首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
Diatomaceous earth (DE) is a naturally occurring silica source constituted by fossilized remains of diatoms, a type of hard-shelled algae, which exhibits a complex hierarchically nanostructured porous silica network. In this work, we analyze the positive effects of reducing DE SiO2 particles to the sub-micrometer level and implementing an optimized carbon coating treatment to obtain DE SiO2 anodes with superior electrochemical performance for Li-ion batteries. Pristine DE with an average particle size of 17 μm is able to deliver a specific capacity of 575 mA h g−1 after 100 cycles at a constant current of 100 mA g−1, and reducing the particle size to 470 nm enhanced the reversible specific capacity to 740 mA h g−1. Ball-milled DE particles were later subjected to a carbon coating treatment involving the thermal decomposition of a carbohydrate precursor at the surface of the particles. Coated ball-milled silica particles reached stable specific capacities of 840 mA h g−1 after 100 cycles and displayed significantly improved rate capability, with discharge specific capacities increasing from 220 mA h g−1 (uncoated ball-milled SiO2) to 450 mA h g−1 (carbon coated ball-milled SiO2) at 2 A g−1. In order to trigger SiO2 reactivity towards lithium, all samples were subjected to an electrochemical activation procedure prior to electrochemical testing. XRD measurements on the activated electrodes revealed that the initial crystalline silica was completely converted to amorphous phases with short range ordering, therefore evidencing the effective role of the activation procedure.

Diatomaceous earth SiO2 anodes with superior electrochemical performance are obtained by ball milling, carbon coating and electrochemical activation of SiO2 particles.  相似文献   

2.
Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance. Charge/discharge capacities of 266 mA h g−1 at 0.100 A g−1 and 200 mA h g−1 at 1.000 A g−1 are reached for Li2TiO3–coke. A cycling life-time test shows that Li2TiO3–coke gives a specific capacity of 264 mA h g−1 at 0.300 A g−1 and a capacity retention of 92% after 1000 cycles of charge/discharge.

Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance.  相似文献   

3.
NaV3O8 nanobelts were successfully synthesized for Li/Na-ion batteries and rechargeable aqueous zinc-ion batteries (ZIBs) by a facile hydrothermal reaction and subsequent thermal transformation. Compared to the electrochemical performance of LIBs and NIBs, NaV3O8 nanobelt cathode materials in ZIBs have shown excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1 and good cycle stability with a capacity retention of 94% over 500 cycles at 5 A g−1. The good diffusion coefficients and high surface capacity of NaV3O8 nanobelts in ZIBs were in favor of fast Zn2+ intercalation and long-term cycle stability.

Compared to the electrochemical performance for LIBs and NIBs, NaV3O8 nanobelts electrode for ZIBs shows excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1, good rate performance and cycle performance.  相似文献   

4.
Tin dioxide (SnO2) is a promising anode material for lithium-ion batteries owing to its large theoretical capacity (1494 mA h g−1). However, its practical application is hindered by these problems: the low conductivity, which restricts rate performance of the electrode, and the drastic volume change (400%). In this study, we designed a novel polyacrylamide/SnO2 nanocrystals/graphene gel (PAAm@SnO2NC@GG) structure, in which SnO2 nanocrystals anchored in three-dimensional graphene gel network and the polyacrylamide layers could effectively prevent the agglomeration of SnO2 nanocrystals, presenting excellent cyclability and rate performance. A capacity retention of over 90% after 300 cycles of 376 mA h g−1 was achieved at a current density of 5 A g−1. In addition, a stable capacity of about 989 mA h g−1 at lower current density of 0.2 A g−1 was achieved.

Tin dioxide (SnO2) is a promising anode material for lithium-ion batteries owing to its large theoretical capacity (1494 mA h g−1).  相似文献   

5.
The high specific capacity, low cost and environmental friendliness make manganese dioxide materials promising cathode materials for zinc-ion batteries (ZIBs). In order to understand the difference between the electrochemical behavior of manganese dioxide materials with different valence states, i.e., Mn(iii) and Mn(iv), we investigated and compared the electrochemical properties of pure MnO2 and Mn2O3 as ZIB cathodes via a combined experimental and computational approach. The MnO2 electrode showed a higher discharging capacity (270.4 mA h g−1 at 0.1 A g−1) and a superior rate performance (125.7 mA h g−1 at 3 A g−1) than the Mn2O3 electrode (188.2 mA h g−1 at 0.1 A g−1 and 87 mA h g−1 at 3 A g−1, respectively). The superior performance of the MnO2 electrode was ascribed to its higher specific surface area, higher electronic conductivity and lower diffusion barrier of Zn2+ compared to the Mn2O3 electrode. This study provides a detailed picture of the diversity of manganese dioxide electrodes as ZIB cathodes.

MnO2 and Mn2O3 cathodes for zinc ion batteries were experimentally and computationally explored.  相似文献   

6.
Rechargeable aqueous zinc ion batteries (ZIBs), owing to their low-cost zinc metal, high safety and nontoxic aqueous electrolyte, have the potential to accelerate the development of large-scale energy storage applications. However, the desired development is significantly restricted by cathode materials, which are hampered by the intense charge repulsion of bivalent Zn2+. Herein, the as-prepared VO2(A) hollow spheres via a feasible hydrothermal reaction exhibit superior zinc ion storage performance, large reversible capacity of 357 mA h g−1 at 0.1 A g−1, high rate capability of 165 mA h g−1 at 10 A g−1 and good cycling stability with a capacity retention of 76% over 500 cycles at 5 A g−1. Our study not only provides the possibility of the practical application of ZIBs, but also brings a new prospect of designing high-performance cathode materials.

VO2(A) hollow spheres exhibit superior zinc ion storage performance, large reversible capacity of 357 mA h g−1 at 0.1 A g−1, and good cycling stability with a capacity retention of 76% over 500 cycles at 5 A g−1  相似文献   

7.
Li2MnSiO4 compounded with indium tin oxide (ITO) was successfully synthesized through a sol–gel method. The structure and morphology characterization of Li2MnSiO4/ITO nanocomposite are demonstrated by XRD, SEM, TEM, EDS and XPS. Galvanostatic charge–discharge tests, EIS and CV are employed to examine the electrochemical performance of the composite. From those results, it could be observed that the electrochemical performance of Li2MnSiO4 cathode material has been significantly improved due to the introducing of indium tin oxide. The 3 wt% ITO-compounded sample displayed a discharge specific capacity around 141 mA h g−1 at 0.05C, 134.4 mA h g−1 at 0.1C, 132.9 mA h g−1 at 0.2C and 127.4 mA h g−1 at 0.5C in the first cycle, which is much higher than the pristine sample.

Li2MnSiO4 compounded with indium tin oxide (ITO) was successfully synthesized through a sol–gel method.  相似文献   

8.
Flexible free-standing hierarchically porous carbon nanofibers embedded with ultrafine (∼3.5 nm) MoO2 nanoparticles (denoted as MoO2@HPCNFs) have been synthesized by electrospinning and subsequent heat treatment. When evaluated as a binder-free anode in Li-ion batteries, the as-obtained MoO2@HPCNFs film exhibits excellent capacity retention with high reversible capacity (≥1055 mA h g−1 at 100 mA g−1) and good rate capability (425 mA h g−1 at 2000 mA g−1), which is much superior to most of the previously reported MoO2-based materials. The synergistic effect of uniformly dispersed ultrasmall MoO2 nanoparticles and a three-dimensionally hierarchical porous conductive network constructed by HPCNFs effectively improve the utilization rate of active materials, enhance the transport of both electrons and Li+ ions, facilitate the electrolyte penetration, and promote the Li+ storage kinetics and stability, thus leading to a greatly enhanced electrochemical performance.

A novel binder-free LIB anode made of ultrafine MoO2 nanoparticles encapsulated in hierarchically porous carbon nanofibers exhibits high Li-storage performance.  相似文献   

9.
The poor cyclability and rate property of commercial TiO2 (c-TiO2) hinder its utilization in lithium-ion batteries (LIBs). Coating carbon is one of the ways to ameliorate the electrochemical performance. However, how to effectively form a uniform thin carbon coating is still a challenge. On the basis of the strong interaction of the TiO2 surface with carboxyl groups, herein a new tactic to achieve uniform and thin carbon layers on the c-TiO2 particles was proposed. When mixing c-TiO2 with citric acid containing carboxyl groups in deionized water, the high-affinity adsorption of TiO2 for carboxyl groups resulted in self-assembled carboxylate monolayers on the surface of TiO2 which evolved into a uniform few-layered amorphous carbon coating during carbonizing at 750 °C. The product derived from the mixture of c-TiO2 and citric acid with a mass ratio of 1 : 0.3 exhibits the optimal performance, revealing a high specific capacity (256.6 mA h g−1 after 50 cycles at 0.1 A g−1) and outstanding cycling stability (retaining a capacity of 160.0 mA h g−1 after 1000 cycles at 0.5 A g−1). The greatly enhanced capacity and cyclability correlate with the uniform few-layered carbon coating which not only ameliorates the electronic conductivity of c-TiO2 but also avoids the reduction in ionic conductivity caused by thick carbon layers and redundant carbon.

The uniform and thin carbon-coating formed on c-TiO2 particles by virtue of the high-affinity adsorption of TiO2 for carboxyl groups results in superior rate and cycling performance.  相似文献   

10.
Hierarchical NiO/Ni3V2O8 nanoplatelet arrays (NPAs) grown on Ti foil were prepared as free-standing anodes for Li-ion batteries (LIBs) via a simple one-step hydrothermal approach followed by thermal treatment to enhance Li storage performance. Compared to the bare NiO, the fabricated NiO/Ni3V2O8 NPAs exhibited significantly enhanced electrochemical performances with superior discharge capacity (1169.3 mA h g−1 at 200 mA g−1), excellent cycling stability (570.1 mA h g−1 after 600 cycles at current density of 1000 mA g−1) and remarkable rate capability (427.5 mA h g−1 even at rate of 8000 mA g−1). The excellent electrochemical performances of the NiO/Ni3V2O8 NPAs were mainly attributed to their unique composition and hierarchical structural features, which not only could offer fast Li+ diffusion, high surface area and good electrolyte penetration, but also could withstand the volume change. The ex situ XRD analysis revealed that the charge/discharge mechanism of the NiO/Ni3V2O8 NPAs included conversion and intercalation reaction. Such NiO/Ni3V2O8 NPAs manifest great potential as anode materials for LIBs with the advantages of a facile, low-cost approach and outstanding electrochemical performances.

Hierarchical NiO/Ni3V2O8 nanoplatelet arrays (NPAs) grown on Ti foil were prepared as free-standing anodes for Li-ion batteries (LIBs) via a simple one-step hydrothermal approach followed by thermal treatment to enhance Li storage performance.  相似文献   

11.
Na2Ti6O13 (NTO) has recently been reported for lithium ion storage and showed very promising results. In this work, we report substantially enhanced rate capability in NTO nanowires by Ti(iii) self-doping and carbon-coating. Ti(iii) doping and carbon coating were found to work in synergy to increase the electrochemical performances of the material. For 300 cycles at 1C (1C = 200 mA g−1) the charge capacity of the electrode is 206 mA h g−1, much higher than that (89 mA h g−1) of the pristine NTO electrode. For 500 cycles at 5C the electrode can still deliver a charge capacity of 180.5 mA h g−1 with a high coulombic efficiency of 99%. At 20C the capacity of the electrode is 2.6 times that of the pristine NTO. These results clearly demonstrate that the Ti(iii) self-doping and uniform carbon coating significantly enhanced the kinetic processes in the NTO nanowire crystal, making it possible for fast charge and discharge in Li-ion batteries.

Ti3+ self-doping and carbon-coating are efficient approaches to simultaneously improve the rate capability and cyclability of Na2Ti6O13 nanowires for lithium storage.  相似文献   

12.
A series of Mn2O3 nanomaterials with hierarchical porous structures was synthesized using three types of leaves as templates. In addition to their different morphologies, different porous nanostructures were achieved by choosing different leaves. The Mn2O3 nanomaterial prepared by using gingko leaves as a template provides a larger pore volume and a higher Brunauer–Emmett–Teller (BET) surface area. At the same time, this material also displays excellent electrochemical performance, that is, the specific capacities are 1274.6 mA h g−1 after 300 cycles and 381.5 mA h g−1 at current densities of 300 and 3000 mA g−1, respectively.

A series of Mn2O3 nanomaterials with hierarchical porous structures was synthesized using three types of leaves as templates.  相似文献   

13.
A solvent-free, low-cost, high-yield and scalable single-step ball milling process is developed to construct 2D MoS2/graphene hybrid electrodes for lithium-ion batteries. Electron microscopy investigation reveals that the obtained hybrid electrodes consist of numerous nanosheets of MoS2 and graphene which are randomly distributed. The MoS2/graphene hybrid anodes exhibit excellent cycling stability with high reversible capacities (442 mA h g−1 for MoS2/graphene (40 h); 553 mA h g−1 for MoS2/graphene (20 h); 342 mA h g−1 for MoS2/graphene (10 h)) at a high current rate of 250 mA g−1 after 100 cycles, whereas the pristine MoS2 electrode shows huge capacity fading with a retention of 37 mA h g−1 at 250 mA g−1 current after 100 cycles. The incorporation of graphene into MoS2 has an extraordinary effect on its electrochemical performance. This work emphasises the importance of the construction of the 2D MoS2/graphene hybrid structure to prevent capacity fading issues with the MoS2 anode in lithium-ion batteries.

A solvent-free, low-cost, high-yield and scalable single-step ball milling process is developed to construct 2D MoS2/graphene hybrid electrodes for lithium-ion batteries.  相似文献   

14.
A lithium-rich layered oxide with different shell structures was synthesized by a simple wet-chemical surface deposition method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and other techniques were applied to characterize the crystal structure, morphology, and micro-structure of the samples. The surface of the lithium-rich layered oxide can successively produce island-like spinel, ultra-thin spinel, and thick two-phase (spinel and amorphous manganese oxides) separation shell layers with an increase in the coating amount. The formation process of the different shell structures and the effect of the shell structure on the lattice parameters were discussed. The different shell structures play an important role in the electrochemical performance of the lithium-rich oxide. In particular, when the coating amount is 1 wt%, the lithium-rich material with a uniform Li4Mn5O12 spinel shell layer exhibits superior electrochemical performance, and can maintain a discharge capacity of 209.9 mA h g−1 and 166.8 mA h g−1 at rates of 2C and 5C.

An ultra-thin spinel Li4Mn5O12 shell layer on the surface of lithium-rich oxide particles was investigated.  相似文献   

15.
Hierarchical structured porous NiMn2O4 microspheres assembled with nanorods are synthesized through a simple hydrothermal method followed by calcination in air. As anode materials for lithium ion batteries (LIBs), the NiMn2O4 microspheres exhibit a high specific capacity. The initial discharge capacity is 1126 mA h g−1. After 1000 cycles, the NiMn2O4 demonstrates a reversible capacity of 900 mA h g−1 at a current density of 500 mA g−1. In particular, the porous NiMn2O4 microspheres still could deliver a remarkable discharge capacity of 490 mA h g−1 even at a high current density of 2 A g−1, indicating their potential application in Li-ion batteries. This excellent electrochemical performance is ascribed to the unique hierarchical porous structure which can provide sufficient contact for the transfer of Li+ ion and area for the volume change of the electrolyte leading to enhanced Li+ mobility.

Hierarchical structured porous NiMn2O4 microspheres assembled with nanorods are synthesized through a simple hydrothermal method followed by calcination in air.  相似文献   

16.
Although there have been many studies addressing the dendrite growth issue of lithium (Li)–metal batteries (LMBs), the Li–metal anode has not yet been implemented in today''s rechargeable batteries. There is a need to accelerate the practical use of LMBs by considering their cost-effectiveness, ecofriendliness, and scalability. Herein, a cost-effective and uniform protection layer was developed by simple heat treatment of a Post-it note. The carbonized Post-it protection layer, which consisted of electrochemically active carbon fibers and electrochemically inert CaCO3 particles, significantly contributed to stable plating and stripping behaviors. The resulting protected Li anode exhibited excellent electrochemical performance: extremely low polarization during cycling (<40 mV at a current density of 1 mA cm−2) and long lifespan (5000 cycles at 10 mA cm−2) of the symmetric cell, as well as excellent rate performance at 2C (125 mA h g−1) and long cyclability (cycling retention of 62.6% after 200 cycles) of the LiFePO4‖Li full cell. The paper-derived Li protection layer offer a facile and scalable approach to enhance LMB electrochemical performance.

A low-cost, ecofriendly, and scalable paper-derived protective layer is designed to achieve excellent electrochemical performance.  相似文献   

17.
In spite of its insulating nature, SiO2 may be utilized as active anode material for Li-ion batteries. Synthetic SiO2 will typically require sophisticated synthesis and/or activation procedures in order to obtain a satisfactory performance. Here, we report on diatom frustules as active anode material without the need for extensive activation procedures. These are composed primarily of silica, exhibiting sophisticated porous structures. Various means of optimizing the performance were investigated. These included carbon coating, the addition of fluoroethylene carbonate (FEC) and vinylene carbonate (VC) to the carbonate-based electrolyte, as well as activation by an initial potentiostatic hold step. The highest capacity (723 mA h g−1) was obtained with composite electrodes with pristine diatom frustules and conventional carbon black as additive, with the capacity still increasing after 50 cycles. The capacity was around 624 mA h g−1 after subtraction of the contributions from the carbon black. Carbon coated diatom frustules showed a slightly lower but stable capacity after 50 cycles (600 mA h g−1 after subtraction of contributions from the carbon coating and the carbon black). By the use of electrochemical characterization methods, as well as post-mortem studies, differences in reaction mechanisms could be identified and attributed to the operating and processing parameters.

Silica derived from algae was used as anode material in Li-ion batteries, giving a capacity of more than 700 mA h g−1.  相似文献   

18.
SnO2/CNTs composites with core-tubule structure are prepared by a facile wet chemical method. The investigation of electrochemical characteristics of the SnO2/CNTs composites shows that the composites exhibit some advantages, such as stable core-tubule structure, small particle size of SnO2, low electron-transfer resistance and faster lithium ion migration speed. The final product synthesized under optimized conditions can release a stable capacity of about 743 mA h g−1 after 100 cycles at the current density of 0.4 A g−1, 598 mA h g−1 after 500 cycles at the current density of 4 A g−1. Even at a super high current density of 8 A g−1, the composite can still deliver a steady capacity of 457 mA h g−1, and the discharge capacity can be restored to 998 mA h g−1 when current density is decreased to 0.4 A g−1.

SnO2/CNTs composites with core-tubule structure are prepared by a facile wet chemical method.  相似文献   

19.
Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density. However, shuttling of polysulfides detracts the electrochemical performance of Li–S batteries and thus prevents the commercialization of Li–S batteries. Here, TiO2@porous carbon nanofibers (TiO2@PCNFs) are fabricated via combining electrospinning and electrospraying techniques and the resultant TiO2@PCNFs are evaluated for use as an interlayer in Li–S batteries. TiO2 nanoparticles on PCNFs are observed from SEM and TEM images. A high initial discharge capacity of 1510 mA h g−1 is achieved owing to the novel approach of electrospinning the carbon precursor and electrospraying TiO2 nanoparticles simultaneously. In this approach TiO2 nanoparticles capture polysulfides with strong interaction and the PCNFs with high conductivity recycle and re-use the adsorbed polysulfides, thus leading to high reversible capacity and stable cycling performance. A high reversible capacity of 967 mA h g−1 is reached after 200 cycles at 0.2C. The cell with the TiO2@PCNF interlayer also delivers a reversible capacity of around 1100 mA h g−1 at 1C, while the cell without the interlayer exhibits a lower capacity of 400 mA h g−1. Therefore, this work presents a novel approach for designing interlayer materials with exceptional electrochemical performance for high performance Li–S batteries.

Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density.  相似文献   

20.
Cobalt disulfides with high theoretical capacity are regarded as appropriate anode materials for sodium ion batteries (SIBs), but their intrinsically low conductivity and large volume expansion lead to a poor electrochemical performance. In this work, graphitic carbon coated CoS2 nanoparticles are encapsulated in bamboo-like carbon nanotubes by pyrolysis and sulfidation process. Graphitic carbon can improve the electrical conductivity and prevent the agglomeration of CoS2 nanoparticles. Meanwhile, bamboo-like carbon nanotubes can serve as conductive skeleton frames to provide rapid and constant transport pathways for electrons and offer void space to buffer the volume change of CoS2 nanoparticles. The advanced anode material exhibits a long-term capacity of 432.6 mA h g−1 at 5 A g−1 after 900 cycles and a rate capability of 419.6 mA h g−1 even at 10 A g−1 in the carbonate ester-based electrolyte. This avenue can be applicable for preparing other metal sulfide/carbon anode materials for sodium-ion batteries.

The outstanding electrochemical performance is ascribed to the novel structure design of CoS2@GC@B-CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号