首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To facilitate rapid dye removal in oxidation processes, copper ferrite (CuFe2O4) was isothermally reduced in a H2 flow and used as a magnetically separable catalyst for activation of hydrogen peroxide (H2O2). The physicochemical properties of the reduced CuFe2O4 were characterized with several techniques, including transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and magnetometry. In the catalytic experiments, reduced CuFe2O4 showed superior catalytic activity compared to raw CuFe2O4 for the removal of methylene blue (MB) due to its relatively high surface area and loading Fe0/Cu0 bimetallic particles. A limited amount of metal ions leached from the reduced CuFe2O4 and these leached ions could act as homogeneous Fenton catalysts in MB degradation. The effects of experimental parameters such as pH, catalyst dosage and H2O2 concentration were investigated. Free radical inhibition experiments and electron spin resonance (ESR) spectroscopy revealed that the main reactive species was hydroxyl radical (˙OH). Moreover, reduced CuFe2O4 could be easily separated by using an external magnet after the reaction and remained good activity after being recycled five times, demonstrating its promising long-term application in the treatment of dye wastewater.

CuFe2O4 was reduced for activation of hydrogen peroxide and the reduced CuFe2O4 showed a relatively higher catalytic activity.  相似文献   

2.
In recent years, persulfate (PS) has been widely studied as a promising oxidant. In this work, a new K-Fe2O3 catalyst was synthesized via a facile impregnation method. K-Fe2O3 samples were utilized as heterogeneous photocatalysts for the degradation of aquatic organic pollutants (rhodamine, RhB, and ciprofloxacin, CIP). The catalysts showed excellent catalytic activity in the presence of PS under the irradiation of visible light, owing to the generation of SO4˙ and ·OH active radicals. The degradation ratio and COD removal ratio for RhB were 99.8% and 88.3%. More importantly, the system retained a high degradation activity for RhB within a wide operating pH range of 2.9–10. The results of cycling degradation experiments confirmed that the K-Fe2O3 catalyst was stable and recoverable. Large-scale experiments for treating dye wastewater under irradiation by natural sunlight were carried out, showing that this study can provide a new perspective for the treatment of wastewater.

Characterizations and properties of catalysts.  相似文献   

3.
Experimental studies were conducted to investigate the degradation of bisphenol A (BPA) by using persulfate (PS) as the oxidant and Fe3O4@β-cyclodextrin (β-CD) nanocomposite as a heterogeneous activator. The catalytic activity was evaluated in consideration of the effect of various parameters, such as pH value, PS concentration and Fe3O4@β-CD load. The results showed that 100% removal of BPA was gained at pH 3.0 with 5 mM PS, 1.0 g L−1 Fe3O4@β-CD, and 0.1 mM BPA in 120 min. Further, the catalytic activity of Fe3O4@β-CD nanocomposite was observed as much higher when compared with Fe3O4 nanoparticles alone. The sulfate and hydroxyl radicals referred to in the Fe3O4@β-CD/PS system were determined as the reactive species responsible for the degradation of BPA by radical quenching and electron spin resonance (ESR) tests. In addition, the catalyst also possessed with accepted reusability and stability. On the basis of the results of the effect of chloride ions (Cl), β-CD was found to play a crucial role in reducing interference from Cl ions, and lead to achieve higher removal efficiency for BPA in Fe3O4@β-CD/PS system. A possible mechanistic process of BPA degradation was proposed according to the identified intermediates by gas chromatography-mass spectroscopy (GC-MS).

Persulfate (PS), the most commonly used activator for in situ chemical oxidation (ISCO), could couple with Fe3O4@β-CD for effectively degrading BPA.  相似文献   

4.
Herein, BiFeO3/ZnFe2O4 nanocomposites were synthesized via a glyoxylate precursor method using a two-pot approach. Phase evolution is investigated by X-ray diffraction and Raman spectroscopy, which confirm that no impurity phases are formed between BiFeO3 and ZnFe2O4 following calcination at 600 °C. The specific surface area characterized by N2 adsorption–desorption isotherms decreases from 30.56 to 13.13 m2 g−1 with the addition of zinc ferrite. In contrast, the magnetization increases from 0.28 to 1.8 emu g−1 with an increase in the amount of ZnFe2O4. The composites show strong absorption in the visible region with the optical band gap calculated from the Tauc''s plot in the range from 2.17 to 2.22 eV, as measured by diffuse reflectance spectroscopy. Furthermore, the maximum efficiency for the photodegradation of methylene blue under visible light is displayed by the composite containing 25 wt% ZnFe2O4 due to the synergic effect between BiFeO3 and ZnFe2O4, as confirmed by photoluminescence spectroscopy.

BiFeO3-25 wt% ZnFe2O4 exhibits a low specific surface area, high magnetization, and maximum photocatalytic efficiency of 97%.  相似文献   

5.
We investigated the fabrication of Co-doped BiVO4 (Bi1−xCoxVO4+δ, 0.05 < x < 0.5) by the substitution of Co ions for Bi sites in BiVO4. The X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) results indicated that the substitution of Co2+ ions for Bi3+ sites in BiVO4 was successful, although a change in the crystal phase of BiVO4 did not occur. UV-vis DRS and PL results suggested that the Co-incorporation could slightly improve the visible light absorption of BiVO4 and induce the separation of photoinduced electron–hole pairs; therefore, a significant enhancement of photocatalytic performance was achieved. The Bi0.8Co0.2VO4+δ sample showed superior photocatalytic activity in comparison with other samples, achieving 96.78% methylene blue (MB) removal within 180 min. In addition, the proposed mechanism of improved photocatalytic activities and the stability of the catalyst were also investigated.

We investigated the fabrication of Co-doped BiVO4 (Bi1−xCoxVO4+δ, 0.05 < x < 0.5) by the substitution of Co ions for Bi sites in BiVO4.  相似文献   

6.
This work reports a novel, highly sensitive and cost-effective electrochemical sensor for the detection of bisphenol A in environmental water samples. Attractive non-noble transition metal oxide CoFe2O4 nanoparticles were successfully synthesized using a sol–gel combustion method and further characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Under optimal conditions, the CoFe2O4 nanoparticle modified glassy carbon electrode exhibits high electrochemical activity and good catalytic performance for the detection of bisphenol A. The linear calibration curves are obtained within a wide concentration range from 0.05 μmol L−1 to 10 μmol L−1, and the limit of detection is 3.6 nmol L−1 for bisphenol A. Moreover, this sensor also demonstrates excellent reproducibility, stability, and good anti-interference ability. The sensor was successfully applied to determine bisphenol A in practical samples, and the satisfactory recovery rate was between 95.5% and 102.0%. Based on the great electrochemical properties and practical application results, this electrochemical sensor has broad application prospects in the sensing of bisphenol A.

A new electrochemical sensor for bisphenol A is reported. CoFe2O4 nanoparticles were synthesized by a sol–gel combustion method. A nanoparticle-modified glassy carbon electrode exhibited outstanding electrochemical performance for the detection of bisphenol A.  相似文献   

7.
Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention. However, the agglomerated nature and stability of nanoparticles are major concerns. Herein, we report a new process regarding the anchoring of CuFe2O4 nanoparticles on a substrate material, a kind of Fe–Ni foam, to form porous CuFe2O4 foam (CuFe2O4-foam) by in situ synthesis. The prepared material was then applied to activate peroxymonosulfate (PMS) for fast and efficient removal of As(iii) from water. The results of removal experiments show that the complete removal of arsenic (<10 μg L−1) from 1 mg L−1 As(iii) aqueous solution can be achieved within shorter time (<10 min) using this adsorbent coupled with PMS. The maximum adsorption capability of As(iii) and As(v) on the prepared adsorbent is observed to be about 105.78 mg g−1 and 120.32 mg g−1, respectively. CuFe2O4-foam/PMS couple could work effectively in a wide pH range (3.0–9.0) and temperature range (10–60 °C), which is more beneficial to its application in actual water treatment engineering. The exhausted adsorbents can be refreshed for cyclic runs (at least 7 cycles) with insignificant capacity loss using alkaline solution as a regeneration strategy, suggesting this process has good stability. Investigation of the mechanism reveals that the route to the removal of As(iii) is synchronous oxidation and sequestration in the arsenic removal process. The large As(iii) removal capability and stability of CuFe2O4-foam/PMS show its potential as a promising candidate in real As(iii)-contaminated groundwater treatment.

Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention.  相似文献   

8.
A new low-cost composite of ZnCoxFe2−xO4 loaded on rice hull carbon (ZnCoxFe2−xO4-RHC) was synthesized via waste ferrous sulfate (the industrial waste produced in the process of producing titanium dioxide) and rice hull as raw materials, which was applied for the degradation of bisphenol A (BPA) by heterogeneous activated peroxodisulfate (PS). A series of characterizations including XRD, SEM, FTIR, and BET analysis were carried out to analyze the structure and morphology of the materials. It is confirmed that the ZnCoxFe2−xO4-RHC composites show better catalytic activity and performance than other control samples, which can be attributed to the synergistic effect of Fe and Co, ZnCoxFe2−xO4 and RHC based on these analyses. The degradation rate of BPA by ZnCo1.3Fe0.7O4-50%RHC reached 100% within 15 min, and it can still maintain good catalytic efficiency after 5 cycles. ESR test and XPS results showed that free radical and non-free radical processes were involved in BPA degradation. These findings offer a novel, low cost and simple strategy for rational design and modulation of catalysts for the industrial degradation of organic pollutants, and provide a new idea for the utilization of waste ferrous sulphate in titanium dioxide industry.

Mechanism of the activation on PS by ZnCo1.3Fe0.7O4-RHC for the degradation of BPA.  相似文献   

9.
Trimethoprim (TMP), a typical antibiotic pharmaceutical, has received extensive attention due to its potential biotoxicity. In this study, CuFe2O4, which was used to decorate MWCNTs via a sol–gel combustion synthesis method, was introduced to generate powerful radicals from peroxymonosulfate (PMS) for TMP degradation in an aqueous solution. The results showed that almost 90% of TMP was degraded within 24 min with the addition of 0.6 mM PMS and 0.2 g L−1 CuFe2O4/MWCNTs. The degradation rate was enhanced with the increase in initial PMS doses, catalyst loading and pH. A fairly low leaching of Cu and Fe was observed during the reaction, indicating the high potential recyclability and stability of CuFe2O4/MWCNTs. Electron paramagnetic resonance analysis confirmed that the CuFe2O4/MWCNT-PMS system had the capacity to generate ·OH and SO4˙, whereas quenching experiments further confirmed that the catalytic reaction was dominated by SO4˙. A total of 11 intermediate products of TMP was detected via mass spectrometry, and different transformation pathways were further proposed. Overall, this study showed a systematic evaluation regarding the degradation process of TMP by the CuFe2O4/MWCNT-PMS system.

The degradation of trimethoprim (TMP) in heterogeneously activated peroxymonosulfate (PMS) oxidation processes using CuFe2O4/MWCNTs as the catalyst.  相似文献   

10.
As typical persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have aroused high environmental concern due to their toxicity and recalcitrant degradation. Herein, we report the enhanced photoreduction degradation of polybromodiphenyl ethers with Fe3O4-g-C3N4 under visible light irradiation (>420 nm). A series of high activity photocatalysts Fe3O4-g-C3N4 (named FeOCN-x) have been synthesized by an in situ growth method. The characterization of the prepared FeOCN-x nanocomposites has been examined by SEM, TEM, ultraviolet-visible diffuse reflectance spectroscopy, a vibrating sample magnetometer, X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer–Emmer–Teller surface area analysis. FeOCN-x hybrids all exhibit good magnetic separation properties with the saturation magnetization at 300 K varying from 0.4 to 6.3 emu g−1. Under visible light irradiation, FeOCN-x hybrids show enhanced photocatalytic activity for the debromination of PBDEs compared with g-C3N4. Among all the hybrids, FeOCN-4 with a 4 wt% Fe3O4 content gives the highest reaction rate, which is 6.7 times as high as that in pure g-C3N4. The FeOCN-x nanocomposites not only exhibit good photostability, but could also be easily recovered by magnetism. The results of the kinetic isotope effects (KIE) and the trapping agent experiments show that the rate determining step in the degradation reaction of PBDEs with FeOCN-x is the rate of electron accumulation in the conductive band. A possible photoreductive mechanism has been proposed. This study shows that the easily magnetically separable recycled photocatalyst FeOCN-x, with high visible light activity, could be an excellent candidate for dealing with halogen pollutants.

The enhanced photoreduction degradation of polybrominated diphenyl ethers with magnetic separable Fe3O4-g-C3N4 under visible light irradiation is reported.  相似文献   

11.
In the present study, the n-SnO2/p-CuFe2O4 (p-CFO) complex was prepared by a two-step process. p-CFO synthesized by the molten salt method was coated with SnO2 synthesized by a facile in situ chemical precipitation method. The formation of n-SnO2/p-CFO was confirmed by powder X-ray diffraction (PXRD). Scanning electron microscopy (SEM) images showed that the sharp edges of uncoated pyramid-like p-CFO particles were covered by a thick layer of n-SnO2 on coated p-CFO particles. The complete absence of Cu and only 3 wt% Fe on the surface of the n–p complex observed in the elemental analysis using energy-dispersive X-ray spectroscopy (EDX) on the n–p complex confirmed the presence of a thick layer of SnO2 on the p-CFO surface. Diffuse reflectance spectroscopy (DRS) was employed to elucidate the bandgap engineering. The n-SnO2/p-CFO complex and p-CFO showed 87% and 58.7% methylene blue (MB) degradation in 120 min under sunlight, respectively. The efficiency of the n–p complex recovered after 5 cycles (73.5%) and was found to be higher than that of the uncoated p-CFO (58.7%). The magnetically separable property of the n–p complex was evaluated by using vibration sample magnetometry (VSM) measurements and it was confirmed that the prepared photocatalyst can be easily recovered using an external magnet. The study reveals that the prepared complex could be a potential candidate for efficient photodegradation of organic dyes under sunlight due to its efficient recovery and reusability owing to its magnetic properties.

The synthesis of n-SnO2/p-CuFe2O4 to degrade toxic methylene blue dye under natural sunlight and its mechanism.  相似文献   

12.
A facile and feasible method was successfully utilized to incorporate Bi2O3 and g-C3N4 quantum dots on TiO2 surface to synthesize a novel composite g-C3N4/TiO2/Bi2O3. The photocatalytic activity of the composite g-C3N4/TiO2/Bi2O3 for degradation of dyes under sunlight and UV light irradiation was evaluated. It possessed the higher photocatalytic performance than that of pristine TiO2 or g-C3N4 under the same conditions. Under sunlight irradiation, the reaction rate constants of the g-C3N4/TiO2/Bi2O3 was about 4.2 times and 3.3 times higher than that of TiO2 and g-C3N4, respectively. The promising photocatalytic performance was attributed to the broader light absorption range and efficient separation of photoinduced carriers. Moreover, based on the TEM, XPS, XRD, UV-vis spectrum, radicals scavenging test and Mott–Schottky analysis systematic mechanism for photodegradation process was proposed. This work provides a promising strategy for the modification of TiO2-based semiconductors by incorporating different quantum dots and promoting the efficiency of the photocatalysts in practical application.

A facile and feasible method was successfully utilized to incorporate Bi2O3 and g-C3N4 quantum dots on TiO2 surface to synthesize a novel composite g-C3N4/TiO2/Bi2O3.  相似文献   

13.
Nanosized MFe2O4 (M = Co, Mn, or Zn) photocatalysts were synthesized via a simple sol–gel method. MFe2O4 photocatalysts exhibited lower photocatalytic activity for the degradation of levofloxacin hydrochloride under visible light irradiation. For enhancement of photocatalytic activity, MFe2O4 was used to activate peroxymonosulfate and degrade levofloxacin hydrochloride under visible light irradiation. The influences of peroxymonosulfate dosage, levofloxacin hydrochloride concentration, pH value, and temperature on peroxymonosulfate activation to degrade levofloxacin hydrochloride were investigated in detail. The mechanism of activation of peroxymonosulfate by MFe2O4 was proposed and proved by radical quenching experiments, electron spin resonance analysis, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, and transient photocurrent responses. The combined activation effects of photogenerated e/h+ and transition metals on peroxymonosulfate to produce sulfate radical clearly enhanced the degradation efficiency.

The combined activation effects of photogenerated e/h+, Fe, Co, Mn, and Zn on peroxymonosulfate to produce SO4˙ clearly enhanced the degradation efficiency.  相似文献   

14.
We report a study on the synthesis of TiO2/Fe2O3 (TF) nanocomposites and their photocatalytic performance under visible-light irradiation. The characterization of structure and morphology shows that hematite Fe2O3 was deposited on anatase TiO2 nanoparticles with particle sizes in the range of 20–100 nm. In contrast to pure TiO2 and pure Fe2O3, the nanocomposites exhibited remarkable photocatalytic activity. For example, the photoreduction efficiency of TF0.5 reaches 100% for a 100 ppm Cr(vi) solution within 160 minutes. The photochemical properties were studied by various methods. Finally, we conclude that the excellent performance of the photocatalysts is mainly attributed to two aspects: the enhanced absorption of visible light and the synergistic effect of an internal electric field at the heterojunction and citric acid for promoting the separation of electron–hole pairs.

A TiO2/Fe2O3 heterojunction with an internal electric field was constructed for enhancing photocatalytic reduction efficiency of Cr(vi).  相似文献   

15.
To effectively remove the endocrine disrupting chemicals (EDCs) in water, Fe3O4 was loaded on the surface of modified sepiolite clay by the method of co-precipitation to catalyze potassium persulfate (K2S2O8) and hydrogen peroxide (H2O2) respectively to generate SO4˙ and ·OH for atrazine (ATZ) removal. The magnetic clay catalyst was characterized by XRD, SEM, N2 adsorption–desorption and isoelectric point. The degradation efficiency of ATZ in the two systems was systematically compared in terms of initial pH, oxidant dosage and oxidant utilization rate. The results revealed that, after 90 minutes, systems with K2S2O8 and H2O2 can remove 65.7% and 57.8% of the ATZ under the given conditions (30 °C, catalyst load: 1 g L−1, initial pH: 5, [ATZ]0: 10 mg L−1, [H2O2]0: 46 mmol L−1, [PDS]0: 46 mmol L−1). The magnetic clay catalyst still maintained good catalytic activity and stability during the four consecutive runs. Based on the quenching experiments, it was demonstrated that the dominant radical species in the two systems were SO4˙/·OH and ·OH, respectively. However, the degradation efficiency of the two systems presented different responses toward the condition variations; the system with K2S2O8 was relatively more sensitive to solution pH, the oxidant efficiency was generally higher than that of the H2O2 system (except 184 mmol L−1).

To effectively remove the EDCs in water, Fe3O4 was loaded on the surface of modified sepiolite clay by co-precipitation to catalyze K2S2O8 and H2O2 respectively to generate SO4˙ and ·OH for ATZ removal.  相似文献   

16.
17.
In this contribution, NiFe2O4@NiFe2O4 nanosheet arrays (NSAs) with three-dimensional (3D) hierarchical core–shell structures were synthesized by a facile one-step hydrothermal method and they were used as electrode materials for supercapacitors (SCs). The NiFe2O4@NiFe2O4 composite electrode showed a high specific capacitance of 1452.6 F g−1 (5 mA cm−2). It also exhibited a superior cycling stability (93% retention after 3000 cycles). Moreover, an asymmetric supercapacitor (ASC) was constructed utilizing NiFe2O4@NiFe2O4 NSAs and activated carbon (AC) as the positive and negative electrode, respectively. The optimized ASC shows extraordinary performances with a high energy density of 33.6 W h kg−1 at a power density of 367.3 W kg−1 and an excellent cycling stability of 95.3% capacitance retention over 3000 cycles. Therefore, NiFe2O4@NiFe2O4 NSAs have excellent pseudocapacitance properties and are good electrode materials for high energy density.

Hierarchical NiFe2O4@NiFe2O4 core–shell nanosheet arrays synthesized via one-step hydrothermal method with a successive annealing exhibited outstanding electrochemical performance.  相似文献   

18.
Persulfate (PS)-based advanced oxidation processes have drawn tremendous attention for the degradation of recalcitrant pollutants, and cobalt composites are effective for PS activation to generate reactive species. In this study, composites of cobalt species loaded on cherry core-derived biochar (Co/C) were prepared with a one-step pyrolysis method. The Co/C catalyst was applied as a catalyst for PS activation to degrade bisphenol A (BPA). Factors influencing the degradation efficiency were examined, including the ratio of raw materials, Co/C and PS dosages, temperature, and solution pH. The Co/C catalyst prepared when the ratio of raw material was 1 : 1 (Co/C-50) could efficiently activate both peroxymonosulfate (PMS) and peroxydisulfate (PDS). When the initial concentration of BPA was 20 mg L−1, complete removal of BPA was achieved in the Co/C-50-PMS and Co/C-50-PDS systems within 8 min and 10 min, respectively. More than 70% of BPA could be mineralized in the Co/C-50-PS system. The free radical quenching experiments demonstrated that in the Co/C-50-PS system, the degradation of BPA was achieved through free radical, surface-bound free radical, and non-free radical pathways. The successful preparation of the Co/C-50-PS catalyst broadens the application of cobalt-based carbon materials in the activation of PS to remove organic pollutants.

Co/C composites were prepared with a one-step pyrolysis method for the activation of persulfate to degrade organic pollutants.  相似文献   

19.
Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications. However, the currently reported preparation methods for black TiO2 are not suitable for large-scale production due to its being prepared under high vacuum and over a long time. We have successfully prepared black TiO2 under normal pressure and short time conditions. The as-prepared black titanium dioxide was characterized by XRD, XPS, TEM, UV-visible absorption spectrum and other characterization methods. The result shows that the as prepared black titanium dioxide had a disordered structure and oxygen vacancy defects on the surface, and exhibits excellent visible and near infrared absorption performance. The black TiO2 sample was prepared under 650 °C 60 min exhibits excellent visible light photocatalytic performance, and can degrade 56% MO after visible light irradiation for 120 min.

Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications.  相似文献   

20.
Herein, novel V-modified titania nanorod-aggregates (VTNA), consisting of fine individual nanorods in radial direction, were fabricated via an efficient microwave-assisted hydrothermal (MWH) route. VTNA with high crystallinity and homogeneous mesopores were obtained by 30 min MWH processing at 190 °C; moreover, a mixed rutile–anatase phase appeared after vanadium doping. XPS analysis revealed that vanadium existed in the forms of V4+ and V5+ on the surface of MWV05 with V5+ being the dominant component, the content of which was approximately 3.5 times that of V4+. Vanadium implanting was achieved efficiently by doping 0.5 and 1 at% V using a rapid MWH process and contributed towards the dramatic improvement of the visible-light response, with Eg decreasing from 2.91 to 2.71 and 2.57 eV with the increasing V doping content. MWV05 exhibited optimal photocatalytic degradation activity of water-soluble PCP-Na under solar light irradiation. The enhanced photodecomposition was attributed to the red-shift in the TiO2 band-gap caused by vanadium impregnation, efficient charge separation due to the V4+/V5+ synergistic effects and the free migration of charge carriers along the radial direction of the nanorods arranged in a self-assembled VTNA microstructure.

V-modified titania nanorod-aggregates were fabricated by microwave hydrothermal route. MWV05 exhibited optimal solar activity towards PCP-Na, due to red-shift by V-doping, carriers separation by V4+/V5+ synergistic effects and charge migration along the nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号