order kinetic reaction. Quenching experiments suggested that the reactive species mainly include photoinduced holes (h+), superoxide radicals (˙O2) and hydroxyl radicals (˙OH). In brief, this study provides a prospective loaded catalytic material and routine for the degradation of organic contaminants in water by a photocatalytic process.

The photocatalytic activity of N/Fe/Zn_TiO2@BF, synthesized by a combined sol–gel calcination method, showed great improvement for the degradation of RhB. The reaction mechanism of N/Fe/Zn_TiO2@BF for the degradation of RhB was proposed.  相似文献   

16.
A composite of cuttlefish ink-based carbon quantum dots@Ag/MXene (CQD@Ag/MXene) was firstly synthesized by solvothermal method as a catalyst for reduction of p-nitrophenol (PNP) to p-aminophenol (PAP). CQD@Ag/MXene was characterized by scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman. The results show that loading on 2D material MXene can prevent the aggregation of CQD@Ag and expose more active sites, which contributes to a superior catalytic activity with a pseudo-first-order rate constant k (2.28 × 10−2 s−1) and mass-normalized rate constant km (5700 s−1 g−1), nearly 2 times higher than CQD@Ag without MXene (k = 1.09 × 10−2 s−1 and km = 2725 s−1 g−1). Besides, CQD@Ag/MXene showed excellent reusability which even retained about 65% activity in successive 10 cycles. The high adsorption rate to PNP and the promotion of forming H radicals may be the reason for the outstanding catalytic activity of CQD@Ag/MXene. CQD@Ag/MXene can be a potential candidate in the removal of environmental pollutants due to its facile synthesis and high catalytic efficiency.

CQD@Ag/MXene has an outstanding catalytic activity for the PNP reduction with high mass-normalized rate constant of 5700 s−1 g−1. It is mainly due to the high adsorption rate to PNP and the efficient promotion of forming H radicals.  相似文献   

17.
The photocatalytic hydrogen evolution of TiO2 is deemed to be one of the most promising ways of converting solar energy to chemical energy; however, it is a challenge to improve the photo-generated charge separation efficiency and enhance solar utilization. Herein, black mesoporous rutile/anatase TiO2 microspheres with a homojunction and surface defects have been successfully synthesized by an evaporation-induced self-assembly, solvothermal and high-temperature surface hydrogenation method. The H500-BMR/ATM (HX-BMR/ATM, where X means the different hydrogen calcination temperatures) materials not only possess a mesoporous structure and relatively high specific surface area of 39.2 m2 g−1, but also have a narrow bandgap (∼2.87 eV), which could extend the photoresponse to the visible light region. They exhibit high photocatalytic hydrogen production (6.4 mmol h−1 g−1), which is much higher (approximately 1.8 times) than that of pristine mesoporous rutile/anatase TiO2 microspheres (3.58 mmol h−1 g−1). This enhanced photocatalytic hydrogen production property is attributed to the synergistic effect of the homojunction and surface defects in improving efficient electron–hole separation and high utilization of solar light. This work proposes a new approach to improve the performance of photocatalytic hydrogen production and probably offers a new insight into fabricating other high-performance photocatalysts.

Mesoporous rutile/anatase TiO2 microspheres with surface defects are fabricated and exhibit excellent solar-driven photocatalytic performance due to synergistic effect of the homojunction and surface defects favoring efficient e–h separation.  相似文献   

18.
In this study, photocorrosion of ZnO is inhibited by doping Ni in the ZnO nanostructure and electron–hole recombination was solved by forming a heterostructure with S-g-C3N4. Ni is doped into ZnO NPs from 0 to 10% (w/w). Among the Ni-decorated ZnO NPs, 4% Ni-doped ZnO NPs (4NZO) showed the best performance. So, 4% Ni–ZnO was used to form heterostructure NCs with S-g-C3N4. NZO NPs were formed by the wet co-precipitation route by varying the weight percentage of Ni (0–10% w/w). Methylene blue (MB) was used as a model dye for photocatalytic studies. For the preparation of the 4NZO-x-SCN nanocomposite, 4NZO NPs were formed in situ in the presence of various concentrations of S-g-C3N4 (10–50% (w/w)) by using the coprecipitation route. The electron spin resonance (ESR) and radical scavenger studies showed that O2 and OH free radicals were the main reactive species that were responsible for MB photodegradation.

Ni-doped ZnO/S-g-C3N4 nanocomposites were formed as a novel heterostructure photocatalyst.  相似文献   

19.
A S–N co-doped CoFe2O4@rGO@TiO2 (CFGT-S/N) nanocomposite was successfully synthesized via a facile vapor-thermal method. XRD, XPS, FT-IR and FETEM results confirmed that N and S were co-doped into the lattice of TiO2. Photocatalytic tests indicated that CFGT-S/N exhibited excellent UV-Vis photocatalytic activity for decompositions of different organic dyes, including methyl orange (MO), rhodamine B (RhB) and methylene blue (MB). Particularly, the photocatalytic degradation rate of MO was about 33% higher than that when using P25 under visible light irradiation. The higher UV-Vis light photocatalytic activity of CFGT-S/N can be attributed to the synergetic effects of the strong absorption of visible light, the narrow band gap, improved separation of photo-generated electron/hole pairs, and the enhancement of the enrichment of pollutant dye molecules by S, N co-doping, CoFe2O4 and rGO. Moreover, this photocatalyst was superparamagnetic, which enables it to be easily recovered by an external magnetic field, and maintained stable photocatalytic efficiency over five cycles. Hence, CFGT-S/N with its highly efficient, recoverable and stable photocatalytic properties shows great potential for environmental treatment.

A magnetic recoverable S–N co-doped CoFe2O4@rGO@TiO2 (CFGT-S/N) nanocomposite was synthesized via a facile vapor-thermal method. CFGT-S/N is an excellent UV-Vis photocatalyst because of the synergetic effects of S, N co-doping, the introduction of CoFe2O4 and rGO.  相似文献   

20.
In this report, a composite photocatalyst consisting of cobalt phthalocyanine sulfate (CoPcS) and TiO2 was prepared by a facile synthesis. Careful characterizations and measurements indicate a covalent grafting of CoPcS onto TiO2 through Ti–O–S linkages, acquiring an intimate heterojunction between TiO2 and CoPcS. The obtained composite was evaluated for its photocatalytic activity toward the degradation of methyl blue (MB) under visible light irradiation. The evaluation showed a significantly enhanced degradation rate of MB by CoPcS/TiO2. The improved photocatalytic performance of CoPcS/TiO2 was attributed to the photosensitization of TiO2 by CoPcS, charge separation by electron transfer at the interface of the heterojunction formed between CoPcS and TiO2, and oxygen activation via CoPcS. A synergetic mechanism in improving the photocatalytic performance of TiO2 by CoPcS was investigated.

In this report, a composite photocatalyst consisting of cobalt phthalocyanine sulfate (CoPcS) and TiO2 was prepared by a facile synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号