首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose triacetate was synthesised by the transesterification reaction of mild acid-pretreated lignocellulosic biomass with a stable acetylating reagent (isopropenyl acetate, IPA) in an ionic liquid (1-ethyl-3-methylimidazolium acetate, EmimOAc) which enabled the dissolution of lignocellulose as well as the organocatalytic reaction. The homogeneous acetylation of pretreated sugar-cane bagasse was carried out under mild conditions (80 °C, 30 min), and the subsequent reprecipitation processes led to enriched cellulose triacetate with a high degree of substitution (DS; 2.98) and glucose purity (∼90%) along with production of lignin acetate.

Cellulose triacetate was synthesised by the transesterification reaction of mild acid-pretreated lignocellulosic biomass with a stable acetylating reagent in an ionic liquid, EmimOAc, which enabled the dissolution of lignocellulose as well as the organocatalytic reaction.  相似文献   

2.
Although water is an ideal green solvent for organic synthesis, it is difficult for most biocatalysts to carry out transesterification reactions in water because of the reversible hydrolysis reaction. 3D structural characteristics and the microenvironment of an enzyme has an important effect on its selectivity for the transesterification reaction over the hydrolysis reaction. A novel 2-phenethyl acetate synthesis technology was developed using acyltransferase (EC 3.1.1.2) from Mycobacterium smegmatis (MsAcT) in water. Firstly, MsAcT was entrapped in a tetramethoxysilane gel network and the immobilization process of MsAcT increased its selectivity for the transesterification reaction over the hydrolysis reaction by 6.33-fold. Then, the synthesis technology of 2-phenethyl acetate using the immobilized MsAcT in water was optimized as follows: vinyl acetate was used as acyl donor, the molar ratio of vinyl acetate to 2-phenylethyl alcohol was 2 : 1, and the water content was 80% (w/w). The reaction was carried out at 40 °C for 30 min and conversion rate reached 99.17%. The immobilized MsAcT could be recycled for 10 batches. The synthesis method of 2-phenethyl acetate using MsAcT as a biocatalyst in water is a prospective green process technology.

Although water is an ideal green solvent for organic synthesis, it is difficult for most biocatalysts to carry out transesterification reactions in water because of the reversible hydrolysis reaction.  相似文献   

3.
As precious chemical raw materials, phenols can be applied to produce pharmaceuticals, new materials, engineering products, and so on. The separation of phenols from oil mixtures shows great economic value. In this work, five halogen-free ionic liquids (HFILs) were designed and employed to separate phenols from simulated oils, and all of them showed excellent separation performance. Among the HFILs, 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) showed the highest separation efficiency of 98.6% for phenol, and achieved a minimum ultimate content of 1.96 g dm−3. The calculated distribution coefficient of phenol reached a high value of 431.8. The separation process could be finished within 3 min, and could be performed at normal temperature. It was also found that the HFILs could separate different types of phenols effectively. During separation, toluene was entrained in the HFIL, and an n-hexane treatment was used. After treatment, the toluene entrained in the HFIL after separation was largely removed, and the purity of the phenol was greatly improved. In addition, the HFILs could be easily regenerated by diethyl ether and reused 6 times without a decrease in separation efficiency. Meanwhile, the separation mechanism was explored by using FT-IR spectroscopy, and the FT-IR results indicated the existence of hydrogen bonds.

In this work, five halogen-free ionic liquids (HFILs) were designed and employed to separate phenols from simulated oils, and all of them showed excellent separation performance.  相似文献   

4.
Economic deconstruction of lignocellulose remains a challenge due to the complex architecture of cellulose, hemicellulose, and lignin. Advancements in pretreatment processes have introduced ionic liquids (ILs) as promising non-derivatizing solvents for reducing biomass recalcitrance and for promoting enzymatic hydrolysis. However, available commercial cellulases are destabilized or inactivated even in low concentration of residual ILs. Thus, a molecular understanding of IL-enzyme interactions is crucial for developing IL-tolerant enzymes with high catalytic activity. In this study, molecular insight behind the IL tolerance of hyperthermophilic endoglucanase Cel12A from Rhodothermus marinus (RmCel12A) has been investigated in 20%, 40%, and 60% 1-ethyl-3-methylimidazolium acetate (EmimAc) through molecular dynamic simulations at 368 K. Though the enzyme retained its stability in all EmimAc concentrations, the activity was affected due to the loss of essential dynamic motions. A protein structure network was constructed using the snapshots of protein structures from the simulation trajectories and the hub properties of residues R20, Y59, W68, W197, E203, and F220 were found to be lost in 60% EmimAc. Emim cations were observed to intrude the active site tunnel and interact with more number of catalytic residues with higher cumulative fractional occupancy in 60% EmimAc than in 20% or 40% EmimAc. Some non-catalytic residues have also been identified at the active site, which can be probable mutation targets for improving the IL tolerance. Our findings reveal the molecular understanding behind the origin of activity loss of RmCel12A and proposed insights for the further improvement of IL sensitivity.

Understanding the behavior of ionic liquid tolerant hyperthermophilic endoglucanase Cel12A from Rhodothermus marinus in different concentrations of EmimAc.  相似文献   

5.
A novel approach for the synthesis of epoxybutane via decarboxylation of butenyl carbonate derived from butanediol was developed for the first time. For the carbonylation of butanediol with dimethyl carbonate, NaAlO2 has exhibited excellent catalytic activity under mild reaction conditions. The yield of butenyl carbonate reached as high as 96.2%. NaAlO2 provides suitable acid–base active sites to promote the transesterification reaction of butanediol and dimethyl carbonate. For the following step of decarboxylation of butenyl carbonate, ionic liquid 1-butyl-3-methylimidazolium bromide could effectively catalyze the decarboxylation process both in batch or continuous processes. Moreover, the catalytic mechanism for the crucial step of decarboxylation of butenyl carbonate over 1-butyl-3-methylimidazolium bromide was explored using DFT calculations. The results showed that the electrostatic and hydrogen-bond effects of 1-butyl-3-methylimidazolium bromide played a crucial role for the generation of epoxybutane. Briefly, the Br anion of the ionic liquid attacks the methylene of the ring and the H of the ionic liquid cation attacks the carbonyl oxygen, which facilitated the five-ring opening and subsequent decarboxylation to form BO. This study not only provided a new and green synthetic route for producing epoxybutane, but also contributed to the effective utilization of butanediol, which is inevitably produced as by-product in the process of coal to ethylene glycol, suggesting a promising application in the clean manufacture of epoxybutane with inexpensive cost.

A novel approach for the synthesis of epoxybutane via decarboxylation of butenyl carbonate derived from butanediol was developed for the first time.  相似文献   

6.
The preparation of cellulose nanocrystals (CNCs) from cellulose extracted from cotton gin motes (CGM) using an ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIm]Cl) under dilute conditions is reported. The concurrent process involves minimal swelling of cellulose with an ionic liquid and hydrolysis of the cellulose initiated by the addition of either phosphoric (H3PO4), hydrochloric (HCl), or sulfuric (H2SO4) acid. The obtained nanocrystals had similar physical properties (e.g. crystallinity) to the counterparts prepared under conventional conditions and exhibited superior thermal properties for sulfate CNCs. Additionally, the obtained CNCs had low surface functionalization, yet were colloidally stable for >90 days, which is a desirable trait for post-functionalization of CNCs. This process represents a general strategy utilizing dilute ionic liquids in the preparation of nanocellulose under mildly acidic conditions.

Cellulose nanocrystals prepared with 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) and HCl, H2SO4, or H3PO4 in a one-pot process under dilute conditions are investigated for changes in CNC dimensions, crystallinity, and thermal stability.  相似文献   

7.
We studied the reactions of vinyl phosphates and vinyl phosphordiamidates containing an ester functional group with organometallic reagents. We found that the functionalized vinyl phosphates were smoothly converted into tri- and tetrasubstituted buta-1,3-dienes via the reaction with aryllithium reagents. Moreover, the vinyl phosphordiamidates were converted into α,β-unsaturated ketones using Grignard reagents. Based on the performed experiments, we proposed a reaction mechanism, which was confirmed by means of the isolation of key intermediates.

We studied the reactions of vinyl phosphates and vinyl phosphordiamidates containing an ester functional group with organometallic reagents.  相似文献   

8.
Supramolecular materials have received considerable attention due to their higher fracture energy and self-recovery capability compared to conventional chemically cross-linked materials. Herein, we focus on the mechanical properties and self-recovery behaviours of supramolecular polymeric elastomers swollen with ionic liquid. We also gained insight into the correlation between ionic liquid content and mechanical properties. These supramolecular polymers with ionic liquid can be easily prepared from bulk copolymerization of the host–guest complex (peracetylated cyclodextrin and adamantane derivatives) and alkyl acrylates and subsequent immersion in ionic liquid such as 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The supramolecular polymeric elastomers showed a self-recovery ability, which the conventional chemically cross-linked elastomers with ionic liquid cannot achieve.

Supramolecular ionic liquid elastomers showed higher fracture energy than chemically cross-linked ionic liquid elastomers and also self-recovery ability.  相似文献   

9.
The Debus–Radziszewski imidazole synthesis was adapted to directly yield long-chain imidazolium ionic liquids. Imidazolium acetate ionic liquids with side-chains up to sixteen carbon atoms were synthesised in excellent yields via an on-water, one-pot reaction. The imidazolium acetate ILs acted as surfactants when dissolved in various solvents. The imidazolium acetate ionic liquids were also derivatised via an acid metathesis to the chloride, nitrate, and hydrogen oxalate derivatives. The thermal behaviour of all the ionic liquids was determined via thermogravimetric and calorimetric analysis.

The modified Debus–Radziszewski reaction was used as a one-pot on-water reaction to allow a greener synthesis of long-chain 1,3-dialkylimidazolium acetate ionic liquids in high yield from long-chain linear amines.  相似文献   

10.
Flavonoid glycosides and triterpenoid saponins are the main chemical constituents of licorice. In this study, an ionic liquids-ultrasound based extraction (IL-UAE) method was established to simultaneously extract liquiritin (LQ), liquiritin apioside (LA), isoliquiritin (ILQ), isoliquiritin apioside (ILA) and glycyrrhizic acid (GA) from licorice. A series of 1-alkyl-3-methylimidazolium ILs with different anions and alkyl chain lengths of cations were investigated and compared, and 1-butyl-3-methylimidazolium acetate ([C4MIM]Ac) was finally selected as the extractant. The extraction parameters of the IL-UAE procedure were optimized, and the established method was validated in linearity, stability, precision, repeatability and recovery. The IL-UAE approach exhibited much higher extraction efficiency comparing with conventional UAE, and needed shorter extraction time and smaller solvent to solid ratio comparing with the pharmacopoeia method. In addition, the microstructures of licorice powders were observed before and after extraction with help of a scanning electron microscope (SEM) in order to explore the extraction mechanism. The results suggested that ILs as green solvents were effective for extraction of flavonoid glycosides and triterpenoid saponins from licorice.

An ionic liquids-ultrasound based method for efficient extraction of flavonoid glycosides and triterpenoid saponins from licorice was established.  相似文献   

11.
Based on gelling matrices and ionic liquids (ILs), monolithic ionogel electrolyte membranes (MIEMs) have become a research focus. However, further application is limited by lack of functional matrices. Herein, we proposed the introduction of an ionized polymer, i.e., polyether polymer with side-chain ionic groups obtained via the reaction of quaternary ammonium with uncrystallizable poly (epichlorohydrin) (PECH), as the matrix into the gels to balance the mechanical properties and the ionic conductivity. In combination with lithium bis-(fluorosulfonyl) imide (LiFSI) and 1-ethyl-3-methylimidazolium bis-(fluorosulfonyl)-imide (EMImFSI) via a solvent casting technique, a flexible MIEM was successfully prepared. The as-obtained MIEM exhibited good thermal stability (up to about 250 °C) and a high ionic conductivity of 1.21 mS cm−1 at 20 °C. Moreover, Li|LiFePO4 coin cells using this MIEM delivered high capacity (150.0 mA h g−1 at 0.2C) with good cycling stability, and an excellent C-rate response. This work discloses a novel and paramount route to exploit PECH-based MIEMs for Li storage, as well as energy storage systems beyond Li.

Novel monolithic ionogel electrolyte membrane based on uncrystallizable poly (epichlorohydrin) is prepared, with high thermal stability and high lithium storage.  相似文献   

12.
In this study, new α-indolylacrylate derivatives were synthesized by the reaction of 2-substituted indoles with various pyruvates using a Brønsted acid ionic liquid catalyst in butyl acetate solvent. This is the first report on the application of pyruvate compounds for the synthesis of indolylacrylates. The acrylate derivatives could be obtained in good to excellent yields. A preliminary biological evaluation revealed their promising anticancer activity (IC50 = 9.73 μM for the compound 4l) and indicated that both the indole core and the acrylate moieties are promising for the development of novel anticancer drugs. The Lipinski''s rule and Veber''s parameters were assessed for the newly synthesized derivatives.

4lNew α-indolylacrylate derivatives were synthesized by reaction of 2-substituted indoles with various pyruvates using a Brønsted acid ionic liquid catalyst in butyl acetate solvent. This is the first application of pyruvate compounds for the synthesis of indolylacrylates.  相似文献   

13.
An efficient and eco-friendly process for lignocellulosic biomass fractionation is essential for the production of high value-added bioproducts from biomass. The present work aimed to obtain cellulose-rich materials from the wood of an invasive tree species (Acacia dealbata) using an appropriate choice of ionic liquids (ILs) and deep eutectic solvents (DESs), and of the processing conditions, for the subsequent production of cationic wood-based polyelectrolytes. In the pretreatment step, the 1-butyl-3-methylimidazolium methyl sulfate (IL) + H2O and choline chloride + imidazole (DES) systems demonstrated a remarkable ability to remove lignin from acacia, reaching up to 92.4 and 90.2% of delignification, respectively. However, the DES pretreatment revealed to be more selective for lignin removal with lower cellulose losses (less than 15%) than the IL treatment (up to 30%) and less cellulose depolymerization. The hemicellulose was also removed but in a lesser extent with the DES treatment. Both systems could provide treated materials with a very high cellulose content (≥89%). Afterwards, cationic polyelectrolytes having a considerable content of quaternary ammonium groups (up to 3.6 mmol g−1) were obtained directly from the IL- and DES-pretreated woods. The treated woods, when used as raw materials for cationization reaction, allow to synthesize water-soluble polyelectrolytes with potential to be applied in wastewater treatment, pharmaceutical or cosmetic products.

Two cellulose-rich materials, with 6–7% of lignin, obtained from A. dealbata pretreatment with an ionic liquid or a deep eutectic solvent were used to produce cationic polyelectrolytes by a two-step reaction with sodium periodate and Girard’s reagent T.  相似文献   

14.
A novel strategy for the synthesis of highly stable gold nanoparticles (GNPs) was designed by reducing HAuCl4 with NaBH4 in an aqueous solution of water-soluble ionic cellulose composed of dimethylimidazolium cations and phosphite-bound cellulose anions. NMR and UV-Vis analysis along with the measurement of the zeta potential suggest that the exceptionally high stability of GNPs originates from the strong interaction of GNPs with the phosphite groups of the ionic cellulose. The thus prepared GNPs exhibit excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol, a model hydrogenation reaction.

Gold nanoparticles (GNP) were highly stabilized by water soluble ionic cellulose by the strong interaction of GNP with the phosphite groups and showed extremely high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

15.
Thermoset dissolution based on degradable bond or exchange reaction has been recently utilized to achieve thermosetting polymer dissolution and recycling. In this paper, an industrial grade epoxy thermoset was utilized as a model system to demonstrate the thermoset dissolution via solvent assisted transesterification (or alcoholysis) with high efficiency under mild conditions. The anhydride–cured epoxy thermoset was depolymerized by selective ester bond cleavage in 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD)–alcohol solution below 180 °C at ordinary pressure in less than two hours. The epoxy dissolution proceeded in a surface erosion mode via transesterification that was coupled with catalyst–alcohol diffusion. Based on this observation, a surface layer model containing three layers, namely the gel layer, solid swollen layer and pure polymer layer was used to analyze the thermoset dissolution kinetics. The epoxy dissolution kinetics was derived from the surface layer model, which could be used to predict the dissolution rate during the diffusion-rate-controlled dissolution process well. The results show that alcohols with larger diffusivity and better solubility lead to a higher alcohol/catalyst concentration in the gel layer and promote faster erosion and dissolution of epoxy. This is the first work to show that it is possible to depolymerize industrial epoxy using the principle of dynamic bonds with fast dissolution rate at mild temperature under ordinary pressure.

An industrial grade epoxy thermoset was utilized as a model system to demonstrate the thermoset dissolution via solvent assisted transesterification with high efficiency under mild conditions.  相似文献   

16.
A simple and novel solid-supported organocatalyst from a 2-chlorotrityl chloride resin-immobilized 4-hydroxyproline was developed, and this organocatalyst has been used for the asymmetric Mannich reaction of 2-aryl-3H-indol-3-ones and aldehydes/ketones. A series of C2-quaternary indolin-3-ones were prepared in good yields (up to 83%) and with excellent diastereoselectivities (up to 20 : 1) and enantioselectivities (up to 99% ee). In addition, the organocatalyst can be recovered by simple filtration and also be reused for the asymmetric Mannich reaction without significant loss of catalytic efficiency.

A simple and novel solid-supported organocatalyst from a 2-chlorotrityl chloride resin-immobilized 4-hydroxyproline was developed, which has been used for the asymmetric Mannich reaction of 2-aryl-3H-indol-3-ones and aldehydes/ketones.  相似文献   

17.
In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol. Mg–Al–La composite oxide was synthesized from the β-cyclodextrin (β-CD) intercalation modification of Mg–Al–La layered double hydroxides. The structure of the catalyst was characterized via XRD, BET and EDS. The results showed that the interlayer space of the catalyst was increased due to β-CD intercalation modification. The IL/CD–Mg–Al–La catalyst exhibited significant catalytic activity and regeneration performance in transesterification due to large interlayer space and strongly alkaline ionic liquid. The yield of FAIBE achieved was 98.3% under the optimum reaction condition and 95.2% after regeneration for six times. The viscosity–temperature curve of FAIBE was determined and the phase transition temperature was −1 °C. The pour point of FAIBE was only −10 °C, which exhibited excellent low temperature fluidity.

In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol.  相似文献   

18.
An efficient electrochemical transformation of a variety of alkenes and sulfonyl hydrazides into vinyl sulfones with a catalytic amount of tetrabutylammonium iodide in water is reported. The reaction proceeds smoothly to afford vinyl sulfones with good selectivities and yields at room temperature under air in an undivided cell. Cyclic voltammograms and control experiments have been performed to provide preliminary insight into the reaction mechanism. The key features of this reaction include using pure water as solvent, transition metal- and oxidant-free conditions, and being easily scaled up to gram-scale synthesis.

An electrochemical sulfonylation of alkenes with sulfonyl hydrazides for the synthesis of (E)-vinyl sulfones in water is reported.  相似文献   

19.
TiO2 nanotube (TNT) supported Rh and Ru nanoparticle catalysts were prepared via impregnation-photoreducing procedure and characterized with various methods. Their catalytic performances in hydroformylation were evaluated by using vinyl acetate and cyclohexene as substrates. The results indicate that the presence of Ru in the catalysts can enhance the catalytic activity of catalysts for the hydroformylation of vinyl acetate, but do not play the same role in the hydroformylation of cyclohexene; the sequence of loading metal has a significant effect on the catalytic performances of the title catalysts. Additionally, it is found that Ru/TNTs shows catalytic activity for the hydroformylation of vinyl acetate though it does not for the hydroformylation of cyclohexene.

Supported Rh and Ru catalysts show better catalytic performance in hydroformylation of vinyl acetate while not in that of cyclohexene.  相似文献   

20.
In this study, we prepared chemical staple fibers (CSFs) by plasticizing bleached coniferous pulps (BCPs) with 1-allyl-3-methylimidazolium chloride (AMIMCl) under high temperature and pressure. It became a transparent paper after hot-pressing when the mass ratio of AMIMCl to BCPs was 4 : 5. Interestingly, it could be hot-pressed into a new transparent paper after the transparent paper prepared above was torn into pieces. The morphologies of fibers showed that BCPs could be plasticized with AMIMCl. The glass transition temperature (Tg) occurred in CSFs when the mass ratio of AMIMCl to BCPs was 4 : 5 and the corresponding temperature was 149 °C, which was lower than the initial decomposition temperature, therefore, CSFs could achieve workability to a certain extent. The plasticizing effect of AMIMCl on BCPs was further verified by testing the properties of the paper. The plasticizing effects of 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-ethyl-3-methylimidazolium acetate (EMIMAc) on BCPs showed the universality of the method for preparing CSFs with AMIMCl.

In this study, we prepared chemical staple fibers (CSFs) by plasticizing bleached coniferous pulps (BCPs) with 1-allyl-3-methylimidazolium chloride (AMIMCl) under high temperature and pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号