首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems via the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni2+, Co2+, Pb2+ and Hg2+) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications.

Self- and co-assembled gels from charge complementary peptides with waste water remediation applications.  相似文献   

2.
Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels, respectively. The synthesized hydrogels have the ability to be used as absorbents for the removal of selected heavy metal ions such as Cu2+, Co2+, Ni2+ and Zn2+ from aqueous media. Absorption studies revealed that the absorption of metal ions by the hydrogels followed the order Cu2+ > Ni2+ > Co2+ > Zn2+. For the mechanism of absorption, both Freundlich and Langmuir absorption isotherms were applied. Metal ion entrapped hydrogels were treated using an in situ chemical reduction method in order to convert the metal ions into metal nanoparticles for the synthesis of hybrid hydrogels. The synthesis and morphology were confirmed using FT-IR and SEM, while the absorbed metal amounts were measured using TGA and AAS. The hybrid hydrogels were further used as catalysts for the reduction of macro (methylene blue, methyl orange and congo red) and micro (4-nitrophenol and nitrobenzene) pollutants from the aqueous environment. The catalytic performance and re-usability of the hybrid hydrogels were successfully investigated.

Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels respectively.  相似文献   

3.
Alginate is a natural polysaccharide that has been recently gaining increasing attention as a biomaterial in the field of tissue engineering due to its favourable biocompatibility and gelation properties. Alginate hydrogels are commonly made by ionic crosslinking in the presence of divalent cations. Only a few studies have attempted to prepare alginate hydrogels without the presence of metal cations. Here the formation of metal free alginate hydrogels in the presence of the amino-acid glutamine is investigated. The transition from sol to gel is monitored by rheological measurements in the viscoelastic regime that reveal how the charged or neutral form of glutamine induces deep differences in the gelling ability. In particular, we show that the storage, G′, and loss, G′′, moduli differ significantly by shifting the glutamine zwitterionic equilibrium. Protonated amino acid could induce a shielding effect of the electrostatic repulsion of the alginate chains. Stable gels are obtained in the presence of a larger amount of free organic acid that gives rise to chain crosslink junctions and chain–chain stabilization. This opens up the possibility of preparing metal-free alginate hydrogels based on amino acid equilibria being pH sensitive.

Alginate gelling by ionic cross-linking using multivalent ions has been known and exploited for several decades. We focus on the possibility to obtain alginate hydrogels without using metal cation in order to obtain metal-free alginates hydrogels.  相似文献   

4.
Smart hydrogels comprising carboxymethyl guar gum and chitosan (CMGG/CS) have been fabricated using tetraethyl orthosilicate as the crosslinker. To render the hydrogels an improved biological efficacy, non-thermal plasma assisted surface modification have been performed using Ar, O2 and a mixture of Ar and O2 gases. Enhanced surface wettability was witnessed post-plasma treatment. AFM analyses revealed the topographical changes of the hydrogels at the nano-scale level without any adverse effect on their bulk physical structure. The hydrogels exhibited pH-responsive swelling with maximum swelling in neutral pH. The release of diclofenac sodium from the hydrogels confirmed their potential towards colon-targeted drug delivery. Excellent biofilm eradication features against E. coli was demonstrated by the hydrogels. Hemolytic assay on human RBCs affirmed their hemocompatibility. Moreover, the hydrogels were found to be remarkably biodegradable. Thus, non-thermal plasma assisted surface nano-textured CMGG/CS hydrogels can be efficaciously explored for their diverse applications in biomedicine.

Surface nano-textured carboxymethyl guar gum/chitosan smart hydrogels by non-thermal plasma for biomedical applications.  相似文献   

5.
In this study, natural polymer material chitosan (CS) and graphene oxide (GO) with large specific surface area were used to prepare a new CS/RGO-based composite hydrogel by using glutaraldehyde (GA) as cross-linking agent. In addition, a CS/GA/RGO/Pd composite hydrogel was prepared by loading palladium nanoparticles (Pd NPs). The morphologies and microstructures of the prepared hydrogels were characterized by SEM, TEM, XRD, TG, and BET. The catalytic performance of the CS/GA/RGO/Pd composite hydrogel was analyzed, and the experimental results showed that the CS/GA/RGO/Pd composite hydrogel had good catalytic performance for degradation of p-nitrophenol (4-NP) and o-nitroaniline (2-NA). Therefore, this study has potential application prospect in wastewater treatment and provides new information for composite hydrogel design.

New functional CS/GA/RGO/Pd composite hydrogels are prepared via a self-assembly process, demonstrating potential applications in catalysis as well as composite materials.  相似文献   

6.
5-Amino-1,3,4-thiadiazole-2-thiol was used to synthesize a novel fluorescent functionalizing group on a Fe3O4@SiO2 magnetic nanocomposite surface for detection of heavy metal ions in water samples. The prepared probe was characterized by using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and a vibrating sample magnetometer. Among various tested ions, the new nanocomposite responded to Hg2+ ions with an intense fluorescence “turn-off”. The limit of detection of the probe shows that it is sensitive to the minimum Hg2+ concentration of 48.7 nM. Theoretical calculations were done for estimating binding energies of the three possible bonding modes and the visualized molecular orbitals were presented.

VBYT-Fe3O4@SiO2 fluorescent probe was designed for sensitive detection of mercury in water samples.  相似文献   

7.
A tremendous quantity of brackish water with a high proportion of divalent cations is in great need of water softening. Layer-stacked graphene oxide membranes show potential in membrane processing due to their molecular sieving properties, but show poor selective retention of cations due to unstable interlayer spacing and electrostatic interaction. In this study, a partially reduced graphene oxide (prGO) and chitosan (CS) nanohybrid membrane (prGO–CS) was fabricated to achieve the selective retention of divalent cations by adjusting the configuration and controlling the surface charge. The prGO–CS membrane, which included a CS skin and embedded prGO sheets, showed a performance boost of 98.0% rejection of Mg2+ and 95.5% rejection of Ca2+ when compared with a CS membrane. The membrane showed good water softening performance for brackish water under low operation pressure with a high Na+/Mg2+ selectivity of 33.8. The excellent performance was attributed to the dense structure and positive charge of prGO–CS.

Partially reduced graphene oxide and chitosan nanohybrid membranes were fabricated to exhibit selective retention of divalent cations.  相似文献   

8.
The adsorption of Cu(ii), Cd(ii), and Pb(ii) ions onto hydrogels derived from modified galactoglucomannan (GGM) hemicellulose was studied. GGM hemicellulose was modified with methacrylate groups (GGM-MA) to incorporate vinyl groups into the polymeric structure, which reacted later with synthetic monomers such as 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). The results show that all the synthesized hydrogels were capable of adsorbing contaminating ions with high adsorption efficiency during short periods of time. Furthermore, an increase in the content of GGM-MA generated a hydrogel (H3) with a similar ion adsorption property to the other hydrogels but with a lesser degree of swelling. The H3 hydrogel had an adsorption capacity of 60.0 mg g−1 Cd(ii), 78.9 mg g−1 Cu(ii), and 174.9 mg g−1 Pb(ii) at 25 °C. This result shows that modified GGM hemicelluloses can be employed as renewable adsorbents to remove Cu(ii), Cd(ii), and Pb(ii) ions from aqueous solutions.

The adsorption of Cu(ii), Cd(ii), and Pb(ii) ions onto hydrogels derived from modified galactoglucomannan (GGM) hemicellulose was studied.  相似文献   

9.
In this study, two alginate-based hydrogels with good mechanical strength, toughness and resilience were synthesized by hydrophobic interaction and coordination bonding. Sodium alginate/poly(acrylamide) semi-interpenetrating network (NaAlg/PAM semi-IPN) hydrogels were first synthesized through the micelle copolymerization of acrylamide and stearyl methacrylate in the presence of sodium alginate, then calcium alginate/poly(acrylamide) double network (CaAlg/PAM DN) hydrogels were prepared by immersing the as-prepared NaAlg/PAM semi-IPN hydrogels in a CaCl2 solution. FT-IR and XPS results revealed NaAlg/PAM semi-IPN hydrogels and CaAlg/PAM DN hydrogels were successfully synthesized through non-covalent interactions. The tensile strength of CaAlg/PAM DN hydrogels could reach 733.6 kPa, and their compressive strengths at 80% strain are significantly higher than those of the corresponding NaAlg/PAM semi-IPN hydrogels, which is attributed to the alginate network crosslinked by Ca2+. The dual physically crosslinked CaAlg/PAM DN hydrogels can achieve fast self-recovery, and good fatigue resistance, which is mainly assigned to energy dissipation through dynamic reversible non-covalent interactions in both networks. The self-healing ability, swelling behavior and morphology of the synthesized alginate-based hydrogels were also evaluated. This study offers a new avenue to design and construct hydrogels with high mechanical strength, high toughness and fast self-recovery properties, which broadens the current research and application of hydrogels.

Alginate-based hydrogels based on non-covalent interactions were synthesized, and exhibited good mechanical strength, toughness and resilience.  相似文献   

10.
Here, we report an interfacial approach for fabricating coordination polymers (CPs) consisting of d10 coinage metal ions with thiolate ligands on a polymer substrate. It was found that CPs were selectively formed on the polymer substrate, resulting in the formation of CP-based thin films. In addition, utilizing a mixed metal ion-doped polymer substrate leads to the formation of mixed-metal CP-based films.

We report an interfacial approach for fabricating coordination polymer (CP) crystal films and patterns on a polymer surface using a metal ion-doped polymer substrate.  相似文献   

11.
Metal ions in wastewater endanger the environment and even human life. In this study, an optimized method was used to synthesize an excellent hydrogel to treat these metal ions. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and applied to treat the Cu(ii) and Co(ii) ions in wastewater. In the adsorption experiment, the influential factors such as pH, adsorption time, adsorbent dosage and concentration of heavy metal ions and regeneration efficiency were evaluated, and the adsorption kinetics, isotherms and thermodynamics were studied. The orthogonal optimization results show that the best condition for synthesis was when the degree of neutralization of acrylic acid (A) was 70%, the quantity of glucose (B) was 0.2 g, the quantity of chitosan (C) was 0.05 g, and the quantity of initiator (D) was 0.03 g. The influence of the four factors was in the order D > B > C > A. The adsorption performance was optimal under neutral conditions and the dosage of 0.02 g adsorbent was chosen as the best. Experiments show that the composite hydrogels exhibited excellent performance under optimal conditions: at 20 °C and pH = 7, the adsorption capacity of 100 mg L−1 of Cu(ii) by 0.01 g hydrogel was 286 mg g−1. The adsorption process of heavy metal ions by hydrogels conforms to pseudo-second-order kinetics and Langmuir isotherm model, which indicate a spontaneous endothermic reaction. Moreover, after five cycles, the removal rates of Cu(ii) and Co(ii) were 81% and 74.8%, respectively.

Metal ions in wastewater endanger the environment and even human life. In this study, an optimized method was used to synthesize an excellent hydrogel to treat these metal ions.  相似文献   

12.
Sericin, a protein waste product of the silk industry, was crosslinked with chitosan, and a chitosan–sericin conjugate (CS) was prepared, characterized and used to remove hexavalent chromium (Cr(vi)) ions and methyl orange (MO) dye from aqueous solutions. The CS was shown to effectively remove Cr(vi) ions and MO dye at maximum adsorption capacities (Langmuir) of 139 mg g−1 for Cr(vi) ions and 385 mg g−1 for MO dye. Moreover, the adsorption of both Cr(vi) ions and MO dye was highly pH dependent and varied under different experimental conditions. Cr(vi) ion and MO dye uptake by the CS was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry analysis. Additionally, XPS analysis of the Cr(vi)-loaded CS revealed that Cr(vi) was reduced to the less toxic Cr(iii). The CS was shown not only to be highly amenable to regeneration, but also to be able to effectively remove MO dye and Cr(vi) ions from a binary mixture.

Sericin, a protein waste product of the silk industry, was crosslinked with chitosan, and a chitosan–sericin conjugate (CS) was prepared, characterized and used to remove hexavalent chromium (Cr(vi)) ions and methyl orange dye from aqueous solutions.  相似文献   

13.
In this study, hydrogels that were thermosensitive at body temperature were developed using chitosan (CS)/silk sericin (SS)/β-glycerophosphate (β-GP) loaded with longan seed extract (LE) for use in bone tissue engineering. These hydrogels were transformed into a gel at 37 °C within 10 min via interactions between CS and β-GP. The incorporation of SS resulted in a shorter gelation time of 5–7 min. The morphological structure of the thermosensitive CS/β-GP hydrogels exhibited an irregular pore structure, whereas the morphological structure of the thermosensitive CS/SS/β-GP hydrogels became more slender and porous. The incorporation of SS affected the network structure of the CS hydrogels, which degraded more rapidly. Moreover, the cumulative amounts of both gallic acid (GA) and ellagic acid (EA) released from the hydrogels loaded with LE increased with an increase in the SS content. Finally, these thermosensitive hydrogels were non-toxic to both a mouse fibroblast cell line (NCTC clone 929) and a mouse osteoblast cell line (MC3T3-E1) and promoted the attachment of MC3T3-E1 cells to the surface of the hydrogels. Therefore, these thermosensitive hydrogels might be a promising candidate for bone tissue engineering.

In this study, hydrogels that were thermosensitive at body temperature were developed using chitosan (CS)/silk sericin (SS)/β-glycerophosphate (β-GP) loaded with longan seed extract (LE) for use in bone tissue engineering.  相似文献   

14.
In this study, a stable, cost-effective and environmentally friendly porous 2,5-bis(methylthio)terephthalaldehyde–chitosan–grafted graphene oxide (BMTTPA–CS–GO) nanocomposite was synthesized by covalently grafting BMTTPA–CS onto the surfaces of graphene oxide and used for removing heavy metal ions from polluted water. According to well-established Hg2+–thioether coordination chemistry, the newly designed covalently linked stable porous BMTTPA–CS–GO nanocomposite with thioether units on the pore walls greatly increases the adsorption capacity of Hg2+ and does not cause secondary pollution to the environment. The results of sorption experiments and inductively coupled plasma mass spectrometry measurements demonstrate that the maximum adsorption capacity of Hg2+ on BMTTPA–CS–GO at pH 7 is 306.8 mg g−1, indicating that BMTTPA–CS–GO has excellent adsorption performance for Hg2+. The experimental results show that this stable, environmentally friendly, cost-effective and excellent adsorption performance of BMTTPA–CS–GO makes it a potential nanocomposite for removing Hg2+ and other heavy metal ions from polluted water, and even drinking water. This study suggests that covalently linked crucial groups on the surface of carbon-based materials are essential for improving the adsorption capacity of adsorbents for heavy metal ions.

Novel porous BMTTPA–CS–GO nanocomposites are prepared by covalently grafting BMTTPA–CS onto GO surfaces, and used for efficient removal of heavy metal ions from polluted water.  相似文献   

15.
Methods to facilitate the catalytic turnover of ribozymes are required for advancing oligonucleotide-based technologies. This study examined tetraalkylammonium ions for their ability to increase the efficiency of catalytic turnover of a native hammerhead ribozyme. Kinetic analysis showed that large tetraalkylammonium ions significantly increased the turnover rate of the ribozyme and was much more effective than poly(ethylene glycol) (PEG) and urea. The magnitude of the rate increase depended on the concentrations of Mg2+ and tetrapentylammonium ions, and the rate was enhanced by more than 180-fold at the optimal concentrations of these salts. The results provide physical insights into interactions of ribozymes with large cationic molecules through electrostatic forces and steric hindrance.

Large tetraalkylammonium ions increase the turnover rate of the ribozyme derived from an intronic ribozyme in the human genome. The rate can be enhanced by more than a hundred-fold at the optimal concentrations of Mg2+ and TPeA ions.  相似文献   

16.
A one pot approach has been explored to synthesize crosslinked beads from chitosan (CS) and carboxymethyl cellulose (CM) using arginine (ag) as a crosslinker. The synthesized beads were characterized by FTIR, SEM, EDX, XRD, TGA and XPS analysis. The results showed that CS and CM were crosslinked successfully and the obtained material (beads) was analyzed for adsorption of Cd(ii) and Pb(ii) by using batch adsorption experiments; parameters such as temperature, contact time, pH and initial ion concentration were studied. Different kinetic and thermodynamic models were used to check the best fit of the adsorption data. The results revealed that the kinetics data of the adsorption of Pb(ii) and Cd(ii) ions shows the best fit with the pseudo second order model whereas the thermodynamics data shows the best fit with the Langmuir isotherm with maximum adsorption capacities of 182.5 mg g−1 and 168.5 mg g−1 for Pb(ii) ions Cd(ii) ions, respectively. For the recovery and the regeneration after the one use of the beads, several adsorption–desorption cycles were carried out to check the reusability and recovery of both the metal ion and the adsorbent without the loss of maximum adsorption efficiency.

Remediation of Pb(ii) and Cd(ii) containing wastewater by arginine crosslinked chitosan/carboxymethyl cellulose beads.  相似文献   

17.
In the last decade, there has been a significant increase in the development of self-healing hydrogels. However, in most cases, the synthesized self-healing hydrogels possess no antibacterial properties. Further, the preparation of self-healing hydrogels usually requires sophisticated processes and also involves multiple steps. Herein, we proposed a simple one-pot synthesis of silver loaded semi-IPN hydrogels with self-healing and antibacterial properties. The hydrogels were prepared by physical cross-linking between polyacrylic acid (PAA) and ferric ions (Fe3+) and further modified by the interpenetration of gelatin-silver in the networks. In addition, the effect by varying the gelatin concentration was also studied. The mechanical properties of the as-prepared hydrogels reached 0.79 MPa in stress and 920% in strain with the self-healing efficiency of 87.5% (healed at 70 °C for 2 h). As displayed by the SEM images, the incorporated silver chloride nanoparticles (AgCl NPs) in gelatin-free hydrogels were agglomerated. Meanwhile, well-distributed AgCl NPs in the hydrogels were obtained in the presence of gelatin which acts as a stabilizer. Moreover, due to Fe3+ and AgCl NPs, the hydrogels were able to inhibit the growth of bacteria indicated by an inhibition zone (9–9.6 mm) which was examined toward Escherichia coli via the disk-diffusion method.

The semi-interpenetrating polymer network hydrogel possesses self-healing ability due to the dynamic ionic interactions between polyacrylic acid and Fe3+. The antibacterial properties are due to embedded silver chloride nanoparticles well-distributed in the hydrogel.  相似文献   

18.
Metal ion plays a critical role from enzyme catalysis to cellular health and functions. The concentration of metal ions in a living system is highly regulated. Among the biologically relevant metal ions, the role and toxicity of aluminium in specific biological functions have been getting significant attention in recent years. The interaction of aluminium and the living system is unavoidable due to its high earth crust abundance, and the long-term exposure to aluminium can be fatal for life. The adverse Al3+ toxicity effects in humans result in various diseases ranging from cancers to neurogenetic disorders. Several Al3+ ions sensors have been developed over the past decades using the optical responses of synthesized molecules. However, only limited numbers of water-soluble optical sensors have been reported so far. In this review, we have confined our discussion to water-soluble Al3+ ions detection using optical methods and their utility for live-cell imaging and real-life application.

Aluminium ion plays a critical role in cellular health. Therefore, its detection in water is highly demanding.  相似文献   

19.
Mxene has been widely used as a sorbent to remove heavy metal ions from sewage due to its unique two-dimensional layered structure and abundant oxygen-containing groups. However, Mxene has a relatively limited adsorption capacity for metal ions possibly due to the limited adsorption active sites. Herein, we reported novel Mxene/alginate composites for lead and copper ion removal from wastewater. The Mxene/alginate composites prepared in this study not only enhance the chelation ability of the lead and copper ions, but also accelerate the ion transport efficiency. The combined advantages of high adsorption capacity and short equilibrium time enable the Mxene/alginate composites to achieve the maximum adsorption capacity for Pb2+ and Cu2+ at 382.7 and 87.6 mg g−1, respectively, and reach the adsorption equilibrium in 15 min. We believe that the composites developed in this study can open a new avenue for designing high adsorption capacity and high efficiency adsorbents.

Studies on Mxene/alginate composite adsorption have opened up a new avenue for designing adsorbents possessing high adsorption capacity and high efficiency.  相似文献   

20.
Considerable efforts are being made to develop new materials and technologies for the efficient and fast removal of toxic ions in drinking water. In this work, we developed a sulfur-complexed strategy to enhance the removal capability of heavy metal ions using the polyamide nanofiltration membrane by the covalent anchoring of l-cystine and l-cysteine. The sulfur-functionalized polyamide nanofiltration membrane exhibits superior complexation of heavy metal ions and can efficiently remove them from high-concentration wastewater. As a result, the sulfur-functionalized nanofiltration membrane not only showed excellent desalination performance but also achieved a record removal rate of heavy metal ions (99.99%), which can effectively reduce Hg(ii) concentration from 10 ppm to an extremely low level of 0.18 ppb, well below the acceptable limits in drinking water (2 ppb). Moreover, the sulfur-functionalized nanofiltration membrane showed an exciting long-term stability and can be easily regenerated without significant loss of Hg(ii) removal efficiency even after six cycles. Such outstanding performances were attributed to the synthetic effect of Hg–S coordinative interaction, electrostatic repulsion, and the sieving action of nanopores. These results highlight the tremendous potential of thiol/disulfide-functionalized NF active layer as an appealing platform for removing heavy metal ions from polluted water with high performance in environmental remediation.

Considerable efforts are being made to develop new materials and technologies for the efficient and fast removal of toxic ions in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号