共查询到20条相似文献,搜索用时 15 毫秒
1.
An inexpensive and eco-friendly alternative energy storage solution is becoming more in demand as the world moves towards greener technology. We used first principles calculations to investigate α, β, and γ-MnO2 and their Al-ion intercalation mechanism in potential applications for aluminum batteries. We explored these complexes through investigating properties such as volume change, binding/diffusion energy, and band gap to gauge each material. α-MnO2 had almost no volume change. γ-MnO2 had the lowest binding energy and diffusion barrier. Our study gives insight into the feasibility of using MnO2 in aluminum batteries and guides investigation of the material within its different phases.An inexpensive and eco-friendly alternative energy storage solution is becoming more in demand as the world moves towards greener technology. 相似文献
2.
Haijun Peng Huiqing Fan Chenhui Yang Yapeng Tian Chao Wang Jianan Sui 《RSC advances》2020,10(30):17702
Pristine δ-MnO2 as the typical cathode for rechargeable zinc-ion batteries (ZIBs) suffers from sluggish reaction kinetics, which is the key issue to prepare high-performance manganese-based materials. In this work, Na+ incorporated into layered δ-MnO2 (NMO) was prepared for ZIB cathodes with high capacity, high energy density, and excellent durable stability. By an effective fabricated strategy of hydrothermal synthesis, a three-dimensional interconnected δ-MnO2 nanoflake network with Na+ intercalation showed a uniform array arrangement and high conductivity. Also, the H+ insertion contribution in the NMO cathode to the discharge capacity confirmed the fast electrochemical charge transfer kinetics due to the enhanced ion conductivity from the insertion of Na+ into the interlayers of the host material. Consequently, a neutral aqueous NMO-based ZIB revealed a superior reversible capacity of 335 mA h g−1, and an impressive durability over 1000 cycles, and a peak gravimetric energy output of 459 W h kg−1. As a proof of concept, the as-fabricated quasi-solid-state ZIB exhibited a remarkable capacity of 284 mA h g−1 at a current density of 0.5 A g−1, and good practicability. This research demonstrated a significant enhancement of the electrochemical performance of MnO2-based ZIBs by the intercalation of Na+ to regulate the microstructure and boost the electrochemical kinetics of the δ-MnO2 cathode, thus providing a new insight for high-performance aqueous ZIBs.Sodium-ion intercalated δ-MnO2 nanoflakes are applied in an aqueous rechargeable zinc battery cathode with high energy density and excellent durable stability. 相似文献
3.
Sedigheh Akbari Shohreh Jahani Mohammad Mehdi Foroughi Hadi Hassani Nadiki 《RSC advances》2020,10(63):38532
The present research synthesized manganese dioxide nano-flowers (β-MnO2-NF) via a simplified technique for electro-catalytic utilization. Moreover, morphological characteristics and X-ray analyses showed Mn in the oxide form with β-type crystallographic structure. In addition, the research proposed a new efficient electro-chemical sensor to detect methadone at the modified glassy carbon electrode (β-MnO2-NF/GCE). It has been found that oxidizing methadone is irreversible and shows a diffusion controlled procedure at the β-MnO2-NF/GCE. Moreover, β-MnO2-NF/GCE was considerably enhanced in the anodic peak current of methadone related to the separation of morphine and methadone overlapping voltammetric responses with probable difference of 510 mV. In addition, a linear increase has been observed between the catalytic peak currents gained by the differential pulse voltammetry (DPV) of morphine and methadone and their concentrations in the range between 0.1–200.0 μM and 0.1–250.0 μM, respectively. Furthermore, the limits of detection (LOD) for methadone and morphine were found to be 5.6 nM and 8.3 nM, respectively. It has been found that our electrode could have a successful application for detecting methadone and morphine in the drug dose form, urine, and saliva samples. Thus, this condition demonstrated that β-MnO2-NF/GCE displays good analytical performances for the detection of methadone.Electrochemical sensor based on β-MnO2 nanoflower-modified glassy carbon electrode for the simultaneous detection of methadone and morphine was fabricated. 相似文献
4.
The β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine has been developed, which provides an efficient access to optically active β-position functionalized pyrrolidin-2-one derivatives in both high yield and enantioselectivity (up to 78% yield and 95 : 5 er). This is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach.The asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by (DHQD)2AQN has been developed, which provides an access to β-position functionalized pyrrolidin-2-one derivatives in high levels yield and enantioselectivity.Metal-free organocatalytic asymmetric transformations have successfully captured considerable enthusiasm of chemists as powerful methods for the synthesis of various kinds of useful chiral compounds ranging from the preparation of biologically important molecules through to novel materials.1 Chiral pyrrolidin-2-ones have been recognized as important structural motifs that are frequently encountered in a variety of biologically active natural and synthetic compounds.2 In particular, the β-position functionalized pyrrolidin-2-one backbones, which can serve as key synthetic precursors for inhibitory neurotransmitters γ-aminobutyric acids (GABA),3 selective GABAB receptor agonists4 as well as antidepressant rolipram analogues,5 have attracted a great deal of attention. Therefore, the development of highly efficient, environmentally friendly and convenient asymmetric synthetic methods to access these versatile frameworks is particularly appealing.As a direct precursor to pyrrolidin-2-one derivatives, recently, α,β-unsaturated γ-butyrolactam has emerged as the most attractive reactant in asymmetric organometallic or organocatalytic reactions for the synthesis of chiral γ-position functionalized pyrrolidin-2-ones (Scheme 1). These elegant developments have been achieved in the research area of catalytic asymmetric vinylogous aldol,6 Mannich,7 Michael8 and annulation reactions9 in the presence of either metal catalysts or organocatalysts (a, Scheme 1). These well-developed catalytic asymmetric methods have been related to the γ-functionalized α,β-unsaturated γ-butyrolactam to date. However, in sharp contrast, the approaches toward introducing C-3 chirality at the β-position of butyrolactam through a direct catalytic manner are underdeveloped (b, Scheme 1)10 in spite of the fact that β-selective chiral functionalization of butyrolactam can directly build up α,β-functionalized pyrrolidin-2-one frameworks.Open in a separate windowScheme 1Different reactive position of α,β-unsaturated γ-butyrolactam in catalytic asymmetric reactions.So far, only a few metal-catalytic enantioselective β-selective functionalized reactions have been reported. For examples, a rhodium/diene complex catalyzed efficient asymmetric β-selective arylation10a and alkenylation10b have been reported by Lin group (a, Scheme 2). Procter and co-workers reported an efficient Cu(i)–NHC-catalyzed asymmetric silylation of unsaturated lactams (b, Scheme 2).10c Despite these creative works, considerable challenges still exist in the catalytic asymmetric β-selective functionalization of γ-butyrolactam. First, the scope of nucleophiles is limited to arylboronic acids, potassium alkenyltrifluoroborates and PhMe2SiBpin reagents. Second, the catalytic system and activation mode is restricted to metal/chiral ligands. To our knowledge, an efficient catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach has not yet been established. Therefore, the development of organocatalytic asymmetric β-selective functionalization of γ-butyrolactam are highly desirable. In conjunction with our continuing efforts in building upon chiral precedents by using chiral tertiary amine catalytic system,11 we rationalized that the activated α,β-unsaturated γ-butyrolactam might serve as a β-position electron-deficient electrophile. This γ-butyrolactam may react with a properly designed electron-rich nucleophile to conduct an expected β-selective functionalized reaction of γ-butyrolactam under a bifunctional organocatalytic fashion, while avoiding the direct γ-selective vinylogous addition reaction or β,γ-selective annulation as outlined in Scheme 2. Herein we report the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters12 catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with both high diastereoselectivity and enantioselectivity.Open in a separate windowScheme 2β-Selective functionalization of γ-butyrolactam via metal- (previous work) or organo- (this work) catalytic approach.To begin our initial investigation, several bifunctional organocatalysts13 were firstly screened to evaluate their ability to promote the β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino ester 3a in the presence of 15 mol% of catalyst loading at room temperature in CH2Cl2 (entries 1–6, Entry Cat. Solvent Yielde erf 1 1a CH2Cl2 70% 40 : 60 2 1b CH2Cl2 <5% 57 : 43 3 1c CH2Cl2 70% 65 : 35 4 1d CH2Cl2 68% 70 : 30 5 1e CH2Cl2 58% 63 : 47 6 1f CH2Cl2 71% 77 : 23 7 1f DCE 72% 80 : 20 8 1f CHCl3 70% 80 : 20 9 1f MTBE 68% 79 : 21 10 1f Toluene 63% 78 : 22 11 1f THF 45% 76 : 24 12 1f MeOH 32% 62 : 38 13b 1f DCE : MTBE 75% 87 : 13 14c 1f DCE : MTBE 72% 87 : 13 15d 1f DCE : MTBE 70% 85 : 15