首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constructing heterojunctions by coupling dissimilar semiconductors is a promising approach to boost charge separation and charge transfer in photoelectrochemical (PEC) water splitting. In this work, we fabricated a highly efficient TiO2/BiVO4 heterojunction photoanode for PEC water oxidation via a simple hydrothermal method. The resulting heterojunction photoanodes show enhanced PEC performance compared to the bare BiVO4 due to the simultaneous improvements in charge separation and charge transfer. Under simulated sunlight illumination (AM 1.5G, 100 mW cm−2), a high photocurrent of 3.3 mA cm−2 was obtained at 1.23 V (vs. the reversible hydrogen electrode (RHE)) in a neutral solution, which exceeds those attained by the previously reported TiO2/BiVO4 heterojunctions. When a molecular Co–cubane catalyst was immobilized onto the electrode, the performance of the TiO2/BiVO4 heterojunction photoanode can be further improved, achieving a higher photocurrent density of 4.6 mA cm−2 at 1.23 V, an almost three-fold enhancement over that of the bare BiVO4. These results engender a promising route to designing an efficient photoelectrode for PEC water splitting.

Constructing heterojunctions by coupling dissimilar semiconductors is a promising approach to boost charge separation and charge transfer in photoelectrochemical (PEC) water splitting.  相似文献   

2.
Bismuth vanadate photoanode has shown great potential for photoelectrochemical (PEC) catalysis, but it needs to be further modified because of its relatively low charge-separation efficiency and poor stability. Herein, the bimetallic phosphide NiCoP decorated Mo–BiVO4 is fabricated through the electrodeposition and drop-casting method, which significantly improves the charge separation and surface oxidation reaction. Therefore, the fabricated NiCoP/Mo–BiVO4 photoanode exhibits a low onset potential of 0.21 V (vs. RHE) and high photocurrent of 3.21 mA cm−2 at 1.23 V (vs. RHE), which is 3.12 times higher than that of pure BiVO4. Importantly, the decoration of NiCoP significantly improve the stability of BiVO4 photoanode.

Bimetallic phosphide NiCoP decorated Mo–BiVO4 photoanode was fabricated, and showed significantly improved photoelectrochemical activity and stability.  相似文献   

3.
The combination of a semiconductor heterojunction and oxygen evolution cocatalyst (OEC) is an important strategy to improve photoelectrochemical (PEC) water oxidation. Herein, a novel hamburger-like nanostructure of a triadic photoanode composed of BiVO4 nanobulks, Co3O4 nanosheets and Ag nanoparticles (NPs), that is, Ag/Co3O4/BiVO4, was designed. In our study, an interlaced 2D ultrathin p-type Co3O4 OEC layer was introduced onto n-type BiVO4 to form a p–n Co3O4/BiVO4 heterojunction with an internal electric field (IEF) in order to facilitate charge transport. Then the modification with Ag NPs can significantly facilitate the separation and transport of photogenerated carriers through the surface plasma resonance (SPR) effect, inhibiting the electron–hole recombination. The resulting Ag/Co3O4/BiVO4 photoanodes exhibit largely enhanced PEC water oxidation performance: the photocurrent density of the ternary photoanode reaches up to 1.84 mA cm−2 at 1.23 V vs. RHE, which is 4.60 times higher than that of the pristine BiVO4 photoanode. The IPCE value is 2.83 times higher than that of the pristine BiVO4 at 400 nm and the onset potential has a significant cathodic shift of 550 mV for the ternary well-constructed photoanode.

A novel hamburger-like nanostructure of a triadic photoanode Ag/Co3O4/BiVO4 was designed to enhance photoelectrochemical water splitting, providing a fascinating pathway to efficiently improve the PEC conversion efficiency.  相似文献   

4.
The separation and transfer of photogenerated electron–hole pairs in semiconductors is the key point for photoelectrochemical (PEC) water splitting. Here, an ideal TaON/BiVO4 heterojunction electrode was fabricated via a simple hydrothermal method. As BiVO4 and TaON were in well contact with each other, high performance TaON/BiVO4 heterojunction photoanodes were constructed. The photocurrent of the 2-TaON/BiVO4 electrode reached 2.6 mA cm−2 at 1.23 V vs. RHE, which is 1.75 times as that of the bare BiVO4. TaON improves the PEC performance by simultaneously promoting the photo-generated charge separation and surface reaction transfer. When a Co-Pi co-catalyst was integrated onto the surface of the 2-TaON/BiVO4 electrode, the surface water oxidation kinetics further improved, and a highly efficient photocurrent density of 3.6 mA cm−2 was achieved at 1.23 V vs. RHE. The largest half-cell solar energy conversion efficiency for Co-Pi/TaON/BiVO4 was 1.19% at 0.69 V vs. RHE, corresponding to 6 times that of bare BiVO4 (0.19% at 0.95 V vs. RHE). This study provides an available strategy to develop photoelectrochemical water splitting of BiVO4-based photoanodes.

TaON/BiVO4 heterojunction electrodes exhibited significant enhancement in the photoelectrochemical water oxidation.  相似文献   

5.
The effects of annealing treatment between 400 °C and 540 °C on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO4) thin films are investigated in this work. The results show that higher temperature leads to larger grain size, improved crystallinity, and better crystal orientation for the BiVO4 thin film electrodes. Under air-mass 1.5 global (AM 1.5) solar light illumination, the BiVO4 thin film prepared at a higher annealing temperature (500–540 °C) shows better PEC OER performance. Also, the OER photocurrent density increased from 0.25 mA cm−2 to 1.27 mA cm−2 and that of the oxidation of sulfite, a hole scavenger, increased from 1.39 to 2.53 mA cm−2 for the samples prepared from 400 °C to 540 °C. Open-circuit photovoltage decay (OCPVD) measurement indicates that BiVO4 samples prepared at the higher annealing temperature have less charge recombination and longer electron lifetime. However, the BiVO4 samples prepared at lower annealing temperature have better EC performance in the absence of light illumination and more electrochemically active surface sites, which are negatively related to electrochemical double-layer capacitance (Cdl). Cdl was 0.0074 mF cm−2 at 400 °C and it decreased to 0.0006 mF cm−2 at 540 °C. The OER and sulfide oxidation are carefully compared and these show that the efficiency of charge transport in the bulk (ηbulk) and on the surface (ηsurface) of the BiVO4 thin film electrode are improved with the increase in the annealing temperature. The mechanism behind the light-condition-dependent role of the annealing treatment is also discussed.

The effects of annealing treatment on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO4) thin films are investigated in this work.  相似文献   

6.
Solar energy induced water splitting in photoelectrochemical (PEC) cells is one of the most sustainable ways of hydrogen production. The challenge is to develop corrosion resistant and chemically stable semiconductors that absorb sunlight in the visible region and, at the same time, have the band edges matching with the redox level of water. In this work, hematite (α-Fe2O3) thin films were prepared onto an indium-doped tin oxide (ITO; In:SnO2) substrate by e-beam evaporation of Fe, followed by air annealing at two different temperatures: 350 and 500 °C. The samples annealed at 500 °C show an in situ diffusion of indium from the ITO substrate to the surface of α-Fe2O3, where it acts as a dopant and enhances the photoelectrochemical properties of hematite. Structural, optical, chemical and photoelectrochemical analysis reveal that the diffusion of In at 500 °C enhances the optical absorption, increases the electrode–electrolyte contact area by changing the surface topology, improves the carrier concentration and shifts the flat band potential in the cathodic direction. Further enhancement in photocurrent density was observed by ex situ diffusion of Ti, deposited in the form of nanodisks, from the top surface to the bulk. The in situ In diffused α-Fe2O3 photoanode exhibits an improved photoelectrochemical performance, with a photocurrent density of 145 μA cm−2 at 1.23 VRHE, compared to 37 μA cm−2 for the photoanode prepared at 350 °C; it also decreases the photocurrent onset potential from 1.13 V to 1.09 V. However, the In/Ti co-doped sample exhibits an even higher photocurrent density of 290 μA cm−2 at 1.23 VRHE and the photocurrent onset potential decreases to 0.93 VRHE, which is attributed to the additional doping and to the surface becoming more favorable to charge separation.

Solar energy induced water splitting in photoelectrochemical (PEC) cells is one of the most sustainable ways of hydrogen production. In this work, hematite (α-Fe2O3) thin film were modified by In3+ and Ti4+ co-doping for enhanced PEC performance.  相似文献   

7.
A novel photoanode consisting of an exfoliated graphite–BiVO4/ZnO heterostructured nanocomposite was fabricated. The material was characterised with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Photoelectrochemical studies were carried out with cyclic/linear sweep voltammetry and chronoamperometry. The solar photoelectrochemical properties of the heterojunction photoanode were investigated through the degradation of rhodamine B in water. The results revealed that the nanoparticles of BiVO4 and ZnO were well entrapped within the interlayers of the exfoliated graphite (EG) sheets. Improved charge separation was achieved in the EG–BiVO4/ZnO composite electrode which resulted in superior photoelectrochemical performance than individual BiVO4 and ZnO electrodes. A higher degradation efficiency of 91% of rhodamine B was recorded using the composite electrode with the application of 10 mA cm−2 current density and a solution pH of 7. The highest total organic carbon removal of 74% was also recorded with the EG–BiVO4/ZnO. Data from scavenger studies were used to support the proposed mechanism of degradation. The electrode has high stability and reusability and hence lends itself to applications in photoelectrocatalysis, especially in water treatment.

Band alignment between ZnO and BiVO4 on exfoliated graphite (EG) support.  相似文献   

8.
A new green method was developed to prepare nanoporous BiVO4 films on ITO substrates for photoelectrochemical (PEC) water-oxidation under visible light irradiation. The films can be prepared by simple drop-casting of a stable aqueous solution of Bi3+ and V5+ complexes with tartaric acid and ethylenediaminetetraacetic acid, followed by drying and calcination in air. Thanks to these ligands, the aqueous precursor solution is remarkably stable over a wide range of pH (pH 4–9). The BiVO4 films on ITO substrates possess a 3D-network structure comprised of nanoparticles with a scheelite–monoclinic phase and a diameter of ca. <100 nm, after calcination at 450–500 °C for 1 h. The PEC performance clearly depended on the film thickness that can be controlled by coating times, and calcination conditions (temperature and time). The CoPi-loaded BiVO4 electrodes exhibited relatively high performance for PEC water oxidation (ABPE of 0.35% at 0.8 V vs. RHE) under simulated sunlight irradiation.

Nanoporous BiVO4 photoanodes for efficient water oxidation were directly fabricated on an ITO substrate using an aqueous solution of mild pH.  相似文献   

9.
Electrochemical and photoelectrochemical (PEC) oxygen evolution reactions (OER) are receiving considerable attention owing to their important roles in the overall water splitting reaction. In this contribution, ternary NiFeCo-layered double hydroxide (LDH) nanoplates were in situ hybridized with Ti3C2Tx (the MXene phase) via a simple solvothermal process during which Ti3C2Tx was partially oxidized to form anatase TiO2 nanoparticles. The obtained Ti3C2Tx/TiO2/NiFeCo-LDH composite (denoted as TTL) showed a superb OER performance as compared with pristine NiFeCo-LDH and comercial IrO2 catalyst, achieving a current density of 10 mA cm−2 at a potential of 1.55 V versus a reversible hydrogen electrode (vs. RHE) in 0.1 M KOH. Importantly, the composite was further deposited on a standard BiVO4 film to construct a TTL/BiVO4 photoanode which showed a significantly enhanced photocurrent density of 2.25 mA cm−2 at 1.23 V vs. RHE under 100 mW cm−2 illumination. The excellent PEC-OER performance can be attributed to the presence of TiO2 nanoparticles which broadened the light adsorption to improve the generation of electron/hole pairs, while the ternary LDH nanoplates were efficient hole scavengers and the metallic Ti3C2Tx nanosheets were effective shuttles for transporting electrons/ions. Our in situ synthetic method provides a facile way to prepare multi-component catalysts for effective water oxidation and solar energy conversion.

An in situ prepared Ti3C2Tx/TiO2/NiFeCo-LDH composite showed excellent performance in both electrochemical and photoelectrochemical oxygen evolution reactions.  相似文献   

10.
A tandem cell consisting of a Mo-BiVO4/TiO2/FeOOH photoanode–Cu2O/TiO2/MoS2 photocathode was prepared for unassisted solar water splitting. The protective TiO2 layer was prepared by a cost-effective spin coating technique. The individual Mo-BiVO4/TiO2/FeOOH photoanode and the Cu2O/TiO2/MoS2 photocathode yielded a current density of ∼0.81 mA cm−2 at 1.23 V vs. RHE and ∼−1.88 mA cm−2 at 0 V vs. RHE, respectively under 100 mW cm−2 xenon lamp illumination. From the individual photoelectrochemical analysis, we identify the operating points of the tandem cell as 0.66 V vs. RHE and 0.124 mA cm−2. The positive current density from the operating points proves the possibility of non-zero operation of the tandem cell. Finally, a two-electrode Mo-BiVO4/TiO2/FeOOH-Cu2O/TiO2/MoS2 tandem cell was constructed and analysed for unassisted operation. The obtained unassisted current density of the tandem cell was ∼65.3 μA cm−2 with better stability compared to the bare BiVO4-Cu2O tandem cell. The results prove that the spin coated TiO2 protective layer can be a viable approach to protect the photoelectrodes from photocorrosion with better stability and enhanced photoelectrochemical (PEC) performance.

Mo-BiVO4/TiO2/FeOOH photoanode–Cu2O/TiO2/MoS2 photocathode tandem cells with photoelectrochemical stability testing.  相似文献   

11.
A layer of graphene quantum dots (GQDs) was applied on the photoanode of a self-powered photoelectrochemical (PEC) UV photodetector based on TiO2 nanotubes (NTs). The GQDs layer acted as a dual functional layer and improved the photodetector performance by both UV light absorption and blocking the charge carriers recombination at the photoanode/electrolyte interface. The short circuit current density (Jsc) and thereby the responsivity of the PEC UV photodetector was enhanced by 473%. The highest value of the responsivity in this work obtained for the PEC UV photodetector with the dual functional GQDs layer was as much as 42.5 mA W−1. This value is far better than previously reported responsivities of the PEC devices based on TiO2 NTs as a photoanode. This high responsivity was obtained under the illumination of a very low intensity UV light (365 nm, 2 mW cm−2) and 0 V bias. Moreover, the sensitivity of the PEC UV photodetector with the dual functional GQDs layer has been improved by 345%, which is almost 3.5 times higher compared to the sensitivity of its counterpart without the GQDs coating. The devices with the dual functional GQDs layer present a splendid repeatability and stability. The rise time and the decay time of this device were measured to be 0.73 s and 0.88 s under the on/off switching UV LEDs, respectively. The electrochemical impedance spectroscopy (EIS) results prove the role of the GQDs layer as an effective blocking layer on the photoanode, hindering the charge carrier recombination at the photoanode/electrolyte interface. This study shows that application of the dual functional GQDs layer in the PEC UV photodetector based on TiO2 NTs is an effective approach for improving the responsivity and sensitivity of a self-powered PEC UV PD, which brought us the possibility of detecting low UV index radiation and using the self-powered photodetectors in cutting-edge wearable electronic devices for the aim of health, safety and environmental monitoring.

A layer of graphene quantum dots (GQDs) was applied on the photoanode of a self-powered photoelectrochemical (PEC) UV photodetector based on TiO2 nanotubes (NTs).  相似文献   

12.
13.
We investigated the fabrication of Co-doped BiVO4 (Bi1−xCoxVO4+δ, 0.05 < x < 0.5) by the substitution of Co ions for Bi sites in BiVO4. The X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) results indicated that the substitution of Co2+ ions for Bi3+ sites in BiVO4 was successful, although a change in the crystal phase of BiVO4 did not occur. UV-vis DRS and PL results suggested that the Co-incorporation could slightly improve the visible light absorption of BiVO4 and induce the separation of photoinduced electron–hole pairs; therefore, a significant enhancement of photocatalytic performance was achieved. The Bi0.8Co0.2VO4+δ sample showed superior photocatalytic activity in comparison with other samples, achieving 96.78% methylene blue (MB) removal within 180 min. In addition, the proposed mechanism of improved photocatalytic activities and the stability of the catalyst were also investigated.

We investigated the fabrication of Co-doped BiVO4 (Bi1−xCoxVO4+δ, 0.05 < x < 0.5) by the substitution of Co ions for Bi sites in BiVO4.  相似文献   

14.
In this work, on the basis of a Cu2+-doped two-dimensional material-based heterojunction photoelectrode, a novel anodic photoelectrochemical (PEC) sensing platform was constructed for highly sensitive detection of endogenous H2S. Briefly, with g-C3N4 and TiO2 as representative materials, the sensor was fabricated by modifying g-C3N4/TiO2 nanorod arrays (NAs) onto the surface of fluorine-doped tin oxide (FTO) and then doping Cu2+ as a CuxS (x = 1, 2) precursor. After the binding of S2− with surface-attached Cu2+, the signal was quenched owing to the in situ generation of CuxS which offers trapping sites to hinder generation of photocurrent signals. Since the photocurrent inhibition was intimately associated with the concentration of S2−, a highly sensitive PEC biosensor was fabricated for H2S detection. More importantly, the proposed sensing platform showed the enormous potential of g-C3N4/TiO2 NAs for further development of PEC bioanalysis, which may serve as a common basis for other semiconductor applications and stimulates the exploration of numerous high-performance nanocomposites.

In this work, on the basis of a Cu2+-doped two-dimensional material-based heterojunction photoelectrode, a novel anodic photoelectrochemical (PEC) sensing platform was constructed for highly sensitive detection of endogenous H2S.  相似文献   

15.
Black Si-doped TiO2 (Ti–Si–O) nanotubes were fabricated through Zn metal reduction of the Ti–Si–O nanotubes on Ti–Si alloy in an argon atmosphere. The nanotubes were used as a photoanode for photoelectrochemical (PEC) water splitting. Both Si element and Ti3+/oxygen vacancies were introduced into the black Ti–Si–O nanotubes, which improved optical absorption and facilitated the separation of the photogenerated electron–hole pairs. The photoconversion efficiency could reach 1.22%, which was 7.18 times the efficiency of undoped TiO2. It demonstrated that a Si element and Ti3+/oxygen vacancy co-doping strategy could offer an effective method for fabricating a high-performance TiO2-based nanostructure photoanode for improving PEC water splitting.

Black Si-doped TiO2 (Ti–Si–O) nanotubes were fabricated through Zn metal reduction of the Ti–Si–O nanotubes on Ti–Si alloy in an argon atmosphere.  相似文献   

16.
ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.

Employing CTAB in the microwave synthesis of ZnO particles enables improvement of their visible light absorption capacity and photo(electro)catalytic activity.  相似文献   

17.
The activity of the hydrogen evolution reaction (HER) during photoelectrochemical (PEC) water-splitting is limited when using BiVO4 with an exposed [110] facet because the conduction band minimum is below the H+/H2O potential. Here, we enhance the photocatalytic hydrogen production activity through introducing an oxygen vacancy. Our first-principles calculations show that the oxygen vacancy can tune the band edge positions of the [110] facet, originating from an induced internal electric field related to geometry distortion and charge rearrangement. Furthermore, the induced electric field favors photogenerated electron–hole separation and the enhancement of atomic activity. More importantly, oxygen-vacancy-induced electronic states can increase the probability of photogenerated electron transitions, thus improving optical absorption. This study indicates that oxygen-defect engineering is an effective method for improving the photocatalytic activity when using PEC technology.

An oxygen-vacancy-induced internal electric field enhances the photocatalytic hydrogen production activity of a BiVO4 [110] facet.  相似文献   

18.
In this study, the CuS/BiVO4-X (where X represents the mass percentage of CuS associated with CuS/BiVO4; X = 2%, 5% and 7%) p–n heterostructures were fabricated using a two-step hydrothermal method. The structural and morphological features were ascertained in great detail using several physical characterization processes. According to the results of the photoelectrochemical (PEC) experimental processes, the PEC properties of CuS/BiVO4-5% were much more obvious as compared to those of pure BiVO4, CuS and CuS/BiVO4-X. Moreover, the photoluminescence (PL) and UV-vis diffuse reflection spectra (DRS) affirmed that the CuS/BiVO4-5% demonstrates an excellent capacity for absorbing visible light and low electron recombination rate as compared with the other composites. Accordingly, PEC sensors with CuS/BiVO4-5% were fabricated for the detection of dopamine (DA) and bisphenol A (BPA) with outstanding selectivity and stability. For DA, it implied a broad linear range from 0.01–10 μM and 10–120 μM, and for BPA, the broad linear range was 0.01–90 μM. Thus, the PEC sensor has significant potential application when it comes to DA and BPA detection.

In this study, the CuS/BiVO4-X (where X represents the mass percentage of CuS associated with CuS/BiVO4; X = 2%, 5% and 7%) p–n heterostructures were fabricated using a two-step hydrothermal method.  相似文献   

19.
Efficient charge separation, in particular bulk charge separation (BCS), is one of the most critical factors in determining the performance of photoelectrochemical (PEC) water-splitting. The BCS enhancement of CdS/BaTiO3 (CdS/BTO) nanowires (NWs) in photoelectrocatalysis has rarely been reported. This paper describes a remarkable PEC properties promotion of the CdS/BTO NWs, which is confirmed to be a result of the enhanced BCS efficiency induced by the ferroelectric polarization. The vertical arrays of BTO NWs endow fast transfer of carriers. Meanwhile, CdS is decorated uniformly on the surface of BTO NWs, which ensures a wide range of light absorption. After two negative polarizations, the CdS/BTO NWs have successfully obtained a remarkable photocurrent density, achieving 459.53 μA cm−2 at 1.2 V(vs.RHE), which is 2.86 times that of the unpolarized sample. However, after two positive polarizations, the photocurrent density dramatically decreases to 40.18 μA cm−2 at 1.2 V(vs.RHE), which is merely 0.25 times the original value. More importantly, the photocurrent density reaches up to a prominent value of −71.09 mA cm−2 at −0.8 V(vs.RHE) after two successive negative polarizations, which is a 40.87 mA cm−2 enhancement with respect to the sample without poling. Significantly, at −0.8 V(vs.RHE), the BCS efficiency of the CdS/BTO NWs is as high as 91.87% after two negative polarizations. The effects of ferroelectric polarization on the PEC performance of CdS/BTO NWs have been systematically studied. The results demonstrate that ferroelectric polarization, especially negative polarization, results in an internal electric field to tune band bending of CdS/BTO NWs, thus prominently enhancing the PEC performance.

Efficient charge separation, in particular bulk charge separation (BCS), is one of the most critical factors in determining the performance of photoelectrochemical (PEC) water-splitting.  相似文献   

20.
Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors. To better utilize solar energy, TiO2@Sn3O4 arrays vertically aligned on carbon fiber papers were synthesized via a hydrothermal route with a two-step method and used as photoanodes in a self-powered photoelectrochemical cell-type (PEC) photodetector under visible light. TiO2@Sn3O4 heterostructures exhibit a stable photocurrent of 180 μA, which is a 4-fold increase with respect to that of the Sn3O4 nanoflakes on carbon paper, and a two-order increase with respect to that of the TiO2 NRs arrays. The evolution of hydrogen according to the photo-catalytic water-splitting process showed that Sn3O4/TiO2 heterostructures have a good photocatalytic hydrogen evolution activity with the rate of 5.23 μmol h−1, which is significantly larger than that of Sn3O4 nanoflakes (0.40 μmol h−1) and TiO2 nanorods (1.13 μmol h−1). Furthermore, the mechanism behind this was discussed. The detector has reproducible and flexible properties, as well as an enhanced photosensitive performance.

Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号