首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, inexpensive and easy to use 3D printable device was developed for nephelometric and fluorimetric determination. Its applicability was tested for the quantification of quinine in tonic drinks and sulfate in natural water with good analytical accuracy. In this way, sulfate determination was carried out by nephelometry using a red LED, while quinine was determined using a blue LED by fluorimetry. A smartphone camera was used to take the pictures and afterwards transform them into the RGB color space using the software ImageJ by a personal computer. The linear range was 2.0–50.0 mg L−1 for sulfate with a LOD of 0.13 mg L−1, and the corresponding quantification limit (LOQ) was 0.43 mg L−1. The linear range for quinine was from 0.42 to 3.10 mg L−1. The LOD and LOQ were 0.11 mg L−1 and 0.38 mg L−1, respectively.

A new, inexpensive and easy to use 3D printable device was developed for nephelometric and fluorimetric determination.  相似文献   

2.
To achieve rapid and convenient on-site pretreatment and determination of parathion-methyl, a density-adjusted liquid-phase microextraction with smartphone digital image colorimetry was established to detect parathion-methyl in food samples. In this study, the environmentally friendly biomass-derived solvent guaiacol was used as the extractant. Salt and water, as density regulators, realized the two movements (floating–sinking) of the extractant and full contact between the extractant and the sample solution to establish an environmentally friendly, fast, and efficient pretreatment method. Under strong alkaline conditions, parathion-methyl generated a yellow product; then, a smartphone was used to obtain the image of the yellow product for intensity analysis. Parathion-methyl has a good linear relationship in the range of 0.01–1 mg L−1, and the limits of detection and quantification are 0.003 and 0.01 mg L−1, respectively. This method has been successfully applied to the determination of parathion-methyl in spiked water, fruit juice, vinegar, and fermented liquor with a recovery of 91.6–106.5% and a relative standard deviation of 0.6–6.0%. The established density-adjusted liquid phase microextraction with smartphone digital image colorimetry is rapid, convenient, and environmentally friendly for the determination of parathion-methyl in food samples.

Schematic representation of the density-adjusted LPME-SDIC.  相似文献   

3.
Ship emulsified oil wastewater was used as the research object in this study. The highly efficient coagulant demulsification degreasing mechanism and microbubble flotation technology were combined and the effects of coagulant type and dosage amount on the demulsification of emulsified oil wastewater were evaluated. The influence of the mixed coagulation effect of pH values, temperature, and hydraulic condition parameters were determined and water intake, air intake, and oil content were regulated. The coagulant for the demulsification of emulsified oil wastewater was screened; the dosage was 500 mg L−1, and the removal capacity of the coagulant was in the following order: polyaluminum ferric chloride (PAFC) > polyaluminum chloride (PAC) > polysilicate aluminum ferric sulfate (PSAFS) > alum > Al2(SO4)3 > polyferric sulfate > FeCl3. Polyacrylamide (PAM) with added water was used to further reduce the oil content. The PAFC, PAC, and PSAFS were selected as coagulation–air flotation dynamic test alternative agents. The investment quantities of PAFC, PSAFS and PAM were 300 mg L−1, 300 mg L−1 and 30 mg L−1, respectively. The stirring time was 5 min, the pH value was 6.5–6.9, the flow rate was 0.25 m3 h−1, the oil content of the emulsified oil wastewater was 3000–5000 mg L−1 and the effluent oil was stable below 15 ppm. The microbubble generation device using air flotation effluent was used in the two air flotation treatments to enhance the device efficiency. The air flotation device adopted the structural design of the upper part of the water inlet and the lower part of the micro-air bubble, which can increase the collision probability of the microbubble and improve the efficiency of oil removal.

Ship emulsified oil wastewater was used as the research object in this study.  相似文献   

4.
Adsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (μGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L−1) at pH 7.0, loadings of 24 mg g−1 P (with 3 mg L−1 initial PO43−–P) and 17 mg L−1 Si (with 9 mg L−1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to μGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L−1) for 9, 14 and 22 mg L−1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L−1) prior to phosphate (c0 = 3 mg L−1) addition, 28 and 56 days reduce the μGFH capacity for phosphate by 21 and 43%, respectively.

Adsorption of phosphate onto ferric hydroxide in complex waters is influenced by effects of competition, displacement and surface blockage.  相似文献   

5.
A low-cost and reliable analytical method based on the combination of a newly designed sticker-plastic sheet platform, digital image-based colorimetry and down scaled Kjeldahl digestion is proposed for the determination of protein content in food samples. The yellowish-brown colloidal products, obtained from the reaction between the ammonium–nitrogen after digestion and the working Nessler''s reagent on the miniaturized sticker-plastic sheet platform, were captured for imaging with a smartphone camera. The operational parameters and reaction conditions were optimized. A down scaled Kjeldahl digestion procedure was performed using the newly designed digestion block. The parameters influencing the digestion efficiency, including the mass of the sample, volume of acid, mass of the catalyst and digestion time, were evaluated. Under the selected conditions, a linear calibration in the range of 5–60 mg L−1 ammonium–nitrogen was obtained with limits of detection and quantification of 2.8 and 7.6 mg L−1, respectively. The repeatability and reproducibility were 6.7% and 8.8%, respectively. The accuracy of the proposed method was evaluated by applying the developed procedure for milk powder and feeding stuff reference materials and comparing it with the conventional Kjeldahl method. The proposed method was successfully applied for the determination of protein contents in soy foods and protein-based foods. The results agreed well with those obtained from the conventional Kjeldahl method.

The combination of a newly designed sticker-plastic sheet platform, smartphone-based digital imaging and down scaled Kjeldahl digestion is proposed for the determination of protein contents in food samples.  相似文献   

6.
Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared. Furthermore, the effect of HCO3 concentration on the bundle filler system was also investigated, the results have shown that the activity of the two anammox fiber fillers was not inhibited when the NO2–N concentration was lower than 750 mg L−1 (FNA = 0.085 mg L−1), while it was significantly suppressed at 900 mg L−1 (FNA = 0.118 mg L−1). However, the two fiber fillers could be recovered and exhibit a good impact resistance reduction of the substrate concentration. On day 95, the structure of the bundle filler was more conducive to the stable attachment, proliferation, and aggregation of anammox bacteria. Dominant anammox bacteria in both the curtain and bundle fillers were Candidatus Kuenenia, which accounted for 25.9% and 35.9% of the total population, respectively. When the influent HCO3 concentration was 900 mg L−1, the bundled fiber filler had the highest total nitrogen (TN) removal efficiency, which reached 89.0%. Even though it was inhibited under 2000 mg L−1 of HCO3 concentration, the reactor was able to recover within one week by reducing the substrate concentration. In addition, the HCO3 inhibition mechanism was independent of pH, which resulted in high FA content.

Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared.  相似文献   

7.
Membrane capacitive deionization (MCDI) is an effective process to remove salt ions from brackish water. In this work, a systematic investigation was carried out to study the effects of applied potential and salt concentration on salt adsorption capacity (SAC), charge efficiency (Λ) and energy consumption in an MCDI system using Luffa biowaste derived carbon as electrodes. We studied the comparative MCDI performance of Luffa derived carbon as electrodes before and after activation. Furthermore, the desalination capacities of the electrodes were quantified by batch-mode experiments in a 2500 mg L−1 NaCl solution at 0.8–1.2 V. Activated Luffa carbon showed a high SAC of 38 mg g−1 at 1.2 V in a 2500 mg L−1 NaCl solution with a low energy consumption of 132 kJ mol−1 salt as compared to non-activated samples (22 mg g−1, 143 kJ mol−1). The adsorption mechanisms were investigated using kinetic models and isotherms under various applied potentials. Consequently, the excellent SAC of activated Luffa carbon can be attributed to the presence of micro/mesoporous network structure formed due to the activation process for the propagation of the salt ions.

Membrane capacitive deionization (MCDI) is an effective process to remove salt ions from brackish water.  相似文献   

8.
We report the larvicidal effects of four different morphologies of zinc oxide nanoparticles (ZnO NPs) [star-shaped (S), needle-like (N), plate-like (P) and cubical (C)] on larvae of Aedes albopictus and Anopheles vagus; the mosquitoes causing dengue fever and malaria, respectively. The nanoparticles were characterized by several analytical techniques, and their sizes and shapes were determined. Second instar larvae of the two types of mosquitoes were exposed to several concentrations of nanoparticles (25 mg L−1, 50 mg L−1, 75 mg L−1, 100 mg L−1) at 25 ± 2 °C and 84 ± 5% R.H, separately, for each morphology. Larval mortality was reported at 24 h intervals up to 21 days. The resulting LC50 for Aedes albopictus were, respectively, 38.90 mg L−1, 47.53 mg L−1, 68.38 mg L−1, 50.24 mg L−1 for S-, N-, P- and C-shaped nanoparticles. The LC50 of Anopheles vagus is lower (LC50 4.78 mg L−1, 6.51 mg L−1, 13.64 mg L−1, 10.47 mg L−1), respectively, for S-, N-, P- and C-shaped nanoparticles indicating that the nanoparticles are more toxic to Anopheles vagus larvae. The highest larvicidal effect was obtained from star-shaped nanoparticles [Aedes albopictus (38.90 mg L−1) on Anopheles vagus (4.78 mg L−1)], and the lowest was shown by the plate-like nanoparticles [Aedes albopictus (68.38 mg L−1), Anopheles vagus (13.64 mg L−1)]. The rate of development of surviving mosquito larvae was retarded when exposed to ZnO nanoparticles suggesting the possibility for these nanoparticles to kill and delay the growth of Aedes albopictus and Anopheles vagus larvae.

We report the larvicidal impacts of four different morphologies of zinc oxide nanoparticles (ZnO NPs) [star-shaped (S), needle-like (N), plate-like (P), and cubical (C)] on mosquito larvae of Aedes albopictus and Anopheles vagus.  相似文献   

9.
A series of trifluoromethyl pyridine derivatives containing 1,3,4-oxadiazole moiety was designed, synthesized and bio-assayed for their insecticidal activity. The result of bio-assays indicated the synthesized compounds exhibited good insecticidal activity against Mythimna separata and Plutella xylostella, most of the title compounds show 100% insecticidal activity at 500 mg L−1 and >80% activity at 250 mg L−1 against the two pests. Compounds E18 and E27 showed LC50 values of 38.5 and 30.8 mg L−1 against Mythimna separata, respectively, which were close to that of avermectin (29.6 mg L−1); compounds E5, E6, E9, E10, E15, E25, E26, and E27 showed 100% activity at 250 mg L−1, which were better than chlorpyrifos (87%). CoMFA and CoMSIA models with good predictability were proposed, which revealed the electron-withdrawing groups with an appropriate bulk at 2- and 4-positions of benzene ring could enhance insecticidal activity.

Novel trifluoromethyl pyridine derivatives bearing 1,3,4-oxadiazole whereas synthesized, their which showed good insecticidal activity; a 3D-QSAR model with good predictability was is proposed.  相似文献   

10.
In this new insight, the potential application of the eco-friendly Bio-Electro-Fenton (BEF) system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source. To shed light on this issue, catalytic degradation of tetracycline was directly accrued via in situ generated hydroxyl free radicals from Fenton''s reaction in the cathode chamber. Simultaneously, the in situ electricity generation as renewable bioenergy was carried out through microbial activities. The effects of operating parameters, such as electrical circuit conditions (in the absence and presence of external resistor load), substrate concentration (1000, 2000, 5000, and 10 000 mg L−1), catholyte pH (3, 5, and 7), and FeSO4 concentration (2, 5, and 10 mg L−1) were investigated in detail. The obtained results indicated that the tetracycline degradation was up to 99.04 ± 0.91% after 24 h under the optimal conditions (short-circuit, pH 3, FeSO4 concentration of 5 mg L−1, and substrate concentration of 2000 mg L−1). Also, the maximum removal efficiency of anodic COD (85.71 ± 1.81%) was achieved by increasing the substrate concentration up to 2000 mg L−1. However, the removal efficiencies decreased to 78.29 ± 2.68% with increasing substrate concentration up to 10 000 mg L−1. Meanwhile, the obtained maximum voltage, current density, and power density were 322 mV, 1195 mA m−2, and 141.60 mW m−2, respectively, at the substrate concentration of 10 000 mg L−1. Present results suggested that the BEF system could be employed as an energy-saving and promising technology for antibiotic-containing wastewater treatment and simultaneous sustainable bioelectricity generation.

In this new insight, the potential application of the Bio-Electro-Fenton system was surveyed with the aim of simultaneous degradation of tetracycline and in situ generation of renewable bioenergy without the need for an external electricity source.  相似文献   

11.
Dual determination of nitrite and iron was proposed by using a single greener sequential injection (SI) spectrophotometric system employing a simple single aqueous extract from Areca catechu Linn. The extract served as a natural reagent to replace N-(1-naphthyl)ethylenediamine (NED) of the Griess reagent with nitrite and 1,10-phenanthroline with iron. The color products possessed analytical wavelengths at 430 and 560 nm, respectively. Conditions for the SI procedure were optimized using a univariate experimental design. Calibration ranges were up to 5.0 mg L−1 and 10.0 mg L−1 with limits of detection (LODs) of 0.04 mg L−1 and 0.05 mg L−1 for nitrite and iron(iii), respectively, and relative standard deviations (RSDs) being less than 3%. Recoveries of spiked standard nitrite and iron(iii) at 0.3 mg L−1 and 0.5 mg L−1 in water samples were 88 to 104% and 84 to 109%, respectively. The developed method successfully achieved dual determination of nitrite and total iron agreeing at a 95% confidence level with the reference methods of the conventional Griess assay and flame atomic absorption spectrometry (FAAS), respectively. The proposed method utilized locally available material from plants and serves the UN-SDGs.

Dual determination of nitrite and iron was proposed by using a single greener sequential injection (SI) spectrophotometric system employing a simple single aqueous extract from Areca catechu Linn.  相似文献   

12.
A moving bed biofilm reactor (MBBR) is a kind of commonly used biological sewage treatment process. A carrier, the core of MBBR, could directly affect the treatment efficiency of MBBR. In this experiment, a hybrid carrier composed of an MBBR carrier and fluidized bed porous carrier was innovatively utilized to treat low-concentration simulated domestic sewage through an MBBR reactor to investigate the effects of different hydraulic retention times (HRT) and different carrier dose ratios on the reactor performance. The results indicated that when the volume ratio of the carrier dosage was 5% : 20% when the reactor HRT was 5 h, the removal rates of ammonia nitrogen, total nitrogen (TN) and chemical oxygen demand (CODCr) were optimal, which were 96.5%, 60.9% and 91.5%, respectively. The ammonia nitrogen, total nitrogen and CODCr concentrations of the effluent were 1.04 mg L−1, 12.20 mg L−1 and 29.02 mg L−1, respectively. Furthermore, the total biomass concentration in the hybrid carrier biofilm reactor (HCBR) was 3790.35 mg L−1, which also reached the highest value. As the experiment progressed, the concentrations of protein, polysaccharide and soluble microbial products (SMP) were reduced to 7.68 mg L−1, 11.10 mg L−1 and 18.08 mg L−1, respectively. This was basically consistent with the results of the three-dimensional fluorescence spectrum. The results showed that the combined-carrier biofilm reactor could reduce the volumetric filling rate, improving the removal capability of organic matter and the denitrification efficiency. This study provided technical support for the composite carrier biofilm wastewater treatment technology, and also had a good prospect of application.

A combined-carrier biofilm reactor could reduce the volumetric filling rate, improving the removal capability of organic matter and the denitrification efficiency.  相似文献   

13.
In the present study, a novel resource utilization method using wet magnesia flue gas desulfurization (FGD) residue for the simultaneous removal of ammonium nitrogen (NH4–N) and heavy metal pollutants from vanadium (V) industrial wastewater was proven to be viable and effective. In this process, the wet magnesia FGD residue could not only act as a reductant of hexavalent chromium [Cr(vi)] and pentavalent vanadium [V(v)], but also offered plenty of low cost magnesium ions to remove NH4–N using struvite crystallization. The optimum experimental conditions for Cr(vi) and V(v) reduction are as follows: the reduction pH = 2.5, the wet magnesia FGD residue dose is 42.5 g L−1, t = 15.0 min. The optimum experimental conditions for NH4–N and heavy metal pollutants removal are as follows: the precipitate pH = 9.5, the n(Mg2+) : n(NH4+) : n(PO43−) = 0.3 : 1.0 : 1.0, t = 20.0 min. Finally the NH4–N, V and Cr were separated from the vanadium containing industrial wastewater by forming the difficult to obtain, soluble coprecipitate containing struvite and heavy metal hydroxides. The residual pollutant concentrations in the wastewater were as follows: Cr(vi) was 0.047 mg L−1, total Cr was 0.1 mg L−1, V was 0.14 mg L−1, NH4–N was 176.2 mg L−1 (removal efficiency was about 94.5%) and phosphorus was 14.7 mg L−1.

A novel resource utilization method using wet magnesia flue gas desulfurization residue for the simultaneous removal of ammonium nitrogen and heavy metal pollutants from vanadium industrial wastewater was proven to be viable and effective.  相似文献   

14.
In this study, a simultaneously heterotrophic nitrifying–aerobic denitrifying bacterium, designated KSND, was newly isolated from a lake wetland. Its removal efficiencies for 160 mg L−1 ammonium, 105 mg L−1 nitrate, and 8.39 mg L−1 nitrite were 86.56%, 74.52%, and 100% in 24 h, with removal rates of 5.77 mg L−1 h−1 for NH4+–N, 3.26 mg L−1 h−1 for NO3–N, and 0.35 mg L−1 h−1 for NO2–N. The bacterium retained ∼63% of its maximal removal rate at 10 °C and 56% of its maximal removal rate at a carbon to nitrogen (C/N) ratio of 4 : 1, with no nitrite accumulation. Gene-specific PCR indicated the absence of the key genes for nitrification and denitrification, encoding hydroxylamine oxidoreductase and nitrite reductase, respectively, suggesting that KSND achieves effective nitrogen removal by another pathway. KSND was used to treat river wastewater by culturing it in a floating bed bioreactor. Ammonia nitrogen decreased significantly from 8.76 mg L−1 initially to 1.87 mg L−1 in 90 days, with no NO3–N or NO2–N toxicants, indicating the great potential utility of KSND in future full-scale applications in the treatment of low-C/N wastewater.

A novel simultaneous nitrification and denitrification Klebsiella sp. exhibits high nitrogen removal efficiency under low-temperature and low C/N wastewater.  相似文献   

15.
A new photocatalyst, few-layer MoS2 grown in MgAl-LDH interlayers (MoS2/MgAl-LDH), was prepared by a facile two-step hydrothermal synthesis. The structural and photocatalytic properties of the obtained material were characterized by several techniques including powder X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis absorption spectroscopy. The MoS2/MgAl-LDH composite showed excellent photocatalytic performance for methyl orange (MO) degradation at low concentrations (50 mg L−1 and 100 mg L−1). Furthermore, even for a MO solution concentration as high as 200 mg L−1, this composite also presented high degradation efficiency (>84%) and mineralization efficiency (>73%) at 120 min. The results show that the MoS2/MgAl-LDH composite has great potential for application in wastewater treatment.

Few-layer MoS2 was successfully grown in MgAl-LDH layers, utilizing the “space-confining” effect. The composite completed degraded 50 mg L−1 and 100 mg L−1 methyl orange (MO) solutions in 45 min and 105 min, respectively.  相似文献   

16.
The production cost of microbial oil was reduced by improving the exopolysaccharide (EPS) production to share the production cost using Sporidiobolus pararoseus JD-2. Batch fermentation demonstrated that S. pararoseus JD-2 has the potential to co-produce oil and EPS with 120 g L−1 glucose, 20 g L−1 corn steep liquor and 10 g L−1 yeast extract as carbon and nitrogen sources. Using fed-batch fermentation for 72 h resulted in oil and EPS production of 41.6 ± 2.5 g L−1 and 13.1 ± 0.6 g L−1 with the productivity of 0.58 g L−1 h−1 and 0.182 g L−1 h−1, respectively. The fat soluble nutrients in the oil were studied, indicating that it was constituted of 79.19% unsaturated fatty acids and contained 505 mg per kg-oil of carotenoids. Moreover, the EPS contained only one type of polysaccharide; the main monosaccharide compositions were galactose, glucose and mannose in a proportion of 16 : 8 : 1. These results implied that EPS produced by S. pararoseus JD-2 was a new type of EPS.

The production cost of microbial oil was reduced by improving the exopolysaccharide (EPS) production to share the production cost using Sporidiobolus pararoseus JD-2.  相似文献   

17.
This article reports the first fluorescent distance-based paper device coupled with an evaporating preconcentration system for determining trace mercury ions (Hg2+) in water. The fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a one-step microwave method using citric acid and ethylenediamine. The fluorescence turn-off of the NCDs in the presence of Hg2+ was visualized with a common black light, and the distance of the quenched fluorescence correlated to Hg2+ concentration. The optimal conditions for pH, NCD concentration, sample volume, and reaction time were investigated. Heating preconcentration was used to improve the detection limits of the fluorescent distance-based paper device by a factor of 100. Under the optimal conditions, the naked eye limit of detection (LOD) was 5 μg L−1 Hg2+. This LOD is sufficient for monitoring drinking water where the maximum allowable mercury level is 6 μg L−1 as established by the World Health Organization (WHO). The fluorescent distance-based paper device was successfully applied for Hg2+ quantification in water samples without interference from other cations. The proposed method provides several advantages over atomic absorption spectroscopy including ease of use, inexpensive material and fabrication, and portability. In addition, the devices are simple to fabricate and have a long shelf-life (>5 months).

This article reports the first fluorescent distance-based paper device coupled with an evaporating preconcentration system for determining trace mercury ions (Hg2+) in water.  相似文献   

18.
Three different methods (a sulfuric acid method, sodium chloride method and vibration method) were used to extract extracellular polymeric substances (EPS) from Cupriavidus pauculus 1490 (C. pauculus 1490) in the present study. The sodium chloride method was able to extract the maximum amount of EPS (86.15 ± 1.50 mg g−1-DW), and could ensure minimum cell lysis by detecting glucose-6-phosphate dehydrogenase activity and using scanning electron microscopy. This method was therefore selected as the optimal extraction method and used in subsequent experiments. On this basis, the tolerance of C. pauculus 1490 and variations in EPS secretion after the addition of different metal ions was investigated. The tolerance levels of C. pauculus 1490 to Cd(ii), Ni(ii), Cu(ii) and Co(ii) were 300 mg L−1, 400 mg L−1, 400 mg L−1 and 400 mg L−1, respectively. Low concentrations of these heavy metal ions could promote bacterial growth, while increased concentrations were found to inhibit it. The results show that metal ions, especially Cd(ii), stimulate the secretion of EPS, with an EPS yield reaching 956.12 ± 10.59 mg g−1-DW at 100 mg L−1. Real-time polymerase chain reaction (PCR) analysis showed that the key EPS synthetic genes, epsB, epsP and Wzz, were up-regulated. Fourier transform infrared spectroscopy analysis suggested that abundant functional groups in EPS play an important role in heavy metal ion complexation. These results will contribute to our understanding of the tolerance mechanism of microorganisms in the presence of different types and concentrations of metal ions.

Metal ions are shown to stimulate the secretion of EPS components of Cupriavidus pauculus 1490, especially Cd(II).  相似文献   

19.
The provisional contamination level of arsenic in drinking water is 10 μg L−1. For decreasing this value to a safer level, a more precise method for analyzing dissolved arsenic is required. With this aim, we synthesized zeolitic imidazolate framework-8 (ZIF-8) in the aqueous phase and characterized its potential application for monitoring the trace arsenic in fresh water. In this regard, we report following three notable outcomes. First, we demonstrate the excellent performance of ZIF-8 nanoparticles (nZIF-8) for the adsorption of ng L−1 levels of AsO43−. nZIF-8 is able to adsorb over 99% of arsenic from as low as 10 ng L−1 AsO43− solutions. This performance was maintained even in the presence of commonly coexisting anions, for example, >90% adsorption from a 0.1 μg L−1 arsenic solution was observed in the presence of 10 mg L−1 of Cl, NO3, CO32−, or SO42−, or 1 mg L−1 of PO43−. Second, we clarified that the mechanism of arsenic adsorption by ZIF-8 is simply a ligand exchange process, in which the As(v) oxide anion replaces the imidazolate unit in the framework. Third, we propose a handy scheme for the analysis of ng L−1 levels of arsenic in drinking water, in which nZIF-8 is used for the concentration of trace level AsO43−. By doing this, as low as 100 ng L−1 arsenate in drinking water can be quantified by colorimetric analysis, the detection limit of which is 5 μg L−1 in pure water. The application of this scheme is expected to highly enhance AsO43− detection first by concentrating it to an easily detectable range, and second by excluding the majority of interfering ions present in the system. Therefore, a reduction in the minimum quantifying limit of arsenic in fresh water to as low as 1 ng L−1 can be expected if the method is coupled with ICP-MS.

ZIF-8 nanoparticles highly selectively uptakes ultra-trace concentration arsenate. The material can be used for high precision monitoring of the ion when coupled with handy analytical tools.  相似文献   

20.
A capillary electrophoresis method with on-line inhibited chemiluminescence (CL) detection was first used to determine folic acid (FA). This method was established based on the quenching effect of FA on the CL reaction of luminol with a Ag(iii) complex in alkaline medium. The separation was conducted with a 20.0 mM sodium borate buffer containing 1.0 mmol L−1 luminol. Under optimized conditions, FA was baseline separated and detected in less than 10 min. The limit of detection of FA was 1.3 mg L−1, with a linear range of 5.0–150.0 mg L−1 (r = 0.9953). The RSD value was 2.8% for intra-day precision and 5.4% inter-day precision. The recoveries of the standard addition of tablets and human urine ranged from 90.3% to 107.5% and from 82.0 to 105.7%, respectively. The proposed method was successfully applied to determine FA contents in commercial pharmaceutical tablets and human urine samples. Results suggested that this method was simple and robust.

A capillary electrophoresis method with on-line inhibited chemiluminescence detection was first used to determine folic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号