首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, an MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method with Na2MoO4·H2O, H4SiO4(W3O9)4 and CH3CSNH2 as precursors, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method. The hydrogen-evolution performance of the MoSx/g-C3N4 composite was tested under visible light. The results show that the H2-evolution rate of the MoSx/g-C3N4 (7 wt%) photocatalyst reaches a maximum value of 1586 μmol g−1 h−1, which is about 70 times that of pure g-C3N4 nanosheets. The main reason is that amorphous MoSx forms intimate heterojunctions with g-C3N4 nanosheets, and the introduction of MoSx into g-C3N4 nanosheets not only enhances the ability to convert H+ into H2, but also promotes the separation of photoinduced electron–hole pairs for the photocatalyst. BET analysis shows that the specific surface area and pore volume of g-C3N4 are decreased in the presence of MoSx. XPS analysis manifests that MoSx provides a number of active sites. Mott–Schottky plots show that the conduction band of MoSx (−0.18 V vs. EAg/AgCl, pH = 7) is more negative than that of g-C3N4 nanosheets.

An MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method.  相似文献   

2.
Constructing a 0D/3D p–n heterojunction is a feasible strategy for accelerating photo-induced charge separation and promoting photocatalytic H2 production. In this study, a 0D/3D MoS2/g-C3N4 (0D/3D-MCN) photocatalyst with a p–n heterojunction was prepared via a facile light-assisted deposition procedure, and the 3D spongy-like g-C3N4 (3D-CN) was synthesized through simple thermolysis of NH4Cl and melamine mixture. For comparison, 2D-MoS2 nanosheets were also embedded in 3D-CN by a solution impregnation method to synthesize a 2D/3D-MCN photocatalyst. As a result, the as-prepared 0D/3D-MCN-3.5% composite containing 3.5 wt% 0D-MoS2 QDs exhibited the highest photocatalytic H2 evolution rate of 817.1 μmol h−1 g−1, which was 1.9 and 19.4 times higher than that of 2D/3D-MCN-5% (containing 5 wt% 2D-MoS2 nanosheets) and 3D-CN, respectively. The results of XPS and electrochemical tests confirmed that a p–n heterojunction was formed in the 0D/3D-MCN-3.5% composite, which could accelerate the electron and hole movement in the opposite direction and retard their recombination; however, it was not found in 2D/3D-MCN-5%. This study revealed the relationship among the morphologies of MoS2 using g-C3N4 as a substrate, the formation of a p–n heterojunction, and the H2 evolution activity; and provided further insights into fabricating a 3D g-C3N4-based photocatalyst with a p–n heterojunction for photocatalytic H2 evolution.

A 0D/3D p–n heterojunction was formed in the MoS2/g-C3N4 composite, which could promote the separation of electrons and holes efficiently.  相似文献   

3.
A heterogeneous WS2/g-C3N4 composite photocatalyst was prepared by a facile ultrasound-assisted hydrothermal method. The WS2/g-C3N4 composite was used for photocatalytic regeneration of NAD+ to NADH, which were coupled with dehydrogenases for sustainable bioconversion of CO2 to methanol under visible light irradiation. Compared with pristine g-C3N4 and the physical mixture of WS2 and g-C3N4, the fabricated WS2/g-C3N4 composite catalyst with 5 wt% of WS2 showed the highest activity for methanol synthesis. The methanol productivity reached 372.1 μmol h−1 gcat−1, which is approximately 7.5 times higher than that obtained using pure g-C3N4. For further application demonstration, the activity of the WS2/g-C3N4 composite catalyst toward photodegradation of Rhodamine B (RhB) was evaluated. RhB removal ratio approaching 100% was achieved in 1 hour by using the WS2/g-C3N4 composite catalyst with 5 wt% of WS2, at an apparent degradation rate approximately 2.6 times higher than that of pure g-C3N4. Based on detailed investigations on physiochemical properties of the photocatalysts, the significantly enhanced reaction efficiency of the WS2/g-C3N4 composite was considered to be mainly benefiting from the formation of a heterojunction interface between WS2 and g-C3N4. Upon visible-light irradiation, the photo-induced electrons can transfer from the conduction band of g-C3N4 to WS2, thus recombination of electrons and holes was decreased and the photo-harvesting efficiency was enhanced.

A heterogeneous WS2/g-C3N4 composite photocatalyst was prepared by a facile ultrasound-assisted hydrothermal method.  相似文献   

4.
A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was successfully synthesized through a simple hydrothermal method. The structure, morphology, and optical properties of the catalyst were characterized. The photocatalytic activity of the heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst for the photo-Fenton degradation of Orange II in the presence of H2O2 irradiated with visible light (λ > 420 nm) at neutral pH was evaluated. The g-C3N4/α-Fe2O3/Fe3O4 photocatalyst was found to be an excellent catalyst for the degradation of Orange II and offers great advantages over the traditional Fenton system (Fe(ii/iii)/H2O2). The results indicated that successfully combining monodispersed Fe3O4 nanoparticles and g-C3N4/α-Fe2O3 enhanced light harvesting, retarded photogenerated electron–hole recombination, and significantly enhanced the photocatalytic activity of the system. The g-C3N4/α-Fe2O3/Fe3O4 (30%) sample gave the highest degradation rate constant, 0.091 min−1, which was almost 4.01 times higher than the degradation rate constant for α-Fe2O3 and 2.65 times higher than the degradation rate constant for g-C3N4/α-Fe2O3 under the same conditions. A reasonable mechanism for catalysis by the g-C3N4/α-Fe2O3/Fe3O4 composite was developed. The g-C3N4/α-Fe2O3/Fe3O4 composite was found to be stable and recyclable, meaning it has great potential for use as a photo-Fenton catalyst for effectively degrading organic pollutants in wastewater.

A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was firstly synthesized and exhibited very effective visible-light-Fenton degradation of Orange II at neutral pH.  相似文献   

5.
In this study, the photodegradation of methylene blue (MB) dye was performed using urea based graphitic carbon nitride (g-C3N4). Interestingly, it has been observed that the calcination temperature for the synthesis of g-C3N4 along with factors (pH and catalyst loading) influencing the photodegradation process, can make an impactful improvement in its photodegradation activity towards MB dye solution. The concept behind the comparatively improved photoactivity of g-C3N4 prepared at 550 °C was explored using various characterisation techniques like XRD, FTIR, SEM, BET and DRS. The FTIR and XRD patterns demonstrated that synthesis of g-C3N4 took place properly only when the calcination temperature was above 450 °C. The evolution of morphological and optical properties based on calcination temperature led to dramatically increased BET surface area and a decreased optical band gap value of g-C3N4 prepared at 550 °C. The effects of pH conditions and catalyst concentration on the MB dye degradation rate using optimally synthesised g-C3N4 are discussed. The value of the apparent rate constant was found to be 12 times more in the case of photodegradation of the MB dye using g-C3N4 prepared at 550 °C at optimum pH and catalyst loading conditions when compared with g-C3N4 prepared at 450 °C showing the lowest photoactivity potential. Further, high stability of the photocatalyst was observed for four cyclic runs of the photocatalytic reaction. Hence, g-C3N4 can be considered as a potential candidate for methylene blue photodegradation.

The appropriate synthesis temperature and optimized photodegradation reaction conditions result in an appreciable enhancement of the photocatalytic activity of urea derived innate g-C3N4 towards MB dye degradation.  相似文献   

6.
The heterogeneous photo-Fenton reaction is an effective method of chemical oxidation to remove phenol in wastewater with environmental friendliness and sustainability. Herein, the composite α-Fe2O3/g-C3N4, as a catalyst of the heterogeneous photo-Fenton reaction, has been synthesized by hydrothermal-calcination method using the abundant and low-cost FeCl3·6H2O and g-C3N4 as raw materials. The influence of the annealing temperature during calcination was also investigated. The UV-Vis diffuse reflectance spectra of samples show that the composite α-Fe2O3/g-C3N4 possesses the widest light response range. Furthermore, the transient photocurrent response curves demonstrated the strongest intensity of α-Fe2O3/g-C3N4. The annealed α-Fe2O3/g-C3N4 is indicative of the highest degradation efficiency in all samples due to the improvement of the charge transfer ability caused by the tight heterojunction structure. The results of the scavenger trapping experiments show that the hydroxyl radical was the main active species in degradation. Based on experimental results, a type II heterojunction should be built in the composite α-Fe2O3/g-C3N4, driving the photoelectrons transfer and migration by internal electronic field. This work provides a facile and new method to synthesize α-Fe2O3/g-C3N4 as an effective heterogeneous photo-Fenton catalyst for environmental remediation.

Composite α-Fe2O3/g-C3N4 with type II heterojunction to degrade phenol by heterogeneous photo-Fenton reaction.  相似文献   

7.
The performance of semiconductor photocatalysts has been limited by rapid electron–hole recombination. One strategy to overcome this problem is to construct a heterojunction structure to improve the survival rate of electrons. In this context, a novel g-C3N4/TiO2/CuO double-heterojunction photocatalyst was developed and characterized. Its photocatalytic activity for hydrogen production from water–methanol photocatalytic reforming was explored. Methanol is always used to eliminate semiconductor holes. The g-C3N4/TiO2/CuO double-heterojunction photocatalyst with a narrow bandgap of ∼1.38 eV presented excellent photocatalytic activity for hydrogen evolution (97.48 μmol (g h)−1) under visible light irradiation. Compared with g-C3N4/TiO2 and CuO/TiO2, the photocatalytic activity of g-C3N4/TiO2/CuO for hydrogen production was increased approximately 7.6 times and 1.8 times, respectively. Below 240 °C, the sensitivity of g-C3N4/TiO2/CuO to ammonia was approximately 90% and 46% higher than that of g-C3N4/TiO2 and CuO/TiO2, respectively. The enhancement of the photocatalytic activity and gas sensing properties of the g-C3N4/TiO2/CuO composite resulted from the close interface contact established by the double heterostructure. The trajectory of electrons in the double heterojunction conformed to the S-scheme. UV-vis, PL, and transient photocurrent characterization showed that the double heterostructure effectively inhibited the recombination of e/h+ pairs and enhanced the migration of photogenerated electrons.

The trajectory of electrons in the g-C3N4/TiO2/CuO double-heterojunction conforms to the S-scheme.  相似文献   

8.
ZnO and g-C3N4 provide excellent photocatalytic properties for degradation of antibiotics in pharmaceutical wastewater. In this work, 2D–2D ZnO/N doped g-C3N4 (NCN) composite photocatalysts were prepared for degradation of tetracycline (TC), ciprofloxacin (CIP) and ofloxacin (OFLX). The addition of ZnO resulted in higher separation efficiency and lower recombination rate of photogenerated charge under visible light. The composite photocatalyst showed better degradation performance compared to ZnO or NCN alone. The TC degradation reached 81.3% in 15 minutes by applying the prepared 20% ZnO/NCN composite photocatalyst, showing great competitiveness among literature reported g-C3N4 based photocatalysts. After 30 minutes, the degradation rate of TC, CIP and OFLX reached 82.4%, 64.4% and 78.2%, respectively. The TC degradation constant of the composite photocatalyst was 2.7 times and 6.4 times higher than NCN and CN, respectively. Radical trapping experiments indicated that ·O2 was the dominant active substance. The transference of excited electrons from the conduction band (CB) of NCN to ZnO enhanced the separation of photogenerated electron–hole pairs and simultaneously suppressed their recombination. This study provides a possibility for the design of high-performance photocatalysts for antibiotics degradation in wastewater.

2D–2D ZnO/N doped g-C3N4 (NCN) composite photocatalysts were prepared for degradation of antibiotics with high efficiency.  相似文献   

9.
With the expansion of industrialization, dye pollution has become a significant hazard to humans and aquatic ecosystems. In this study, α-Fe2O3/g-C3N4-R (where R is the relative percentage of α-Fe2O3) composites were fabricated by a one-step method. The as-prepared α-Fe2O3/g-C3N4-0.5 composites showed excellent adsorption capacities for methyl orange (MO, 69.91 mg g−1) and methylene blue (MB, 29.46 mg g−1), surpassing those of g-C3N4 and many other materials. Moreover, the ionic strength and initial pH influenced the adsorption process. Relatively, the adsorption isotherms best fitted the Freundlich model, and the pseudo-second-order kinetic model could accurately describe the kinetics for the adsorption of MO and MB by α-Fe2O3/g-C3N4-0.5. Electrostatic interaction and π–π electron donor–acceptor interaction were the major mechanisms for MO/MB adsorption. In addition, the photocatalytic experiment results showed that more than 79% of the added MO/MB was removed within 150 min. The experimental results of free-radical capture revealed that holes (h+) were the major reaction species for the photodegradation of MO, whereas MB was reduced by the synergistic effect of hydroxyl radicals (·OH) and holes (h+). This study suggests that the α-Fe2O3/g-C3N4 composites have an application potential for the removal of dyes from wastewater.

Simple one-step hydrothermal synthesis of α-Fe2O3/g-C3N4 composites for the synergistic adsorption and photodegradation of dyes  相似文献   

10.
This study aimed to promote the separation of photogenerated carriers and improve the redox performance of graphite carbon nitride (g-C3N4) by synthesizing a double-heterojunction-structure photocatalyst, g-C3N4/(101)-(001)-TiO2, through the solvothermal method. The photocatalyst comprised a Z-system formed from g-C3N4 and the (101) plane of TiO2, as well as a surface heterojunction formed from the (101) and (001) planes of TiO2. The results showed that g-C3N4/(101)-(001)-TiO2 had strong photocatalytic activity and stable performance in the photodegradation of paracetamol. The active species ·O2 and ·OH were found to play important roles in the photocatalytic degradation of paracetamol through a radical-quenching experiment. The charge-transfer mechanism was also described in detail. Overall, this work provided a new strategy for the Z-system heterojunction and opened up the application of this structure in the degradation of organic pollutants.

A double-heterojunction-structure photocatalyst g-C3N4/(101)-(001)-TiO2 with Z-system and surface heterojunction, was synthesized, which can effectively promote the separation of photogenerated e–h+ pairs and the degradation of organic pollutants.  相似文献   

11.
A surface heterojunction catalyst of g-C3N4–PEDOT/P3HT with P3HT and PEDOT as the polymer sensitizer and hole transport pathway is successfully prepared. The as constructed g-C3N4–PEDOT/P3HT composite exhibits a photocatalyst H2 evolution rate up to 427703.3 μmol h−1 g−1 which is 1059 times higher than that of g-C3N4, 118 times higher than that of g-C3N4–PEDOT with ascorbic acid as sacrificial reagents. What''s more, the g-C3N4–PEDOT/P3HT can even show an obviously enhanced photocatalytic H2 evolution rate which is 6.1 times higher than that of pure g-C3N4 in pure water without any sacrificial reagent. Combining the experimental results and molecular dynamic (MD) simulation results, a possible mechanism can be drawn that the existed PEDOT possesses relatively higher hole mobility and can be used as a hole conductor between g-C3N4 and P3HT. Then, the photogenerated holes migration can be accelerated by PEDOT from the VB of g-C3N4 to the VB of P3HT. All those factors may benefit the synergy among g-C3N4, PEDOT and P3HT, which finally facilitates the rapid migration of photoinduced electron–hole pairs and eventually improves the photocatalytic H2 activity process of g-C3N4–PEDOT/P3HT with visible light. The present work may provide useful insights for designing a surface heterojunction composite photocatalyst with high photocatalytic activity for H2 production.

A surface heterojunction catalyst of g-C3N4-PEDOT/P3HT with P3HT and PEDOT as the polymer sensitizer and hole transport pathway is successfully prepared. The as prepared photocatalyst with much improved photocatalytic activity for H2 production.  相似文献   

12.
Bimetallic zeolite-imidazole frameworks with controllable flat band position, band gap and hydrogen evolution reaction characteristics were adopted as a photocatalytic hydrogen production catalyst. Furthermore, the g-C3N4–MoS2 2D–2D surface heterostructure was introduced to the ZnM-ZIF to facilitate the separation as well as utilization efficiency of the photo-exited charge carriers in the ZnM-ZIFs. On the other hand, the ZnM-ZIFs not only inhibited the aggregation of the g-C3N4–MoS2 heterostructure, but also improved the separation and transport efficiency of charge carriers in g-C3N4–MoS2. Consequently, the optimal g-C3N4–MoS2–ZnNi-ZIF exhibited an extraordinary photocatalytic hydrogen evolution activity 214.4, 37.5, and 3.7 times larger than that of the pristine g-C3N4, g-C3N4–ZnNi-ZIF and g-C3N4–MoS2, respectively, and exhibited a H2-evolution performance of 77.8 μmol h−1 g−1 under UV-Vis light irradiation coupled with oxidation of H2O into H2O2. This work will furnish a new MOF candidate for photocatalysis and provide insight into better utilization of porous MOF-based heterostructures for hydrogen production from pure water.

The g-C3N4-MoS2 could facilitate the separation as well as utilization efficiency of the photo-generated charge carriers in the ZnM-ZIFs, and hence improved the photocatalytic H2 production with and without sacrificial agent.  相似文献   

13.
Heterojunction formation and heteroatom doping could be viewed as promising strategies for constructing composite photocatalysts with high visible light catalytic activity. In this work, we fabricated a carbon, nitrogen and sulfur co-doped TiO2/g-C3N4 (CNS-TiO2/g-C3N4) Z-scheme heterojunction photocatalyst composite via one-step hydrothermal and calcination methods. Compared with pure TiO2 and g-C3N4, the CNS-TiO2/g-C3N4 Z-scheme heterojunction photocatalyst possessed excellent degradation performance under visible light irradiation. Due to the formation of the Z-scheme heterostructure, the utilization rate of the photogenerated electrons–holes generated by the catalyst was increased, which enhanced the catalytic activity. Moreover, the heteroatom doping (C, N and S) could efficiently tailor the band gap of TiO2 and facilitate electron transition, contributing to enhancing the degradation ability under visible light. The CNS-TiO2/g-C3N4-2 exhibited a superior photocatalytic degradation efficiency (k = 0.069 min−1) for methyl orange dye (MO), which is higher than those of pure TiO2 (k = 0.001 min−1) and g-C3N4 (k = 0.012 min−1), showing excellent photocatalytic activity against organic pollutants.

The CNS-TiO2/g-C3N4 photocatalyst with excellent visible light catalytic activity was successfully manufactured, benefiting from the construction of the Z-scheme heterojunction and the co-doping of heteroatoms (C, N and S).  相似文献   

14.
Herein, we fabricated a ternary photocatalyst composed of CaFe2O4, multiwalled carbon nanotubes (CNTs) and graphitic carbon nitride (g-C3N4) via a simple hydrothermal route. CaFe2O4 acted as a photosensitizer medium and the CNT acted as a co-catalyst, which remarkably enhanced the photocatalytic performances of g-C3N4 towards the degradation of hexavalent chromium (Cr(vi)) and the antibiotic tetracycline (TC) under visible light irradiation. To investigate the morphological and topological features of the photocatalyst, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) analyses were performed. The surface properties and oxidation state of the CaFe2O4/g-C3N4/CNT composite were determined by X-ray photoelectron spectroscopy (XPS). The recombination rate of the charge carriers and the band gap values of the as-synthesized catalysts were analyzed by photoluminescence spectroscopy (PL) and diffused reflectance spectroscopy (UV/Vis DRS) studies, respectively. Besides the degradation reactions, the high hydrogen production rate of 1050 μmol h−1 under visible light using the CaFe2O4/g-C3N4/CNT composite loaded with 5 wt% CNT was observed. The superior photocatalytic performances of the CaFe2O4/g-C3N4/CNT composite can be ascribed to the effective heterojunction formed between g-C3N4 and the CaFe2O4 matrix, in which the CNT act as a conducting bridge in the system, promoting the production of photoinduced charge carriers in the semiconductor system. Finally, the plausible photocatalytic mechanism towards the degradation of pollutants and hydrogen production was discussed carefully.

Herein, we fabricated a ternary photocatalyst composed of CaFe2O4, multiwalled carbon nanotubes (CNTs) and graphitic carbon nitride (g-C3N4) via a simple hydrothermal route.  相似文献   

15.
Ternary structures consisting of hollow g-C3N4 nanofibers/MoS2/sulfur, nitrogen-doped graphene and bulk g-C3N4 (TCN) were designed as a dual layered film and fabricated using a spin-coating method. The first ternary structures were spin-coated on fluorine-doped tin oxide (FTO) glass, followed by spin-coating of g-C3N4 film to form dual layers. We characterized the microstructural morphologies, chemical composition/bonding and optical properties of the dual layered film and observed significantly reduced recombination rates of photo-induced electron–hole pairs due to effective separation of the charge carriers. We tested methylene blue (MB) photodegradation and observed remarkable MB degradation by the dual layered film over 5 hours, with a kinetic rate constant of 1.24 × 10−3 min−1, which is about four times faster than that of bare TCN film. Furthermore, we estimated the H2 evolution of the dual layered film to be 44.9 μmol over 5 hours, and carried out stable recycling over 45 hours under visible irradiation. Due to the lower electrochemical impedance spectroscopy (EIS) resistance value of the dual layered film (∼50 ohm cm2) compared to the TCN film, the ternary structures and bulk g-C3N4 film were well-connected as a heterojunction, reducing the resistance at the interface between the film and the electrolyte. These results indicate that the effective separation of the photo-induced electron–hole pairs using the dual layered film dramatically improved its photo-response ability under visible light irradiation.

Ternary structures consisting of hollow g-C3N4 nanofibers/MoS2/sulfur, nitrogen-doped graphene and bulk g-C3N4 (TCN) were designed as a dual layered film and fabricated using a spin-coating method.  相似文献   

16.
A novel composite consisting of NiO/NiC/g-C3N4 with excellent photocatalytic properties was successfully synthesized by the simple calcination of layered double metal hydroxide (LDH) and melamine. The color and chemical composition of the as-prepared composites could be tailored by changing the mass ratio of NiAl-LDH and g-C3N4. For the L4C composite at the ratio of 1 : 1, it showed the desired dark color due to the generated NiC. It also showed high photodegradation efficiency under visible light irradiation, reaching 97.5% toward Rhodamine B and 92.6% toward tetracycline. The high photodegradation efficiency could be mainly attributed to the unique formation of NiC cocatalysts coupled with g-C3N4 and NiO semiconductors, which constructed a Z-scheme system and facilitated the efficient separation of the photogenerated electron–hole pairs. The present findings provide a promising approach for fabricating the new types of composite photocatalysts for pollutant degradation.

A novel composite consisting of NiO/NiC/g-C3N4 with excellent photocatalytic properties was successfully synthesized by the simple calcination of layered double metal hydroxide (LDH) and melamine.  相似文献   

17.
The preparation of high-efficiency, pollution-free photocatalysts for water treatment has always been one of the research hotspots. In this paper, a carbon framework formed from waste grapefruit peel is used as the carrier. A simple one-step chemical vapor deposition (CVD) method allows tubular g-C3N4 to grow on the carbon framework. Tubular g-C3N4 increases the specific surface area of bulk g-C3N4 and enhances the absorption of visible light. At the same time, the carbon framework can effectively promote the separation and transfer of charges. The dual effects of static adsorption and photodegradation enable the g-C3N4/carbon (CNC) framework to quickly remove about 98% of methylene blue within 180 min. The recyclability indicates that the tubular g-C3N4 can stably exist on the carbon framework during the photodegradation process. In the dynamic photocatalytic test driven by gravity, roughly 77.65% of the methylene blue was degraded by the CNC framework. Our work provides an attractive strategy for constructing a composite carbon framework photocatalyst based on the tubular g-C3N4 structure and improving the photocatalytic performance.

Tubular g-C3N4 grown on a carbon framework increased the surface area of bulk g-C3N4, enhanced the absorption of visible light and promoted the photocatalytic performance.  相似文献   

18.
We prepared a new three-dimensional, flower-like La–TiO2/g-C3N4 (LaTiCN) heterojunction photocatalyst using a solvothermal method. Analysis and characterization were performed by conducting scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform-infrared spectroscopy, ultraviolet-visible spectrophotometry, and nitrogen adsorption and desorption. The prepared g-C3N4 nanosheets could reach 100 nm in size and covered the TiO2 surface. A tightly bound interface formed between the g-C3N4 and TiO2, speeding up the effective transfer of photo-induced electrons. In addition, the incorporation of La3+ reduced the electron–hole recombination efficiency. Consequently, the prepared La–TiO2/g-C3N4 composite material exhibited better visible-light catalytic activity than pure TiO2.

A new visible-light-responsive, three-dimensional, flower-like La–TiO2/g-C3N4 heterojunction photocatalyst was prepared by a solvothermal method.  相似文献   

19.
Photocatalysis has been regarded as an attractive strategy for the elimination of contaminants, but its performance is usually limited by the fast recombination of photogenerated electron–holes. A heterojunction photocatalyst could achieve the effective separation of electron–holes. However, the electrons migrate to the less negative band while holes move to the less positive band, leading to a weakened redox ability. Z-scheme photocatalysis is a feasible way to realize the efficient separation of photogenerated electron–holes without sacrificing the reductive ability of electrons and oxidative ability of holes. In this work, a new Z-scheme photocatalyst, composed of g-C3N4 (photocatalyst I), FeWO4 (photocatalyst II) and RGO (electron mediator), was fabricated through a facile hydrothermal and mixing method. The effect of contact ways (the electron mediator firstly combined with photocatalyst I or with photocatalyst II) on the Z-scheme photocatalytic performance was investigated. The photocatalytic removal rate of rhodamine B (RhB) was largely enhanced by the construction of a Z-scheme photocatalyst, compared with the g-C3N4/FeWO4 composite without RGO. The contact ways could affect the photocatalytic ability of a Z-scheme photocatalyst. The enhanced photocatalytic performance was attributed to the Z-scheme induced efficient separation of photogenerated charge carriers. Furthermore, remaining holes (on the VB of FeWO4) or remaining electrons (on the CB of g-C3N4) with powerful oxidation or reduction ability would promote the photocatalytic degradation of RhB.

g-C3N4 (photocatalyst I), FeWO4 (photocatalyst II) and RGO (electron media) constitutes a novel Z-scheme photocatalyst for effective RhB removal.  相似文献   

20.
A novel colorimetric sensing platform using the peroxidase mimicking activity of ternary MoS2-loaded ZnO–g-C3N4 nanocomposites (ZnO–g-C3N4/MoS2) has been developed for the determination of Hg(ii) ions over co-existing metal ions. The nanocomposite was prepared using an exfoliation process, and the product was further characterized using SEM, TEM, XRD and FTIR analysis. The ZnO–g-C3N4/MoS2 possesses excellent intrinsic catalytic activity to induce the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in aqueous solution in the presence of H2O2 to generate deep blue coloured cation radicals (TMB+) which can be viewed with the naked eye and produce absorbance at a wavelength of 652 nm. The addition of a well known bioradical scavenger, glutathione (GSH), to the solution hinders the generation of cation radicals and turns the solution colourless. The introduction of Hg(ii) to this solution brings the blue colour back into it, due to the strong affinity of the thiol in the GSH. Based on this mechanism, we have developed a simple and rapid colorimetric sensor for the highly sensitive and selective detection of Hg(ii) ions in aqueous solution with a low detection limit of 1.9 nM. Furthermore, the prepared colorimetric sensor was effectively applied for the quantification analysis of real water samples.

A novel colorimetric sensing platform using the peroxidase mimicking activity of ternary MoS2-loaded ZnO–g-C3N4 nanocomposites (ZnO–g-C3N4/MoS2) has been developed for the determination of Hg(ii) ions over co-existing metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号