首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the first time, highly-dispersed ruthenium precursors via a hydrogen-bond-driven melamine–cyanuric acid supramolecular complex (denoted CAM) self-assembly-assisted synthesis of uniform ruthenium nanoparticles with superior HER performance under both acidic and alkaline conditions are reported. Electrochemical tests reveal that when the current density is −10 mA cm−2, the optimal Ru/CNO electrocatalyst could express low overpotentials of −18 mV and −46 mV, low Tafel slopes of 46 mV dec−1 and 100 mV dec−1, in 0.5 M H2SO4 and 1.0 M KOH, respectively. The remarkable HER performance could be attributed to uniform ruthenium with the aid of highly dispersed ruthenium precursors (Ru–CAM) and subsequent annealing results in uniform ruthenium nanoparticles.

Highly dispersed ruthenium precursors via a supramolecular self-assembly assisted synthesis of uniform ruthenium nanoparticles with excellent HER performance.  相似文献   

2.
Molybdenum oxide-modified ruthenium on titanium oxide (Ru–(y)MoOx/TiO2; y is the loading amount of Mo) catalysts show high activity for the hydroconversion of carboxylic acids to the corresponding alcohols (fatty alcohols) and aliphatic alkanes (biofuels) in 2-propanol/water (4.0/1.0 v/v) solvent in a batch reactor under mild reaction conditions. Among the Ru–(y)MoOx/TiO2 catalysts tested, the Ru–(0.026)MoOx/TiO2 (Mo loading amount of 0.026 mmol g−1) catalyst shows the highest yield of aliphatic n-alkanes from hydroconversion of coconut oil derived lauric acid and various aliphatic fatty acid C6–C18 precursors at 170–230 °C, 30–40 bar for 7–20 h. Over Ru–(0.026)MoOx/TiO2, as the best catalyst, the hydroconversion of lauric acid at lower reaction temperatures (130 ≥ T ≤ 150 °C) produced dodecane-1-ol and dodecyl dodecanoate as the result of further esterification of lauric acid and the corresponding alcohols. An increase in reaction temperature up to 230 °C significantly enhanced the degree of hydrodeoxygenation of lauric acid and produced n-dodecane with maximum yield (up to 80%) at 230 °C, H2 40 bar for 7 h. Notably, the reusability of the Ru–(0.026)MoOx/TiO2 catalyst is slightly limited by the aggregation of Ru nanoparticles and the collapse of the catalyst structure.

Ru–(y)MoOx/TiO2 catalysed the hydroconversion of lauric acid to allow a remarkable yield of n-dodecane (up to 80%) under mild reaction conditions.  相似文献   

3.
Thermocatalytic decomposition (TCD) of methane is one of the most effective methods for pure hydrogen production. Catalysts were selected for TCD of methane in this study to utilize biochar as a catalyst. Among these catalysts, two catalysts (named activated biochar (AB) and heat-treated biochar (HB)) were prepared from Douglas fir, whereas the other four were prepared using commercial activated carbon and zeolite with and without doping ruthenium metal. The catalysts were characterized using XRD, SEM imaging, TEM, H2-TPR, and BET specific surface area and pore size analysis. The Ru doped commercial activated carbon catalyst (Ru–AC) was deactivated continuously during a 60 h reaction run, whereas AB exhibited comparatively stable methane conversion up to 60 h. The methane conversion was 21% for Ru–AC and 51% for AB after 60 h of reaction time at 800 °C. The very high surface area of AB (∼3250 m2 g−1) and its microporosity compared to other catalysts could have resulted in resistance against rapid deactivation. Furthermore, carbon nanotube by-products were observed in TEM images of solid residues that could form due to the presence of alkali metals in the biochar. Carbon nanotube formation could contribute significantly to the extended life of AB.

Methane decomposition over a carbon supported Ru catalyst (Ru–AC) and activated biochar (AB) for hydrogen production.  相似文献   

4.
The sustainable development of human society is facing challenges of resource depletion, energy crisis and worsening environment. In this work, a typical Chinese herbal residue (gallnut residues), with a large amount of organic waste threatening the environment after extracting the bioactive components, especially in China, was used as a single precursor for both a carbon and heteroatoms source to prepare heteroatoms co-doped hierarchical porous carbon via carbonization and a subsequent KOH activation. The prepared nitrogen, oxygen and sulfur co-doped porous carbons (NOSPC-X) show developed hierarchical micro–mesoporous structures, high specific surface areas, as well as high content of N/S co-doping. When used as supercapacitor electrodes, NOSPC-800 exhibits excellent electrochemical performance with an ultrahigh specific capacitance, a high energy density of 11.25 W h kg−1 at 25 W kg−1 and an excellent charge–discharge cycling stability of 96.5% capacitance remained after 10 000 cycles. As an ORR electrocatalyst, it shows outstanding ORR activity as well as much better stability and methanol-tolerance capacity than that of a commercial Pt/C catalyst. The unique hierarchical micro–mesoporous architecture, high surface area as well as optimal N and S co-doping level make biomass-derived NOSPC-800 an excellent candidate for electrode materials in diverse electrochemical energy applications.

Typical Chinese herbal gallnut residue, an organic waste threatening the environment during the modernization of traditional Chinese medicine, was used as a precursor to prepare heteroatom co-doped hierarchical porous carbon materials with electrochemical properties.  相似文献   

5.
Sn-aminoclay (SnAC)-templated Fe3O4 nanocomposites (SnAC–Fe3O4) were prepared through a facile approach. The morphology and macro-architecture of the fabricated SnAC–Fe3O4 nanocomposites were characterized by different techniques. A constructed meso/macro-porous structure arising from the homogeneous dispersion of Fe3O4 NPs on the SnAC surface owing to inherent NH3+ functional groups provides new conductive channels for high-efficiency electron transport and ion diffusion. After annealing under argon (Ar) gas, most of SnAC layered structure can be converted to SnO2; this carbonization allows for formation of a protective shell preventing direct interaction of the inner SnO2 and Fe3O4 NPs with the electrolyte. Additionally, the post-annealing formation of Fe–O–C and Sn–O–C bonds enhances the connection of Fe3O4 NPs and SnAC, resulting in improved electrical conductivity, specific capacities, capacity retention, and long-term stability of the nanocomposites. Resultantly, electrochemical measurement exhibits high initial discharge/charge capacities of 980 mA h g−1 and 830 mA h g−1 at 100 mA g−1 in the first cycle and maintains 710 mA h g−1 after 100 cycles, which corresponds to a capacity retention of ∼89%. The cycling performance at 100 mA g−1 is remarkably improved when compared with control SnAC. These outstanding results represent a new direction for development of anode materials without any binder or additive.

Sn-aminoclay (SnAC)/Fe3O4 NPs – a promising hybrid electrode to offer great electrochemical performance with a high initial discharge of 980 mA h g−1 and good capacity retention of 89% after 100 cycles.  相似文献   

6.
A simple and effective template-free method to prepare hierarchical porous carbons (HPCs) has been developed by using low-cost coal-tar pitch as a starting material, anhydrous aluminum chloride as the Friedel–Crafts catalyst, and oxalyl chloride as the cross-linking agent. By a simple controllable Friedel–Crafts reaction, diketone-functionalized coal-tar pitch as the hierarchical porous coal-tar pitch precursor was obtained via a one-step carbonization to provide a well-developed micro–mesoporous network. Nitrogen adsorption and desorption measurements showed that the surface area, pore volume, pore size and pore size distributions of the resulting carbon materials was dependent on the usage of the cross-linking agent. The as-fabricated HPCs have a large Brunauer–Emmett–Teller specific surface area of 1394.6 m2 g−1 and exhibit an excellent electrochemical performance with the highest specific capacitance of 317 F g−1 at a current density of 1 A g−1 in a three-electrode system. A symmetric supercapacitor was fabricated from HPC-DK-1.0 in a two-electrode system, which exhibits a high specific capacitance of 276 F g−1 at a current density of 0.25 A g−1, a high rate capability and an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles. The one-step carbonization method that produced HPCs for electrical double-layer capacitors represents a new approach for high-performance energy storage.

The hierarchical porous carbons have an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles.  相似文献   

7.
In this work, we report the facile hydrothermal synthesis of manganese cobaltite nanoparticles (MnCo2O4.5 NPs) which can efficiently activate peroxymonosulfate (PMS) for the generation of sulfate free radicals (SO4˙) and degradation of organic dyes. The synthesized MnCo2O4.5 NPs have a polyhedral morphology with cubic spinel structure, homogeneously distributed Mn, Co, and O elements, and an average size less than 50 nm. As demonstrated, MnCo2O4.5 NPs showed the highest catalytic activity among all tested catalysts (MnO2, CoO) and outperformed other spinel-based catalysts for Methylene Blue (MB) degradation. The MB degradation efficiency reached 100% after 25 min of reaction under initial conditions of 500 mg L−1 Oxone, 20 mg L−1 MnCo2O4.5, 20 mg L−1 MB, unadjusted pH, and T = 25 °C. MnCo2O4.5 NPs showed a great catalytic activity in a wide pH range (3.5–11), catalyst dose (10–60 mg L−1), Oxone concentration (300–1500 mg L−1), MB concentration (5–40 mg L−1), and temperature (25–55 °C). HCO3, CO32− and particularly Cl coexisting anions were found to inhibit the catalytic activity of MnCo2O4.5 NPs. Radical quenching experiments revealed that sulfate radicals are primarily responsible for MB degradation. A reaction sequence for the catalytic activation of PMS was proposed. The as-prepared MnCo2O4.5 NPs could be reused for at least three consecutive cycles with small deterioration in their performance due to low metal leaching. This study suggests a facile route for synthesizing MnCo2O4.5 NPs with high catalytic activity for PMS activation and efficient degradation of organic dyes.

Catalytic degradation of organic dyes via manganese cobaltite nanoparticles-activated peroxymonosulfate.  相似文献   

8.
Complexation reactions of ruthenium–nitrosyl complexes in HNO3 solution were investigated by density functional theory (DFT) calculations in order to predict the stability of Ru species in high-level radioactive liquid waste (HLLW) solution. The equilibrium structure of [Ru(NO)(NO3)3(H2O)2] obtained by DFT calculations reproduced the experimental Ru–ligand bond lengths and IR frequencies reported previously. Comparison of the Gibbs energies among the geometrical isomers for [Ru(NO)(NO3)x(H2O)5−x](3−x)+/− revealed that the complexation reactions of the ruthenium–nitrosyl complexes with NO3 proceed via the NO3 coordination to the equatorial plane toward the Ru–NO axis. We also estimated Gibbs energy differences on the stepwise complexation reactions to succeed in reproducing the fraction of Ru–NO species in 6 M HNO3 solution, such as in HLLW, by considering the association energy between the Ru–NO species and the substituting ligands. Electron density analyses of the complexes indicated that the strength of the Ru–ligand coordination bonds depends on the stability of the Ru species and the Ru complex without NO3 at the axial position is more stable than that with NO3, which might be attributed to the difference in the trans influence between H2O and NO3. Finally, we demonstrated the complexation kinetics in the reactions x = 1 → x = 2. The present study is expected to enable us to model the precise complexation reactions of platinum-group metals in HNO3 solution.

Density functional study on the complexation of [Ru(NO)(H2O)5]3+ with NO3 ions reproduced the stabilities of the geometrical isomers and the stepwise substitution reactivities by combining the association energy with the leaving/entering ligands.  相似文献   

9.
A CuO NP decorated reduced graphene oxide (CuO NPs/rGO) composite was synthesized and characterized using various analytical techniques viz. XRD, TEM, SEM, UV-Vis, FT-IR, EDX, XPS and CV. The activity of the catalyst was probed for the Petasis-Borono–Mannich (PBM) reaction of boronic acids, salicylaldehydes, and amines under microwave irradiation (MW). The CuO NPs/rGO composite works as a catalyst as well as a susceptor and augments the overall ability of the reaction mixture to absorb MW. The synergistic effect of MW and CuO NPs/rGO resulted in an excellent outcome of the reaction as indicated by the high TOF value (3.64 × 10−3 mol g−1 min−1). The catalytic activity of the CuO NPs/rGO composite was about 12-fold higher under MW compared to the conventional method. The catalyst was recovered by simple filtration and recycled 8 times without significant loss in activity. This atom-economical protocol includes a much milder procedure, and a catalyst benign in nature, does not involve any tedious work-up for purification, and avoids hazardous reagents/byproducts and the target molecules were obtained in good to excellent yields.

CuO NPs/rGO composite was synthesized and characterized by various analytical techniques an used as a recyclable catalyst for Petasis-borono–Mannich reaction under microwave irradiation.  相似文献   

10.
Selective hydrogenation of furfural (FAL) to furfuryl alcohol (FOL) is challenging because of many side reactions. The highly selective hydrogenation of FAL to FOL can be achieved over a Pt catalyst supported on nanoporous SiC–C composites even at room temperature in water. A Pt/SiC–C-200-H2 catalyst, which had a Pt loading of 3 wt% and was reduced in flowing hydrogen at 500 °C after calcination in air at 200 °C for 2 h, furnished complete FAL conversion and over 99% selectivity to FOL at 25 °C under 1 MPa of hydrogen in water. The kinetic behaviour of the selective hydrogenation of FAL to FOL with the 3 wt% Pt/SiC–C-200-H2 catalyst was also investigated and the turnover frequency (TOF) reached 1148 h−1. Moreover, the Pt/SiC–C catalyst is more active than other Pt catalysts supported on ordered mesoporous carbon CMK-3, activated carbon, periodic mesoporous silica SBA-15 or Al2O3. Detailed characterization using XRD, N2-sorption, SEM, TEM and XPS techniques reveals that the striking performance of the Pt/SiC–C catalyst can be attributed to the optimal metal-support interaction and the interfacial effect.

A Pt/SiC–C catalyst was proved to be active, selective and reusable for furfural hydrogenation to furfuryl alcohol at room temperature in neat water.  相似文献   

11.
In our study, to optimize the electron–hole balance through controlling the electron transport layer (ETL) in the QD-LEDs, four materials (ZnO, ZnGaO, ZnMgO, and ZnGaMgO NPs) were synthesized and applied to the QD-LEDs as ETLs. By doping ZnO NPs with Ga, the electrons easily inject due to the increased Fermi level of ZnO NPs, and as Mg is further doped, the valence band maximum (VBM) of ZnO NPs deepens and blocks the holes more efficiently. Also, at the interface of QD/ETLs, Mg reduces non-radiative recombination by reducing oxygen vacancy defects on the surface of ZnO NPs. As a result, the maximum luminance (Lmax) and maximum luminance efficiency (LEmax) of QD-LEDs based on ZnGaMgO NPs reached 43 440 cd m−2 and 15.4 cd A−1. These results increased by 34%, 10% and 27% for the Lmax and 450%, 88%, and 208% for the LEmax when compared with ZnO, ZnGaO, and ZnMgO NPs as ETLs.

Optimized QD-LEDs are fabricated using Ga–Mg-codoped ZnO NPs as ETL, which reached the LEmax and PEmax at 15.4 cd A−1 and 10.3 lm W−1.  相似文献   

12.
Nitrogen-doped reduced graphene oxide-supported palladium–cobalt nanoparticles (PdCo NPs/NrGO NSs) are synthesized and used as a high-performance and low-cost anodic catalyst for direct hydrazine–hydrogen peroxide fuel cells. The SEM and TEM images of PdCo NPs/NrGO NSs show the uniform metal nanoparticle distribution on the NrGO NSs. The reduction of the oxygen functional groups and the doping of the nitrogen atoms in the GO framework are confirmed by FT-IR and XRD spectroscopic studies. The Pd catalysts modified by Co exhibit a higher catalytic activity, lower onset potential, better durability, and lower impedance values than unmodified Pd catalysts for the electro-oxidation of hydrazine. The kinetic studies show a first-order reaction with an activation energy of 12.51 kJ mol−1. A direct hydrazine–hydrogen peroxide fuel cell with PdCo NPs/NrGO NSs as anode and Pt/C as cathode provides an open circuit voltage of 1.76 V and a maximum power density of 148.58 mW cm−2 at 60 °C, indicating that the PdCo NPs/NrGO NSs are an economical, high performance and reliable anode catalyst for the direct hydrazine–hydrogen peroxide fuel cell.

The superior catalytic activity and stability of a novel anodic PdCo NPs/NrGO NSs for HzOR are confirmed by half and signal cell investigations.  相似文献   

13.
A heterogeneous composite catalyst Cu2O/{001}TiO2 was successfully prepared by the impregnation–reduction method. With ammonia as the target pollutant, the degradation performance and degradation mechanism analysis of the prepared composite catalyst were investigated, providing technology for the application of photocatalysis technology in ammonia treatment reference. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), specific surface area (BET), fluorescence spectrum (PL) and UV-visible absorption (UV-Vis). The results showed: compared with single {001}TiO2, the addition of Cu2O to form a composite catalyst can reduce the recombination of electron–hole pairs, resulting in increased absorption intensity in the visible light range, decreased band gap width, and finally improved the degradation performance. When the composite ratio is 1 : 10, the specific surface area is the largest, which is 72.51 m2 g−1, and the degradation rate of ammonia is also the highest maintained at 85%. After repeated use for 5 times, the degradation rate of ammonia decreases gradually due to the loss of catalyst and photo-corrosion. In the whole reaction process, surface adsorbed water and associated hydroxyl radical participate in the ammonia degradation reaction, and finally form free hydroxyl radical and NO3. It provides some theoretical support for ammonia gas treatment, which is of great significance to protect the environment.

Appropriate composite ratio is beneficial to improve the degradation performance of the catalyst.  相似文献   

14.
A series of micro–mesoporous polymeric acidic ionic liquids (PAILs) have been successfully synthesized and subsequently characterized using Fourier transform-infrared spectroscopy, N2 adsorption–desorption isotherms, scanning electron microscopy and thermogravimetry. Furthermore, the catalytic performance of the synthesized PAILs was investigated for the acetalation of methylal (DMM1) with 1,3,5-trioxane (TOX), micro–mesoporous PAILs copolymerized by divinylbenzene with cations and anions exhibited moderate to excellent catalytic activities for the acetalation. In particular, VIMBs–AMPs–DVB, with higher specific surface area (25.51 m2 g−1) and total pore volume (0.15 cm3 g−1) displayed an elevated conversion of formaldehyde (82.2%) and selectivity for polyoxymethylene dimethyl ethers (CH3O(CH2O)nCH3; PODEn or DMMn) n = 3–8 (52.6%) at 130 °C, 3.0 MPa for 8 h. Moreover, the influence of various reaction parameters was investigated by employing VIMBs–AMPs–DVB as the catalyst and it demonstrated high thermal stability and easy recovery.

Polyoxymethylene dimethyl ethers were successfully synthesized from acetalation under the catalysis of novel polymeric acidic ionic liquids (PAILs). PAILs copolymerized by divinylbenzene with ILs displayed exceptional catalytic efficiencies.  相似文献   

15.
Bimetallic cost-effective CoNi nanoparticles (NPs) are conveniently supported on titanium carbides (MXene) by a simple one-step wet-chemical method. The synthesized CoNi/MXene catalysts are characterized by XPS, TEM, STEM-HAADF and ICP-AES. The as-prepared CoNi NPs with a size of 2.8 nm are well dispersed on the MXene surface. It is found that among the CoNi bimetallic system, Co0.7Ni0.3 shows the best performance toward catalyzing ammonia borane (AB) decomposition with a turnover frequency value of 87.6 molH2 molcat−1 min−1 at 50 °C. The remarkable catalytic performance is attributed to the mild affiliation of MXene to NPs, which not only stabilizes NPs to maintain a good dispersion but also leaves sufficient surface active sites to facilitate the catalytic reaction.

Bimetallic cost-effective CoNi nanoparticles are supported on MXene by a simple one-step wet-chemical method. The Co0.7Ni0.3/MXene shows the best performance toward catalyzing AB decomposition with TOF of 87.6 molH2 molcat−1 min−1 at 50 °C.  相似文献   

16.
It is a considerable challenge to produce a supercapacitor with inexpensive raw materials and employ a simple process to obtain carbon materials with a high specific surface area, rich pore structure, and appropriate doping of heterogeneous elements. In the current study, yam waste-derived porous carbon was synthesized for the first time by a two-step carbonization and KOH chemical activation process. An ultra-high specific surface area of 2382 m2 g−1 with a pore volume of 1.11 cm3 g−1 and simultaneous co-doping of O–N was achieved for the optimized sample. Because of these distinct features, the optimized material exhibits a high gravimetric capacitance of 423.23 F g−1 at 0.5 A g−1 with an impressive rate capability at 10 A g−1, and prominent cycling durability with a capacity retention of 96.4% at a high current density of 10 A g−1 after 10 000 cycles in 6 M KOH in a three-electrode system. Moreover, in 6 M KOH electrolyte, the assembled symmetrical supercapacitor provides a large C of 387.3 F g−1 at 0.5 A g−1. It also presents high specific energy of 34.6 W h kg−1 when the specific power is 200.1 W kg−1 and a praiseworthy specific energy of 8.3 W h kg−1 when the specific power is 4000.0 W kg−1 in 1 M Na2SO4 electrolyte. Thus, this study provides reference and guidance for developing high-performance electrode materials for supercapacitors.

3D porous carbon with ultra-high specific surface area and excellent electrochemical performance is synthesized by a simple activation and carbonization process through adopting biomass yam waste as raw material.  相似文献   

17.
Saccharification of lignocellulose is a necessary procedure for deconstructing the complex structure for building a sugar platform that can be used for producing biofuel and high-value chemicals. In this study, a carbon-based solid acid catalyst derived from sodium lignosulfonate, a waste by-product from the paper industry, was successfully prepared and used for the hydrolysis of hemicellulose in corncob. The optimum preparation conditions for the catalyst were determined to be carbonization at 250 °C for 6 h, followed by sulfonation with concentrated H2SO4 (98%) and oxidation with 10% H2O2 (solid–liquid ratio of 1 : 75 g mL−1) at 50 °C for 90 min. SEM, XRD, FT-IR, elemental analysis and acid–base titration were used for the characterization of the catalysts. It was found that 0.68 mmol g−1 SO3H and 4.78 mmol g−1 total acid were loaded onto the catalyst. When corncob was hydrolyzed by this catalyst at 130 °C for 12 h, the catalyst exhibited high selectivity and produced a relatively high xylose yield of up to 84.2% (w/w) with a few by-products. Under these conditions, the retention rate of cellulose was 82.5%, and the selectivity reached 86.75%. After 5 cycles of reuse, the catalyst still showed high catalytic activity, with slightly decreased yields of xylose from 84.2% to 70.7%.

A novel carbon-based catalyst with high catalytic ability and xylose selectivity was prepared from sodium lignosulfonate.  相似文献   

18.
In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of PdxAu100−x alloy NPs varied based on palladium composition (x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and PdxAu100−x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than PdxAu100−x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia.

In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency.  相似文献   

19.
TiO2-based materials for photocatalytic hydrogen (H2) evolution have attracted much interest as a renewable approach for clean energy applications. TiO2–Au composite nanofibers (NFs) with an average fiber diameter of ∼160 nm have been fabricated by electrospinning combined with calcination treatment. In situ reduced gold nanoparticles (NPs) with uniform size (∼10 nm) are found to disperse homogenously in the TiO2 NF matrix. The TiO2–Au composite NFs catalyst can significantly enhance the photocatalytic H2 generation with an extremely high rate of 12 440 μmol g−1 h−1, corresponding to an adequate apparent quantum yield of 5.11% at 400 nm, which is 25 times and 10 times those of P25 (584 μmol g−1 h−1) and pure TiO2 NFs (1254 μmol g−1 h−1), respectively. Furthermore, detailed studies indicate that the H2 evolution efficiency of the TiO2–Au composite NF catalyst is highly dependent on the gold content. This work provides a strategy to develop highly efficient catalysts for H2 evolution.

The H2 production rate of TiO2–Au nanofibers is dramatically improved to 12 440 μmol g−1 h−1, 10 times that of pure TiO2.  相似文献   

20.
A series of ruthenium(ii) complexes with N-heterocyclic carbene ligands were successfully synthesized by transmetalation reactions between silver(i) N-heterocyclic carbene complexes and [RuCl2(p-cymene)]2 in dichloromethane under Ar conditions. All new compounds were characterized by spectroscopic and analytical methods. These ruthenium(ii)–NHC complexes were found to be efficient precatalysts for the transfer hydrogenation of ketones by using 2-propanol as the hydrogen source in the presence of KOH as a co-catalyst. The antibacterial activity of ruthenium N-heterocyclic carbene complexes 3a–f was measured by disc diffusion method against Gram positive and Gram-negative bacteria. Compounds 3d exhibited potential antibacterial activity against five bacterial species among the six used as indicator cells. The product 3e inhibits the growth of all the six tested microorganisms. Moreover, the antioxidant activity determination of these complexes 3a–f, using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) as reagent, showed that compounds 3b and 3d possess DPPH and ABTS antiradical activities. From a concentration of 1 mg ml−1, these two complexes presented a similar scavenging activity to that of the two used controls gallic acid (GA) and butylated hydroxytoluene (BHT). From a concentration of 10 mg ml−1, the percentage inhibition of complexes 3b and 3d was respectively 70% and 90%. In addition, these two Ru–NHC complexes exhibited antifungal activity against Candida albicans. Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 3a, 3b, 3d and 3e exhibited good activity at 100 μg ml−1 and product 3d is the most active. In a cytotoxicity study the complexes 3 were evaluated against two human cancer cell lines MDA-MB-231 and MCF-7. Both 3d and 3e complexes were found to be active against the tested cell lines showing comparable activity with examples in the literature.

A series of ruthenium(ii) complexes with N-heterocyclic carbene ligands were successfully synthesized by transmetalation reactions between silver(i) N-heterocyclic carbene complexes and [RuCl2(p-cymene)]2 in dichloromethane under Ar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号